Abstract
Representation bias in health data can lead to unfair decisions and compromise the generalisability of research findings. As a consequence, underrepresented subpopulations, such as those from specific ethnic backgrounds or genders, do not benefit equally from clinical discoveries. Several approaches have been developed to mitigate representation bias, ranging from simple resampling methods, such as SMOTE, to recent approaches based on generative adversarial networks (GAN). However, generating high-dimensional time-series synthetic health data remains a significant challenge. In response, we devised a novel architecture (CA-GAN) that synthesises authentic, high-dimensional time series data. CA-GAN outperforms state-of-the-art methods in a qualitative and a quantitative evaluation while avoiding mode collapse, a serious GAN failure. We perform evaluation using 7535 patients with hypotension and sepsis from two diverse, real-world clinical datasets. We show that synthetic data generated by our CA-GAN improves model fairness in Black patients as well as female patients when evaluated separately for each subpopulation. Furthermore, CA-GAN generates authentic data of the minority class while faithfully maintaining the original distribution of data, resulting in improved performance in a downstream predictive task.
Author summary Doctors and other healthcare professionals are increasingly using Artificial Intelligence (AI) to make better decisions about patients’ diagnosis, suggest optimal treatments, and estimate patients’ future health risks. These AI systems learn from existing health data which might not accurately reflect the health of everyone, particularly people from certain racial or ethnic groups, genders, or those with lower incomes. This can mean the AI doesn’t work as well for these groups and could even make existing health disparities worse. To address this, we have developed a purposely built AI software that can create synthetic patient data. Synthetic data created by our software mimics real patient data without actually copying them, protecting patients’ privacy. Using our synthetic data results in more representative dataset of all groups, and ensures that AI algorithms learn to be fairer for all patients.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
None
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The data in MIMIC-III, where we extracted our datasets from, was previously de-identified, and the institutional review boards of the Massachusetts Institute of Technology (No. 0403000206) and Beth Israel Deaconess Medical Center (2001-P-001699/14) both approved the use of the database for research.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.