Title: Comparing the Diagnostic Performance of qPCR, ddPCR, and NGS Liquid Biopsies for HPV-Associated Cancers

Saskia Naegele, BA1; Daniel A. Ruiz-Torres, MD1; Yan Zhao, MS1; Deborah Goss, MA, MLS1; Daniel L. Faden, MD1,2,3

1Department of Otolaryngology–Head and Neck Surgery Massachusetts Eye and Ear, Boston, Massachusetts
2Harvard Medical School, Boston, Massachusetts
3Broad Institute of MIT and Harvard, Cambridge, Massachusetts

Corresponding author: Daniel L. Faden, MD, Department of Otolaryngology-Head & Neck Surgery, Mass Eye and Ear, 243 Charles St, Boston, MA 02118 (dfaden@mgb.org).

Grant numbers and sources of support: Daniel Faden receives salary support from NIH R21 1R21CA267152, NIH R03DE030550, NIH K23DE029811 and Calico

Conflict of interest statement: Daniel Faden has received research funding from Bristol-Myers Squibb and Calico, In Kind funding from Boston Gene, holds equity in Illumina, receives consulting fees from Merck, Noetic, Chrysalis Biomedical Advisors and Focus.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract:
HPV-associated cancers, including oropharyngeal squamous cell carcinoma (HPV+OPSCC), cervical cancer (HPV+CC), and squamous cell carcinoma of the anus (HPV+SCCA), release circulating tumor HPV DNA (ctHPVDNA) into the blood. The diagnostic performance of ctHPVDNA detection depends on the approaches utilized and the individual assay metrics. A comparison of these approaches has not been systematically performed to inform expected performance, which in turn impacts clinical interpretation. A meta-analysis was performed using Ovid MEDLINE, Embase, and Web of Science Core Collection databases to assess the diagnostic accuracy of ctHPVDNA detection across cancer anatomic sites, detection platforms, and blood components. The population included HPV+OPSCC, HPV+CC, and HPV+SCCA patients with pre-treatment samples analyzed by quantitative PCR (qPCR), digital droplet PCR (ddPCR), or next generation sequencing (NGS). 36 studies involving 2,986 patients met the inclusion criteria. The sensitivity, specificity and quality of each study were assessed and pooled for each analysis.

The sensitivity of ctHPVDNA detection was greatest with NGS, followed by ddPCR and lastly qPCR when pooling all studies, while specificity was similar (sensitivity: ddPCR > qPCR, p < 0.001; NGS > ddPCR, p = 0.014). ctHPVDNA from OPSCC was more easily detected compared to CC and SCCA, overall (p = 0.044).

In conclusion, detection platform, anatomic site of the cancer and blood component utilized impacts ctHPVDNA detection and must be considered when interpreting results. Plasma NGS-based testing should be considered the most sensitive approach for ctHPVDNA overall.
Introduction

Human papillomaviruses (HPVs) are a family of DNA oncoviruses that cause benign and malignant lesions of the genital mucosa, upper respiratory tract, and skin. More than 200 distinct types of HPV have been identified, and at least 14 of them are classified as high-risk, or capable of tumorigenesis, in specific anatomic sites. HPV accounts for 5% of cancers worldwide and causes almost all cases of cervical cancer, as well as a significant proportion of vaginal, vulvar, penile, anal, rectal, and oropharyngeal cancers. Routine screening strategies for HPV-associated cervical cancer (HPV+CC), including pelvic exams and Papanicolaou smears, enable early detection and have contributed to a substantial reduction in the incidence of early-stage cervical cancer. Unlike cervical cancer, effective screening strategies for HPV-associated oropharyngeal squamous cell carcinoma (HPV+OPSCC) and HPV-associated squamous cell carcinoma of the anus (HPV+SCCA) are lacking, and the incidence of these cancers has steadily increased in the past few decades. In the United States and the United Kingdom, the incidence of HPV+OPSCC in men has surpassed rates of cervical cancer in women and continues to rise, despite HPV vaccination efforts. Existing approaches to diagnose and monitor these cancers are invasive, costly and have variable accuracy, indicating a need to improve the current standard of care.

Circulating tumor DNA (ctDNA) is released or secreted from cancer cells into the blood and other body fluids. Liquid biopsies detecting ctDNA have demonstrated broad applicability from cancer screening to molecular profiling, adaptive treatment monitoring during therapy, detection of minimal residual disease, and recurrence detection. HPV-associated cancers release ctHPVDNA, which has distinct advantages over somatic ctDNA due to the smaller size of the viral genome and its specificity to cancer cells, making HPV-associated cancers an optimal target for the application of liquid biopsies. Numerous studies have demonstrated that ctHPVDNA is detectable in the plasma or serum of patients with HPV-associated cancers at the time of diagnosis, can be used as a real-time biomarker to monitor treatment response, and detects recurrence earlier than standard of care imaging. ctHPVDNA-based diagnostics may have improved accuracy, reduced cost, and a shorter time to diagnosis compared with existing tissue-based clinical diagnostics. In the past, conventional quantitative-polymerase chain reaction (qPCR) was the most common method employed for the detection of ctDNA, but newer (and more costly) techniques, including droplet-digital PCR (ddPCR) and next generation sequencing (NGS) have emerged. The diagnostic performance of ctHPVDNA detection depends on the approaches utilized and the individual assay metrics. A comparison of these approaches has not been systematically performed in the literature to inform expected performance, which in turn impacts clinical interpretation. We sought to test the hypothesis that the sensitivity of NGS-based liquid biopsy is superior to qPCR and ddPCR at the time of diagnosis across HPV-associated cancers.

Materials and Methods

A systematic review was performed by a medical librarian (D.G.) following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).
A search of published studies in Ovid MEDLINE (1946-), Embase.com (1947-) and Web of Science Core Collections (1900-) was designed and conducted by a reference librarian (D.G.) on February 18 and 23, 2022. Search strategies were customized for each database (Supplementary Methods). Each search utilized a combination of controlled vocabulary and keyword terms relating to the diagnosis of HPV-associated cancer (head and neck, anal, vulvar, cervical, vaginal, penile) using qPCR, ddPCR, or NGS testing. The search was constructed to exclude non-human studies. No filters for language, study design, date of publication, or country of origin were used in the search producing 251 articles (Figure 1). All references were exported into EndNote x7.8. Duplicates were removed first by the automated process in EndNote and then manually by the librarian leaving 153 articles, which were exported into Covidence for study screening, selection, and data extraction. Nine subsequent articles were found through searching the references of included articles making up a total of 162 articles for screening.

Study Selection

Studies that examined ctDNA in any HPV-associated cancer with qPCR, ddPCR, or NGS were considered eligible for inclusion. Extracted data comprised anatomic subsite, HPV status, HPV assay detection method, number of patients tested on each assay, number of true positives, false positives, false negatives, and true negatives, source of ctHPVDNA (plasma or serum), probe target gene (if ddPCR was used), and amplicon or hybrid capture (if NGS was used). Only studies written in English were included. Titles and abstracts were screened independently by two authors (S.N. and D.R.T.) for full text review. The same two authors independently conducted the full text review. Any disagreements in the screening process were settled by discussion and consensus between the two authors. All eligible studies were screened for duplicate data by comparing authors, timeframe of data collection, and outcomes. After full text screening, 36 studies remained for the quantitative synthesis.

R 4.1.2 was used to conduct the statistical analysis and the R packages “meta” and “metafor” were used for the meta-analysis. The studies missing one of the two values (TP, FN) or (TN, FP) were excluded. Using the random-effects model, sensitivity including 95% confidence intervals (CI) was computed from TP and TP + FN, and specificity including 95% CI was computed from TN and TN + FP. Subgroups were defined differently for each model and the pooled means were calculated respectively. Subsequently, separate meta-regressions were performed to test the association of each study characteristic with HPV sensitivities and specificities. Interstudy variability and between-study variance were assessed by Cochran’s Q statistic. The percentage of variation explained by true heterogeneity opposed to sampling error was calculated with I^2 statistic. We assume a two-sided p < 0.05 to be significant. Potential publication bias was evaluated using The Quality Assessment of Diagnostic Accuracy Studies second edition (QUADAS-2). The risk of bias was judged as high or low when the answers to all signaling questions in the four domains were yes or no, respectively. If the information was not sufficient, an unclear bias was used. Most studies were at unclear or low risk of bias for flow and timing and index test domains (Figure 2). Notably, for reference standard, three studies were at unclear risk of bias and for patient selection, four studies were at high risk of bias.
Regarding applicability, 33 studies were at low risk of bias for reference standard and index test, but five studies were at high risk of bias for patient selection.

Results

Sensitivity and specificity of ctHPVDNA detection by test at the time of diagnosis

A total of 36 studies were included in the meta-analysis containing a total of 2,986 patients (Table 1 and Table S1). There were 11 qPCR studies, 19 ddPCR studies, and seven NGS studies. We first examined the pooled sensitivity of ctHPVDNA detection across all tests (Figure 3). We compared a pooled sensitivity of 0.81 (95% CI: 0.73-0.87) from 19 studies (n=1056) using ddPCR to 11 studies (n=597) using qPCR (0.51 (95% CI: 0.37-0.64), (p<0.001)) and seven studies (n=179) using NGS (0.94 (95% CI: 0.88-0.97), (p=0.014)) (Figure 4). 10 qPCR studies (n=638), 12 ddPCR studies (n=449), and seven NGS studies (n=244) were used to calculate specificity. A pooled specificity of 0.98 (95% CI: 0.96-0.99) for ddPCR was compared to qPCR (0.93 (95% CI: 0.83-0.97), (p=0.05)) and NGS (0.95 (95% CI: 0.90-0.97), (p=0.507)) (Figure 4).

Sensitivity and specificity of ctHPVDNA detection test by anatomic subsite

As ctHPVDNA detection may differ by cancer anatomic site, we next evaluated sensitivity and specificity across each anatomic site by ctHPVDNA test. For HPV+OPSCC, we evaluated 21 studies containing a total of 1436 patients (Figure S1). We compared a pooled sensitivity of 0.89 (95% CI: 0.78-0.94) from 10 studies (n=460) using ddPCR to six studies (n=278) using qPCR (0.66 (95% CI: 0.58-0.74), (p=0.005)) and five studies (n=74) using NGS (0.91 (95% CI: 0.81-0.96), (p=0.357)) (Figure 5). Five qPCR studies (n=268), six ddPCR studies (n=253), and three NGS studies (n=103) were used to calculate specificity. A pooled specificity of 0.97 (95% CI: 0.94-0.99) for ddPCR was compared to qPCR (0.94 (95% CI: 0.59-0.99), (p=0.449)) and NGS (0.97 (95% CI: 0.90-0.99), (p=0.922)) (Figure 5).

For HPV+CC we evaluated 16 studies containing a total of 1285 patients (Figure S2). We compared a pooled sensitivity of 0.69 (95% CI: 0.55-0.80) from eight studies (n=416) using ddPCR to five studies (n=319) using qPCR (0.32 (95% CI: 0.19-0.48), (p<0.001)) and three studies (n=72) using NGS (0.96 (95% CI: 0.87-0.99), (p=0.008)) (Figure 6). Five qPCR studies (n=370), three ddPCR studies (n=97), and one NGS study (n=11) were used to calculate specificity. A pooled specificity of 0.98 (95% CI: 0.92-1.00) for ddPCR was compared to qPCR (0.91 (95% CI: 0.80-0.96), (p=0.057)) and NGS (1.00 (95% CI: 0.72-1.00), (p=0.58)) (Figure 5).

For HPV+SCCA we evaluated seven studies containing a total of 252 patients (Figure S3). We compared a pooled sensitivity of 0.86 (95% CI: 0.75-0.92) from five studies (n=172) using ddPCR to 0.91 (95% CI: 0.59-0.99) from two studies (n=32) using NGS (p=0.652) (Figure 5). Specificity regression was unavailable for HPV+SCCA studies because of the small sample size.

Lastly, we compared the pooled sensitivities and specificities of these assays in the most common HPV-associated cancer, HPV+OPSCC, which has distinct histopathologic features, to HPV-associated cervical and anal cancer (Figure S4, S5, S6, S7). We compared a pooled sensitivity of 0.66 (95% CI: 0.58-0.74) from six HPV+OPSCC qPCR studies (n=278) to 0.32 (95% CI: 0.19-0.48) from five HPV-associated cervical and anal cancer qPCR studies (n=319) (p<0.001); a pooled sensitivity of 0.89 (95% CI: 0.78-0.94) from 10 HPV+OPSCC ddPCR studies (n=460) was compared to 0.77 (95% CI: 0.67-0.85) from 13 HPV-associated cervical and anal
cancer ddPCR studies \((n=588)\) \((p=0.096)\); and a pooled sensitivity of 0.91 \((95\% \text{ CI}: 0.81-0.96)\) from five HPV+OPSCC NGS studies \((n=74)\) was compared to 0.93 \((95\% \text{ CI}: 0.86-0.97)\) from five HPV-associated cervical and anal cancer studies \((n=104)\) \((p=0.645)\). Finally, a pooled sensitivity of 0.83 \((95\% \text{ CI}: 0.75-0.89)\) from 21 HPV+OPSCC studies \((n=812)\) using qPCR, ddPCR, and NGS was compared to a pooled sensitivity of 0.72 \((95\% \text{ CI}: 0.60-0.81)\) from 23 HPV-associated anal and cervical cancer studies \((n=1,011)\) using all three assays \((p=0.044)\) (Figure 6).

A pooled specificity of 0.94 \((95\% \text{ CI}: 0.59-0.99)\) from five HPV+OPSCC qPCR studies \((n=268)\) was compared to 0.91 \((95\% \text{ CI}: 0.80-0.96)\) from five HPV-associated cervical and anal cancer qPCR studies \((n=370)\) \((p=0.710)\). A pooled specificity of 0.97 \((95\% \text{ CI}: 0.94-1.00)\) from six HPV+OPSCC ddPCR studies \((n=253)\) was compared to 0.98 \((95\% \text{ CI}: 0.94-1.00)\) from four HPV-associated cervical and anal cancer ddPCR studies \((n=124)\) \((p=0.489)\). A pooled specificity of 0.97 \((95\% \text{ CI}: 0.90-0.99)\) from three HPV+OPSCC NGS studies \((n=103)\) was compared to 0.97 \((95\% \text{ CI}: 0.81-1.00)\) from two HPV-associated cervical and anal cancer NGS studies \((n=32)\). Finally, a pooled specificity of 0.96 \((95\% \text{ CI}: 0.86-0.99)\) from 14 HPV+OPSCC studies \((n=624)\) using qPCR, ddPCR, and NGS was compared to a pooled specificity of 0.95 \((95\% \text{ CI}: 0.90-0.98)\) from 11 HPV-associated anal and cervical cancer studies \((n=526)\) using all three assays \((p=0.738)\) (Figure 6).

Sensitivity and specificity of test by blood compartment

We next evaluated the pooled sensitivities and specificities based on whether the studies used plasma or serum samples (Figure S8, S9, S10, S11) to evaluate the impact of the blood compartment on test performance. A pooled sensitivity of 0.65 \((95\% \text{ CI}: 0.45-0.81)\) from eight serum qPCR, ddPCR, and NGS studies combined \((n=510)\) was compared to 0.79 \((95\% \text{ CI}: 0.70-0.86)\) from 27 plasma studies \((n=1240)\) using all three assays \((p=0.125)\). A pooled specificity of 0.97 \((95\% \text{ CI}: 0.70-1.00)\) from six serum qPCR, ddPCR, and NGS studies combined \((n=348)\) was compared to 0.95 \((95\% \text{ CI}: 0.91-0.97)\) from 18 plasma studies \((n=861)\) using all three assays \((p=0.840)\).

Sensitivity and specificity of test by target

We evaluated the pooled sensitivities and specificities based on the targets of the three assays (Figure S12). First, we looked at ddPCR studies which had probes designed for a single E7 target gene and compared them to ddPCR studies with probes for both the E6 and E7 genes. We compared a pooled sensitivity of 0.81 \((95\% \text{ CI}: 0.69-0.89)\) from 11 studies \((n=690)\) using E7 ddPCR probes to 0.84 \((95\% \text{ CI}: 0.67-0.93)\) from six studies \((n=284)\) which used both E6 and E7 ddPCR probes \((p=0.727)\). A pooled specificity of 0.98 \((95\% \text{ CI}: 0.95-0.99)\) from six studies \((n=287)\) whose ddPCR assays targeted E7 was compared to 0.97 \((95\% \text{ CI}: 0.89-0.99)\) from three studies \((n=90)\) which used both E6 and E7 ddPCR probes \((p=0.732)\).

Next, we evaluated NGS studies based on whether they used an amplicon-based approach or hybrid capture (Figure S13). A pooled sensitivity of 0.93 \((95\% \text{ CI}: 0.86-0.96)\) from five NGS hybrid capture studies \((n=132)\) was compared to 0.98 \((95\% \text{ CI}: 0.87-1.00)\) from two NGS amplicon studies \((n=47)\) \((p=0.224)\). A pooled specificity of 0.96 \((95\% \text{ CI}: 0.83-0.99)\) from three NGS hybrid capture studies \((n=159)\) was then compared to 0.95 \((95\% \text{ CI}: 0.79-0.99)\) from two NGS amplicon studies \((n=35)\) \((p=0.955)\). Of the seven NGS studies, five of these used assays that covered the full genome. One of the studies, Hilke et al., only covered E7 and another study,
Lee et al., only covered 40% of the genome, focusing on sub-lineage defining regions. It is notable that in the two amplicon-based studies, whole genome versus partial genome coverage did not have a difference in sensitivity whereas in the hybrid capture studies, the one study that only covered the E7 region had a noticeably lower sensitivity (0.85) compared to the overall pooled sensitivity (0.93).

Discussion

Despite advances in early detection for HPV+CC, including Pap smears and direct HPV PCR testing, cervical cancer remains the fourth-leading cause of cancer death in women worldwide and is the leading cause of cancer death in women in low-human development index countries. For HPV+SCCA, there has been a dramatic increase in the incidence and mortality rates (nearly 3% per year) with roughly 10,000 new cases and over 1,600 deaths expected to be attributed to it in the United States in 2022. Globally, high- and middle-income countries have detected a 2% to 6% annual increase in the HPV+SCCA incidence over the last few decades. Similarly concerning, and even more striking, the incidence of HPV+OPSCC has risen more than 200% over the past decades in the United States and is projected to continue climbing, despite HPV vaccination efforts.

Blood-based biomarkers function as ideal, non-invasive modalities with strong diagnostic and monitoring potential for HPV-associated cancers. Accurate detection of ctHPVDNA has the potential to optimize many aspects of cancer management, from the pre-diagnostic setting to minimal residual disease (MRD) detection after surgery and detection of recurrence. As HPV-associated cancers remain a global health concern, and as the field of ctHPVDNA detection continues to evolve, it is critical to have a better understanding of the available ctHPVDNA detection approaches and how they perform both against each other and amongst differing anatomic subsites. In this meta-analysis, we examined 36 studies to compare the sensitivities and specificities across qPCR, ddPCR, and NGS platforms in HPV+OPSCC, SCCA, and CC at the time of diagnosis.

After pooling the sensitivities from 36 studies, we found that NGS was the most sensitive platform across all cancer types, outperforming ddPCR, which similarly outperformed qPCR.

Why NGS is the most sensitive approach for ctHPVDNA detection is likely multifaceted. First, current ddPCR and qPCR approaches are only able to detect a limited number of pre-defined targets. Considering the HPV genome is ~8,000 base pairs, targeting one or two ~160 base pair fragments (the approximate size of cell free DNA) leaves about 99% of the genome untargeted. Thus, while NGS capture is less efficient than ddPCR, the significant increase in the number of targets overcomes this limitation while leading to improved sensitivity. Further, while the majority of HPV+OPSCC, SCCA, and CC are caused by a limited number of high-risk HPV genotypes, ~5% of cases are caused by numerous other rare genotypes, which are missed by ddPCR and qPCR approaches, further limiting sensitivity. Lastly, ddPCR and qPCR approaches are subject to false negatives due to mutations in the single DNA fragment of interest, disrupting primer binding, which is a phenomenon we have seen in our lab in select cases.

Similarly, ddPCR was more sensitive than qPCR. The reason for ddPCR’s superiority over qPCR lies in its inherent technological design. ddPCR partitions each sample into thousands of individual oil-water emulsion droplets, each of which are then individually analyzed for the
presence or absence of a fluorescent signal. A crucial element of ddPCR is its ability to quantify the absolute number of DNA copies in each sample, without relying on a standard curve65. At low copy numbers, ddPCR affords greater sensitivity over qPCR because high-copy templates and background are diluted across the droplets, enhancing template concentration in HPV-positive partitions.

When comparing ctHPVDNA detection between anatomic sites, we discovered that across all platforms, detection was improved in the oropharynx compared to the anus and cervix. We believe there are a few reasons for the superiority of liquid biopsy in the oropharynx. First, and most critically, HPV specifically targets the palatine and lingual tonsils in the oropharynx, which contain branching tonsillar crypts. These crypts are lined by a highly specialized lymphoepithelium, known as the reticulated epithelium, which functions to transport foreign antigens from the surrounding environment of the oropharynx to the tonsillar lymphoid tissue. The porous nature of the basal cell layer of this epithelium permits the direct passage of lymphocytes and antigen-presenting cells. While the disrupted reticular epithelium plays a large role in mucosal immune protection, these same gaps also enable direct exposure to viral particles like HPV. Whereas in the cervix, HPV infection requires microtrauma, such as mechanical abrasion, of the epithelium with subsequent invasion of the virus through an exposed basement membrane, in the reticulated epithelium of the tonsil, the already porous epithelium exposes the basal cell layer and basement membrane to viral transgression without the need for mucosal disruption60,66-69. We hypothesize that just as the gaps in the basement membrane of the tonsil permit HPV infection and subsequent malignant transformation, they may provide a similar route for egress of ctHPVDNA from HPV+OPSCC, providing liquid biopsy assays with more ctDNA to detect compared to ctDNA from the cervix and anus. Second, HPV+OPSCC is often detected with nodal metastases60. Part of the reason for the early nodal metastasis of HPV+OPSCC may also be a result of the microanatomy of the crypt epithelium, which enables the cancer to easily spread to regional lymph nodes. The discontinuous basement membrane permits both early transgression of the cancer as well as regional metastasis of occult cancers. The nodal disease seen at presentation in most HPV+OPSCC cases means there is more tumor burden at diagnosis, which in turn leads to more shedding of ctHPVDNA, enhancing the sensitivity of HPV+OPSCC liquid biopsy at presentation. Importantly, existing data has shown that lymph node burden correlates most strongly with ctDNA levels. In a study of 110 patients, Rettig et al. found that the few patients with undetectable ctHPVDNA predominantly had clinical stage N0 disease70. This suggests that assays used at the time of diagnosis may have lower sensitivity among patients without regional lymph node metastasis. Since most HPV+OPSCC patients initially present with cervical lymphadenopathy due to asymptomatic early disease, liquid biopsy assays will thus have increased sensitivity for these patients.

The fact that ctHPVDNA may be more easily detected in HPV+OPSCC than CC or SCCA is further borne out when analyzing each HPV-associated cancer individually. For HPV+OPSCC, we discovered that while ddPCR was more sensitive than qPCR, the difference between ddPCR and NGS was not statistically significant, indicating that marginal improvements in sensitivity from ddPCR to NGS may not be meaningful when ctHPVDNA is relatively plentiful. On the contrary, when examining HPV+CC, where ctHPVDNA levels may be quantitatively lower at presentation due to both earlier cancer stage at presentation and less ctHPVDNA transgression into the
circulation, NGS was more sensitive than ddPCR. The power of a more sensitive diagnostic test is more important in HPV+CC because of this, whereas in HPV+OPSCC, the most sensitive technique is less critical, rendering the difference in sensitivity between NGS and ddPCR negligible.

This study has a number of limitations which relate to the status of the existing literature as well as the inherent methodological variation within the included studies. First, sample sizes of available studies are small, with 13 of the 36 studies included in the analysis having a sample size of under 50 patients. Second, there is significant heterogeneity of the molecular characteristics of each of these liquid biopsy assays, such as probe design, cell free DNA (cfDNA) input, and the thresholds for positive detection. Specifically for NGS, assays also differ markedly in their library design, preparation steps, depth of sequencing, and variation in downstream sequencing analysis. More broadly, variation of the cfDNA extraction process, volume of plasma extracted from, extraction kits and procedure, and the volume and concentration of cfDNA added to the assay all impact assay performance. Controlling for all of these variables in a meta-analysis would not be possible. Reassuringly, variation in cfDNA extraction is likely negligible compared to other factors, both biological and technical. An additional limitation of this meta-analysis is that the data output (HPV reads) is not normalized between studies and how this value is calculated is variable from assay to assay. We also did not evaluate the sensitivity and specificities across the different assays and anatomic sites by stage, which could affect our hypothesis that liquid biopsies targeting ctHPVDNA from the oropharynx have higher sensitivity due to late-stage disease presentation with increased N-stage and associated tumor burden. Lastly, because of the more recent emergence of NGS, there were fewer NGS studies for evaluation.

Conclusion

In summary, using a systematic review and meta-analysis, detection platform, anatomic site of the cancer and blood component utilized for cell free DNA extraction impact ctHPVDNA detection and must be considered when interpreting ctHPVDNA test results. Currently, plasma NGS-based testing should be considered the most sensitive approach for ctHPVDNA detection overall, while specificity is excellent regardless of platform utilized.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Anatomic Subsite</th>
<th>Total number of patients evaluated</th>
<th>Assay Technique</th>
<th>Source of ctHPV DNA</th>
<th>Target gene (if ddPCR)</th>
<th>Amplicon c hybrid capture (if NGS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard-Tessier et al.</td>
<td>2019</td>
<td>Anus</td>
<td>57</td>
<td>ddPCR</td>
<td>Serum</td>
<td>E7</td>
<td>-</td>
</tr>
<tr>
<td>Cabel et al.</td>
<td>2021</td>
<td>Cervix</td>
<td>55</td>
<td>ddPCR</td>
<td>Plasma; serum</td>
<td>E7</td>
<td>-</td>
</tr>
<tr>
<td>Cabel et al.</td>
<td>2018</td>
<td>Anus</td>
<td>33</td>
<td>ddPCR</td>
<td>Plasma; serum</td>
<td>E7</td>
<td>-</td>
</tr>
<tr>
<td>Chera et al.</td>
<td>2019</td>
<td>Oropharynx</td>
<td>218</td>
<td>ddPCR</td>
<td>Plasma</td>
<td>E7</td>
<td>-</td>
</tr>
<tr>
<td>Cheung et al.</td>
<td>2019</td>
<td>Cervix, Anus</td>
<td>138</td>
<td>ddPCR</td>
<td>Plasma</td>
<td>E7, L1</td>
<td>-</td>
</tr>
<tr>
<td>Damerla et al.</td>
<td>2019</td>
<td>Cervix, oropharynx</td>
<td>159</td>
<td>ddPCR</td>
<td>Plasma</td>
<td>E6, E7</td>
<td>-</td>
</tr>
<tr>
<td>Han et al.</td>
<td>2018</td>
<td>Cervix</td>
<td>19</td>
<td>ddPCR</td>
<td>Plasma</td>
<td>E6, E7</td>
<td>-</td>
</tr>
<tr>
<td>Haring et al.</td>
<td>2021</td>
<td>Oropharynx</td>
<td>16</td>
<td>ddPCR</td>
<td>Plasma</td>
<td>E6</td>
<td>-</td>
</tr>
<tr>
<td>Hilke et al.</td>
<td>2020</td>
<td>Oropharynx</td>
<td>20</td>
<td>NGS</td>
<td>Plasma</td>
<td>-</td>
<td>Hybrid capture</td>
</tr>
<tr>
<td>Holmes et al.</td>
<td>2016</td>
<td>Cervix</td>
<td>5</td>
<td>NGS</td>
<td>Plasma</td>
<td>-</td>
<td>Hybrid capture</td>
</tr>
<tr>
<td>Jeannot et al.</td>
<td>2016</td>
<td>Anus, cervix, oropharynx</td>
<td>86</td>
<td>ddPCR</td>
<td>Serum</td>
<td>E7</td>
<td>-</td>
</tr>
<tr>
<td>Jeannot et al.</td>
<td>2021</td>
<td>Cervix</td>
<td>94</td>
<td>ddPCR</td>
<td>Serum</td>
<td>E7</td>
<td>-</td>
</tr>
<tr>
<td>Kang et al.</td>
<td>2017</td>
<td>Cervix</td>
<td>64</td>
<td>ddPCR</td>
<td>Serum</td>
<td>E7</td>
<td>-</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>2020</td>
<td>Anus</td>
<td>41</td>
<td>NGS</td>
<td>Plasma</td>
<td>-</td>
<td>Amplicon</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>2017</td>
<td>Oropharynx</td>
<td>41</td>
<td>NGS</td>
<td>Plasma</td>
<td>-</td>
<td>Amplicon</td>
</tr>
<tr>
<td>Lefevre et al.</td>
<td>2021</td>
<td>Anus, oropharynx</td>
<td>61</td>
<td>ddPCR</td>
<td>Plasma</td>
<td>E6, E7</td>
<td>-</td>
</tr>
<tr>
<td>Leung et al.</td>
<td>2021</td>
<td>Anus, oropharynx</td>
<td>26</td>
<td>ddPCR</td>
<td>Plasma</td>
<td>E6, E7</td>
<td>-</td>
</tr>
<tr>
<td>Mes et al.</td>
<td>2020</td>
<td>Oropharynx</td>
<td>59</td>
<td>NGS</td>
<td>Plasma</td>
<td>-</td>
<td>Hybrid capture</td>
</tr>
<tr>
<td>Nguyen et al.</td>
<td>2020</td>
<td>Oropharynx</td>
<td>28</td>
<td>ddPCR</td>
<td>Plasma</td>
<td>E7</td>
<td>-</td>
</tr>
<tr>
<td>Rungkamoltip et al.</td>
<td>2020</td>
<td>Cervix</td>
<td>73</td>
<td>ddPCR</td>
<td>Serum</td>
<td>E7</td>
<td>-</td>
</tr>
<tr>
<td>Sastre-Garau et al.</td>
<td>2021</td>
<td>Anus, cervix, oropharynx</td>
<td>134</td>
<td>NGS</td>
<td>Plasma</td>
<td>-</td>
<td>Hybrid capture</td>
</tr>
<tr>
<td>Siravegna et al.</td>
<td>2021</td>
<td>Oropharynx</td>
<td>131</td>
<td>ddPCR</td>
<td>Plasma</td>
<td>E7</td>
<td>-</td>
</tr>
<tr>
<td>Study Authors</td>
<td>Year</td>
<td>Anatomic Subsite</td>
<td>n</td>
<td>Assay Technique</td>
<td>Source of ctHPVDNA</td>
<td>Target Gene</td>
<td>Amplicon or Hybrid Capture</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>-----------------</td>
<td>---</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Tanaka et al.</td>
<td>2022</td>
<td>Oropharynx</td>
<td>80</td>
<td>ddPCR</td>
<td>Plasma</td>
<td>E6, E7</td>
<td>-</td>
</tr>
<tr>
<td>Veyer et al.</td>
<td>2020</td>
<td>Oropharynx</td>
<td>66</td>
<td>ddPCR</td>
<td>Plasma</td>
<td>E6</td>
<td>-</td>
</tr>
<tr>
<td>Ahn et al.</td>
<td>2014</td>
<td>Oropharynx</td>
<td>61</td>
<td>qPCR</td>
<td>Plasma</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Akashi et al.</td>
<td>2022</td>
<td>Oropharynx</td>
<td>29</td>
<td>ddPCR</td>
<td>Plasma</td>
<td>E6, E7</td>
<td>-</td>
</tr>
<tr>
<td>Cao et al.</td>
<td>2012</td>
<td>Oropharynx</td>
<td>74</td>
<td>qPCR</td>
<td>Plasma</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cocuzza et al.</td>
<td>2017</td>
<td>Cervix</td>
<td>140</td>
<td>qPCR</td>
<td>Plasma</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Capone et al.</td>
<td>2000</td>
<td>Oropharynx</td>
<td>70</td>
<td>qPCR</td>
<td>Serum</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ho et al.</td>
<td>2005</td>
<td>Cervix</td>
<td>135</td>
<td>qPCR</td>
<td>Plasma</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hsu et al.</td>
<td>2003</td>
<td>Cervix</td>
<td>152</td>
<td>qPCR</td>
<td>Serum</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pornthanakasem et al.</td>
<td>2019</td>
<td>Oropharynx</td>
<td>29</td>
<td>qPCR</td>
<td>Plasma</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dahlstrom et al.</td>
<td>2015</td>
<td>Oropharynx</td>
<td>262</td>
<td>qPCR</td>
<td>Serum</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reder et al.</td>
<td>2020</td>
<td>Oropharynx</td>
<td>50</td>
<td>qPCR</td>
<td>Plasma</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yang et al.</td>
<td>2004</td>
<td>Cervix</td>
<td>179</td>
<td>qPCR</td>
<td>Plasma</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1. Overview of study characteristics. Table showing study characteristics for all 36 studies eligible for the statistical analysis including anatomic subsite, assay technique, source of ctHPVDNA, target gene (if ddPCR), and amplicon or hybrid capture (if NGS). “-” indicates the characteristic was not applicable to the particular study.
Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart depicting the study selection process.
Figure 2. Quality evaluation of the included studies. Domains rated were flow and timing, patient selection, reference standard, and index test. Patient selection determined whether the selection of patients may have introduced bias. Index test assessed what the index test was and how it was conducted and interpreted. Reference standard assessed whether the gold standard was likely to correctly classify the target condition and if those results were interpreted without knowledge of the index test results. Flow and timing assessed whether there was an appropriate interval between the index test and the reference standard. Red color indicates high risk of bias, green indicates low risk of bias, and yellow indicates unclear risk of bias.
Figure 3. Sensitivity from 36 studies used in the meta-analysis.
Figure 4. Pooled sensitivity and specificity of qPCR vs. ddPCR vs. NGS across all HPV-associated cancers.

Figure 5. Pooled sensitivity and specificity of qPCR vs. ddPCR vs. NGS in studies of HPV-associated oropharyngeal, cervical, and anal cancer.
Figure 6. Pooled qPCR, ddPCR, and NGS sensitivity and specificity in studies of HPV-associated oropharyngeal cancer compared to cervical and anal cancer. “*” indicates a statistically significant p-value. “ns” indicates a nonsignificant p-value.

13. Division of Cancer Prevention and Control CDCaP: Number of HPV-Associated Cancer Cases per Year, CDC, 2019.

