Genomic insights into pediatric intestinal inflammatory and eosinophilic disorders using single-cell RNA-sequencing

Marissa R. Keever-Keigher¹, Rachel Chevalier¹,², Lisa Harvey¹, Veronica Williams¹, Carrie A. Vyhlidal³, Atif A. Ahmed⁴, Jeffery J. Johnston¹, Daniel A. Louiselle¹, Elin Grundberg¹, Tomi Pastinen¹, Craig A. Friesen¹,², Craig Smail¹,², Valentina Shakhnovich¹,²,³,⁵,*,

¹ Children’s Mercy Kansas City
² University of Missouri-Kansas City School of Medicine
³ KCAS Bioanalytical & Biomarker Services, Shawnee Kansas, KS, USA
⁴ Seattle Children’s Hospitals-University of Washington, Seattle, WA, USA
⁵ Ironwood Pharmaceuticals

* The work described was performed while VS was affiliated with Children’s Mercy Kansas City; current affiliation with Ironwood Pharmaceuticals has no financial or scientific bearing on this work.

Correspondence:
Marissa R. Keever-Keigher (mrkeeverkeigher@cmh.edu)
Craig Smail (csmail@cmh.edu)
Valentina Shakhnovich (vshakhnovich@ironwoodpharma.com)
Abstract

Chronic inflammation of the gastrointestinal (GI) tissues underlies GI inflammatory disorders, leading to tissue damage and a constellation of painful and debilitating symptoms. These GI disorders include inflammatory bowel diseases (Crohn’s disease (CD) and ulcerative colitis (UC)), and eosinophilic disorders (eosinophilic esophagitis (EoE) and eosinophilic duodenitis (EoD)). GI inflammatory disorders can often present with overlapping symptoms necessitating the use of invasive procedures to give a proper diagnosis. This study aims to use peripheral blood mononuclear cells (PBMCs) from individuals with CD, UC, EoE, and EoD to better understand the alterations to the transcriptome of individuals with these diseases and identify potential markers of active inflammation within the peripheral blood of patients that may be useful in diagnosis. Single-cell RNA-sequencing (scRNA-seq) was performed on PBMCs isolated from the blood samples of pediatric patients diagnosed with a GI disorder, including CD, UC, EoE, EoD, and controls with histologically healthy gastrointestinal tracts. We identified 1,185 (FDR < 0.05) differentially expressed genes (DEGs) between individuals with GI disorders and controls across six distinct immune cell populations. Few patterns of gene dysregulation were common among all GI disorders, including the downregulation of ESR2 in CD4+ T cells compared to controls. Many DEGs showed distinct patterns of dysregulation among individuals with CD, UC, EoE, and EoD compared to controls, such as dysregulation of genes associated with oxidative stress in monocytes of individuals CD and the upregulation of SCGB3A1 in CD4+ T cells in individuals with EoD. These findings indicate both overlapping and distinct alterations to the transcriptome of individuals with CD, UC, EoD, and EoE compared to controls, which provide insight as to which genes may be useful as markers for disease in the peripheral blood of patients.

Introduction

In genetically predisposed individuals, chronic overactivation of the inflammatory response damages tissues along the gastrointestinal (GI) tract frequently resulting in painful and debilitating symptoms (1, 2). GI inflammatory disorders include inflammatory bowel disease (IBD), which is characterized by chronic relapsing inflammation of the intestine and can be divided into two main subtypes based on the site and characteristics of inflammation, with Crohn’s disease (CD) occurring within any portion of the gut and ulcerative colitis (UC) being confined to the colon. Furthermore, IBD may overlap with other chronic inflammatory disorders associated with eosinophil infiltration of GI tissues, including eosinophilic esophagitis (EoE) and eosinophilic duodenitis (EoD). IBD affects patients of all ages, approximately a quarter of patients are diagnosed before adulthood and incidence of pediatric IBD is increasing (3, 4). In some cases, mucosal eosinophilia precedes histologic evidence of IBD (crypt distortion, cryptitis with crypt abscesses, mucus depletion from goblet cells, granulomas) by years (5, 6), further complicating the ability to differentiate concomitant eosinophilic disease from early harbingers of IBD.

Differentiating between UC and CD can help direct therapy—for instance CD patients benefit from top-down biologic therapy (7), and colectomy is only curative in UC (8). Patients with two concomitant diseases (i.e. EoE and CD) may affect the same area but exhibit different histology and symptoms and require different treatments (9). The pediatric population with IBD are particularly vulnerable to growth failure (10, 11) and interruptions in social-emotional
development (12) and will require decades of healthcare for their condition, thus non-invasive diagnostics and targeted therapies are particularly valuable to this subset of patients.

Characterizing the role of specific immune cell populations in GI diseases has aided in recognizing aberrant processes that underlie these conditions, initiating an important shift in the treatment paradigm away from systemic, non-targeted immunosuppression (fraught with many unwanted side effects) to targeted modulation at the site of disease activity (13). Continued identification of novel therapeutic targets and molecular signatures of disease is pivotal for advancing and optimizing treatment options for chronic immune-mediated inflammatory disorders. In the IBD-affected GI tract, dendritic cells (DCs)—antigen presenting cells belonging to the innate immune system—exhibit up-regulation of microbial recognition receptors and increased cytokine production (14) that appears to induce inflammation through activation of T cells (15). T cells play a crucial role in immune homeostasis (16, 17), and dysregulation of cytokine signaling in CD4+ T cells of the GI tract has been shown to lead to pathogenic inflammation (16, 18). T cells also play a key role in eosinophilic disorders of the GI tract, as overexpression of interleukin 5 (IL-5) in CD2+ T cells is sufficient to produce eosinophilia in the esophagus and small intestine of transgenic mice (19).

In addition to contributing to inflammation and tissue damage at lesion sites in the GI tract, evidence of altered gene expression and signaling among immune cells in peripheral blood may be reflective of luminal inflammation (20-22). Information gathered from peripheral blood has the potential to identify minimally-invasive, diagnosis-specific and/or disease location-specific genetic markers for GI diseases. Discovery of such biomarkers could potentially decrease the need for repeat endoscopy, which is invasive, associated with risks, and costly. Furthermore, identification of altered gene expression within these disorders at the cellular level could yield a more complete understanding of impacted pathways within specific cell types, and aid in characterizing genetic signatures for future use in disease sub-typing and drug response applications. However, due to the complex and multifactorial nature of GI diseases and differences in immune cell response across GI disease sub-types, reliable indicators of active inflammation have been difficult to characterize within the peripheral blood of patients to date.

In this study, we identified cell-type specific differential gene expression and enrichment of functional terms and pathways in individuals diagnosed with CD, UC, EoE, and EoD using single-cell RNA-sequencing of peripheral blood mononuclear cells (PBMC) in a pediatric patient cohort. Conclusions from this study assist in uncovering the genomic landscape of these phenotypes, which often present with overlapping symptoms in patients, and aid in identifying robust markers of disease types within the peripheral blood mononuclear cells of patients.

Methods

Patient Information

Potential study participants were identified via review of the clinical endoscopy schedule and the electronic medical record (EMR) at the Children’s Mercy Hospital (CMH), a tertiary regional pediatric hospital in the Midwestern United States. To be considered for study inclusion, children had to be between 1 month and 21 years of age (inclusive), undergoing both upper and lower
endoscopy with biopsies for clinical purposes, having a reasonable clinical suspicion for a new diagnosis of IMID or another clinical indication for undergoing endoscopy (e.g., abdominal pain), and not receiving systemic immunomodulating, immunosuppressive, or biological drugs. Subjects were recruited on the day of procedure, prior to endoscopy. All subjects were fasting at least 8 hours for procedural purposes as part of routine medical care. Only those subjects who provided informed consent (if 18 years of age), or informed assent with parental/legal guardian consent (if under 18 years of age) were included. All research activities were approved by the CMH Institutional Review Board and conducted in accordance with the ethical standards of the Declaration of Helsinki. A total of 35 patients seen in the CMH operating room for routine endoscopy (Kansas City, MO) were included in the study. This cohort consists of 16 males and 19 females ranging in age from 6.17 to 19.25 years with a mean age of 13.3 years. Seven patients were subsequently diagnosed with CD, nine with EoD, ten with EoE, and three with UC. Six patients were identified as controls who had no relevant GI pathology on visual or histologic examination of tissue. Review of individuals’ medical charts indicated no bias toward a single drug therapy in any sub-cohort.

PBMC Isolation

Up to 4 mL of whole blood was collected from patients in a sodium heparin tube and stored on ice until PBMCs were isolated. Automated PBMC isolation was performed using a STEMCELL Technologies RoboSep-S using the EasySep Direct Human PBMC Isolation Kit (STEMCELL Technologies Cat No. 19654RF) and following the manufacturer’s protocol. After PBMC isolation, the resulting cell suspension was centrifuged at 300 x g for 8 min, and the supernatant was carefully aspirated. The cell pellet was resuspended in 1 mL of ACK Lysing Buffer (Thermo Fisher Cat No. A1049201) and incubated at room temperature for 5 min to remove any remaining RBCs. The cell suspension was centrifuged at 300 x g for 8 min, and the supernatant was carefully aspirated. Cells were washed twice with PBS (Thermo Fisher Cat No. 14190144) supplemented with 2% heat-inactivated FBS (GE Healthcare Cat No. SH30088.03HI), and cell count and viability were assessed using a Countess II automated cell counter. An aliquot of 300,000 cells was diluted in a total volume of 200 µL of PBS + 2% FBS and frozen at -80°C for downstream DNA isolation and genotyping. The remaining cells were cryopreserved in aliquots of at least one million cells by centrifuging at 300 x g for 8 min, aspirating the supernatant, and resuspending the cell pellets in Recovery Cell Culture Freezing Medium (Thermo Fisher Cat No. 12648010). The cell suspensions were transferred to cryogenic storage vials and were slow-frozen overnight to a temperature of –80°C in a Corning CoolCell FTS30.

DNA Isolation and Genotyping

Aliquots of 300,000 PBMCs frozen in PBS + 2% FBS were thawed at room temperature, and DNA was isolated using the Qiagen DNeasy Blood & Tissue Kit (Qiagen Cat No. 69506) according to the manufacturer’s protocol. Eluate was concentrated to approximately 50 µL using an Eppendorf Vacufuge Plus, and DNA was quantified using a Qubit dsDNA BR Assay Kit following the manufacturer’s protocol. All DNA samples were selected for high-density genotyping using the Illumina Global Screening Array (GSAMD-24v1-0) according to protocols recommended by Illumina.
Cell Pooling

Two pools of PBMCs were made. Thawing Medium for PBMC samples consisted of IMDM (ATCC Cat No. 30-2005) supplemented with 10% heat-inactivated FBS, 100 units/mL of penicillin, and 100 µg/mL of streptomycin. For each sample to be thawed, 10 mL of Thawing Medium was prewarmed in a 37°C bead bath. Cells were thawed in groups of up to five samples at a time. The cryovials were placed in a 37°C bead bath. When thawed, the cryovials and 15-mL conical tubes containing Thawing Medium were aseptically transferred to the biosafety cabinet. For each sample, 1 mL of Thawing Medium was added, dropwise, to the cell suspension. The cell suspension was pipette-mixed and then diluted in the remaining 9 mL of Thawing Medium. The thawed and diluted cells were left at room temperature while the remaining cells to be pooled were similarly thawed. When all samples were thawed, the samples were centrifuged at 300 x g for 8 min. The supernatant was carefully aspirated, and the cell pellets were resuspended in 0.5 mL of room-temperature Thawing Medium. All samples were placed on ice and then pooled together. The pool was passed through a 40-µm nylon mesh cell strainer to remove cell aggregates. The pool was centrifuged at 300 x g for 8 min at 4°C, and the supernatant was carefully aspirated. The cell pellet was resuspended in 1 mL of cold Thawing Medium, and cell count and viability were assessed using a Countess II automated cell counter. No fewer than three aliquots per pool were cryopreserved by centrifuging at 300 x g for 8 min at 4°C and resuspending the cell pellets in Recovery Cell Culture Freezing Medium. The cell suspensions were transferred to cryogenic storage vials and were slow-frozen overnight to a temperature of -80°C in a Corning CoolCell FTS30.

Single-cell Sequencing

Aliquots from each pool were thawed for scRNA-seq. The 10x Genomics Chromium Single Cell 3’ Reagent Kit v3 was used according to the manufacturer’s protocol to target approximately 15,000 cells per scRNA-seq capture. Libraries were sequenced on an Illumina NovaSeq 6000 platform using 2x94 cycle paired-end sequencing.

scRNA-seq Alignment and Quality Control

CellRanger v 4.0.0 (10x Genomics) was used for the generation of FASTQ files, read alignment to the GRCh38 (2020) reference genome, gene counting, and cell calling. Demuxlet (23) was used to demultiplex single-cell data, assigning reads back to the patient of origin using VCF files associated with each patient. Additionally, deumuxlet was used to remove data in instances where barcodes were assigned to more than a single cell.

Quality control of cells was performed with the Seurat v 4.1.1 (24) package in R v 4.1.0. Cells with greater than 20% MT-RNA or fewer than 500 UMIs detected were removed. Single-cell data was normalized and integrated across libraries using SCTransform, and the dimensionality of the data was determined via an elbow plot. Clustering was performed by first constructing the K-nearest neighbors graph, and then, cells were grouped together into clusters using a resolution of 1.1. Multimodal reference mapping was then used to label PBMC cell types using a CITE-seq PBMC reference (24).
Pseudobulk Differential Expression Analysis and Functional Analysis

Gene expression data was aggregated using the R package aggregateBioVar for each patient within each library by cell type. Pseudobulk differential expression analysis of the single-cell data was performed on the aggregated count data for each defined cell type (B, CD4^+ T, CD8^+ T, dendritic cells, monocytes, and natural killer) with edgeR v 3.40.2 (25) in R v 4.1.0. These data were normalized using the trimmed M-means, surrogate variables detected via SVA v 3.46.0 (26) using the svseq() function were added to the statistical model to account for batch effects and technical variation, and the generalized linear model was used to identify differentially expressed genes (DEGs) between each GI disorder group (CD, UC, EoE, and EoD) and controls within each cell type.

Functional and pathway analysis for DEGs was carried out using the ToppFun (Transcriptome, ontology, phenotype, proteome, and pharmacome annotations based gene list functional enrichment analysis) tool with default settings from the web-based software ToppGene Suite (http://toppgene.cchmc.org) to identify enriched gene ontology (GO) terms and pathways from databases including KEGG, Reactome, and BioCarta (27). Terms and pathways with a Benjamini-Hochberg false discovery rate (FDR) < 0.05 were considered to be significantly enriched.

Results

Cell Clustering

A total of 39,622 cells from the 35 individuals in this study passed quality control measures and were clustered into 24 clusters and mapped to eight cell types, including B cells, CD4^+ T cells, CD8^+ T cells, dendritic cells (DC), monocytes, natural killer (NK), other T cells, and other (Figure 1).

Figure 1. a) UMAP of 39,622 cells passing quality control measures sorted into 24 clusters b) Use of known gene markers recover distinct cell populations from patient PBMCs.
Effect of Gastrointestinal Disorders on the Transcriptome of Immune Cells

Comparison of gene expression between individuals diagnosed with GI disorders (CD, UC, EoD, and EoE) and controls yielded 1,185 (FDR < 0.05) DEGs across six distinct cell populations (B, CD4⁺ T, CD8⁺ T, DC, monocytes, and NK). The greatest number of DEGs (N genes = 365), were found among monocytes. The number of DEGs detected among CD8⁺ T, NK, CD4⁺ T, DC, and B cell types were 319, 254, 153, 83, and 11, respectively (Figure 2). A comprehensive list of significant DEGs found across GI disorders within each cell type can be found in Supplementary File 1 (Table A), and volcano plots depicting the results of differential expression analysis for
between GI disorders and controls within all cell types can be found in Supplementary File 2 (Figures A-F).

Figure 2. Number of differentially expressed genes (DEGs) across cell-and GI disorder-subtypes

 Relatively few genes showed similar patterns of dysregulation across all GI disorders within each cell type: three genes in CD4+ T cells, four genes CD8+ T cells, three genes in DCs, five genes in monocytes, and 12 in NK cells (Supplementary File 1 (Table A)). Among these genes with shared patterns of dysregulation were, downregulation of *ESR2* in CD4+ T cells and upregulation of *CXCL3* in DCs. The greatest number of DEGs in common among all GI disorders were found in NK cells with the upregulation of several genes which participate in the cell cycle, including *NCAPH*, *CKAP2L*, *SPC25*, *CDCA3*, *KIF23*, and *PKMYT1* (Supplementary File 1 (Table A)).

Additionally, few genes showed similar patterns of differential expression specific to eosinophilic disorders (EoD and EoE) or IBD (CD and UC) compared to controls. Notable among genes that shared expression patterns among eosinophilic disorders compared to controls was the upregulation of *MTE1* in CD4+ T cells (Supplementary File 1 (Table A)). In IBD subtypes, mitochondria associated genes (*NDUFA12*, *ATP5MPL*, and *MT-ND4*) were upregulated in monocytes relative to controls (Supplementary File 1 (Table A)).

The majority of DEGs did not present dysregulation in common between GI disorder subtypes and/or cell types; thus, many genes were uniquely dysregulated within cell types among GI disorders. Notably, in CD, there was upregulation of *LINC00689*, *CC8T*, *KLRG1*, and *BIRC3* in CD4+ T cells; upregulation of *SERPINE1* in DCs; and upregulation of *CASC8* and *SEMA3A* and downregulation of *SATB2-AS1* monocytes. Within UC, there was upregulation of *CDC20* and *CCNB2* and downregulation of *NR4A3* in CD8+ T cells; and upregulation of *IFI27*, *BCAT1*, *
GBP3, and GBP5 in monocytes. Specifically, in EoD, there was upregulation of SCGB3A and MTRNR2L8 and downregulation IL27RA in CD4+ T cells; and upregulation of LILRA5 and downregulation of IGLC2 and IGLC3 DCs. Lastly, in EoE, there was upregulation of CACNA1C in CD4+ T cells; upregulation of GPR65 in DCs; and upregulation of S100B in NK cells (Supplementary File 1 (Table A)).

Enriched of Functional Terms in Gene Ontology among Genes Associated with Gastrointestinal Disorders

Functional analysis of DEGs to identify enriched gene ontology terms and pathways yielded 212 terms in B cells, 100 terms in CD4+ T, 192 terms in CD8+ T, 58 terms in DC, 1639 terms in monocytes, and 156 terms in NK. Informative overlapping and top enriched unique terms by FDR for each set of DEGs among GI disorders (CD, UC, EoD, and EoE) within each cell type is shown in Figure 3. A full list of significantly enriched GO terms and pathways can be found in Supplementary File 1 (Tables B-G).

While there were few enriched GO terms and pathways detected in common among genes dysregulated in CD, UC, EoD, and EoE, several GO terms and pathways were commonly enriched among DEGs detected in CD, EoD, and UC groups compared to controls in NK cells. Enriched GO terms and pathways within these groups were related to cell cycle, with mitotic nuclear division (GO:0140014), Reactome G2/M DNA replication checkpoint (M27669), cell division (GO:0051301), Reactome cell cycle mitotic (M5336), and nuclear chromosome segregation (GO:0098813) among the most enriched for genes differentially expressed in CD, UC, and EoD compared to controls (Figure 3).

Similarities within eosinophilic disorders (EoD and EoE) and IBD (CD and UC) were also present. GO terms and pathways associated with metallothionein activity and zinc-related signaling in CD4+ T cells were enriched among genes differentially expressed in EoD and EoE compared to controls in CD4+ T cells, including metalloexopeptidase activity (GO:0008235) and zinc ion binding (GO:0008270) (Figure 3). Meanwhile, individuals with IBD had enrichment of GO terms and pathways associated with cellular respiration, such as ATP synthesis coupled electron transport (GO:0042773), NADH dehydrogenase activity (GO:0003954), and KEGG oxidative phosphorylation (M19540); apoptotic signaling pathway (GO:0097190); cellular response to tumor necrosis factor (GO:0071356); and KEGG Parkinson’s disease (M7272) in common among genes differentially expressed in CD and UC compared to controls in monocytes (Figure 3).

Specifically, among DEGs in CD, there was an enrichment of GO terms and pathways associated with oxidative stress and production of reactive oxygen species among in monocytes that was not present in UC, including reactive oxygen species metabolic process (GO:0072593), response to hypoxia (GO:0001666), and response to decreased oxygen levels (GO:0036293), among others (Figure 3; Supplementary File 1 Table F). While among DEGs found in UC compared to controls, there was enrichment of ribosome associated terms and pathways in CD4+ and CD8+ T cells that were not present in CD, such as KEGG ribosome (M189) in CD4+ T cells and cytosolic small ribosomal subunit (GO:0022627) in CD8+T cells (Figure 3; Supplementary File 1 Table F).
Figure 3. a) Informative overlapping and b) top significantly enriched unique Gene Ontology terms and pathways among differentially expressed genes across cell-and GI disorder-subtypes
Discussion

Aberrant immune signaling due to genetic and environmental factors contributes to the development of GI disorders (28). In this study we focused on the characterization of transcriptomic patterns in PBMCs of pediatric patients with active CD, UC, EoD, and EoE to identify genes and pathways associated with active inflammation and the pathogenesis of each disease. Insights into these transcriptomic phenotypes provide potential indicators of active inflammation and identify markers for improved diagnosis, as well as possible therapeutic targets for treatment.

Genes showing similar patterns of differential expression among all GI disorders (CD, UC, EoE, and EoD), including downregulation of ESR2 in CD4\(^+\) T cells, upregulation of CXCL3 in DCs, and upregulation of cell cycle associated genes in NK cells may be helpful in identifying active inflammation in GI disorders. Downregulation of ESR2 has been previously associated with IBD (29, 30) and sites of inflammation in EoE (31). Furthermore, expression of ESR2 has been demonstrated to be inversely associated with severity of CD (32). The expression of cytokines, such as CXCL3, by DCs, while crucial in the recruitment of immune effector cells (33), also contribute to the recruitment of polymorphonuclear leukocytes, which are a major cause of tissue damage during inflammation (34) and are a hallmark of active inflammation in IBD (35). Finally, the upregulation of genes involved in the cell cycle in NK cells is suggestive of widespread dysregulation of cell cycle progression and division across all GI disorder subtypes when compared to control individuals. Previous research has found evidence of altered cell cycle regulation among subsets of NK cells in mouse models of colitis (36), which suggests this could play a role in active inflammation.

The enrichment of functional terms associated with metallothionein activity and zinc-related signaling in CD4\(^+\) T cells among DEGs in EoE and EoD compared to controls, along with the shared upregulation of MT1E in EoD and EoE compared to controls, reveal potential dysregulation of zinc homeostasis among eosinophilic disorders. MT1E is upregulated in response to zinc in a dose-dependent manner (37), and zinc exposure has been demonstrated to elicit cellular damage (38), induce eosinophilia in mice, and evoke Th2 cytokine production (39). Furthermore, dysregulation of zinc signaling resulting from depletion of zinc within mucosal tissues and the release of zinc from airway discharge has been associated with eosinophilia (40). Together, these data highlight the critical role of zinc homeostasis in regulating inflammatory responses (41) and suggests that zinc homeostasis may be central to the development of eosinophilic disorders.

Overlapping enriched Gene Ontology terms among DEGs identified in IBD subtypes (CD and UC) compared to controls in monocytes along with shared upregulation of mitochondria associated genes in monocytes (NDUFA12, ATP5MPL, and MT-ND4) indicated dysregulation of cellular respiration in IBD subtypes, which is well supported by previous research. Mitochondrial dysregulation is characteristic of and appears to necessary for inflammation (42). Additionally, mitochondrial dysregulation has previously been associated with the pathogenesis of CD and UC (43-45).

Among genes found to be dysregulated in CD relative to controls in CD4\(^+\) T cells, there was upregulation of genes associated with TNF-\(\alpha\) signaling, including LINC00689, which has been
demonstrated to be upregulated in response to TNF-α (46); genes related to T cell activation, including CC8T (47); and genes with overlapping roles in TNF-α signaling and T cell activation (KLRG1 and BIRC3) (48-51). Additionally, in CD4+ T cells with increased expression of KLRG1, there is evidence of an increased capacity for TNF-α and cytokine production (49), which has been associated with greater tissue damage (48). Within DCs in CD, among the most upregulated genes relative to controls was SERPINE1, which has been implicated immune cell infiltration (52, 53), as well as DC activation and tissue damage (54). In monocytes, there was dysregulation of genes associated with colorectal cancer (CASC8, SEMA3A, SATB2-AS1) (55-57). Furthermore, among DEGs detected in monocytes there was an enrichment of terms associated with reactive oxygen species and hypoxia. Despite there being support for oxidative stress in both UC and CD, evidence suggests that the burden of oxidative stress may be greater in CD (58-60).

Specifically among DEGs detected in EoD compared to controls, within CD4+ T there was an upregulation of genes associated with the chronic rhinosinusitis and nasal polyps (SCGB3A1 and MTRNR2L8) (61, 62), and downregulation of IL27RA, whose decreased expression is associated with allergic airway inflammation (63). Within DC cells, there was also dysregulation of genes associated with chronic obstructive pulmonary disorder (COPD) (LILRA5, IGLC2, and IGLC3) (64, 65). Chronic rhinosinusitis, allergic inflammation, and COPD are types of inflammatory disorders that are associated with eosinophilic activity (66-68), and these results highlight the potential that similar inflammatory pathways affected by these disorders are also dysregulated in individuals with EoD.

Among identified DEGs in EoE relative to controls, upregulation of CACNA1C was found in CD4+ T cells. CACNA1C is preferentially expressed in Th2 cells, and evidence shows inhibiting CACNA1C impairs Th2 cytokine production, which is key in allergic inflammation (69). Additionally, upregulation of genes positively associated with eosinophil viability and survival were found in both DCs (GPR65) and NKs (S100B) (70, 71).

Among genes dysregulated between UC and controls, there was an upregulation of genes associated with immune cell infiltration, including CDC20 (72) CCNB2 (73), and downregulation of NR4A3 within CD8+ T cells. NR4A3 is important to the programming of CD8+ T cells, and cells deficient in NR4A3 have a greater capacity for cytokine production compared to CD8+ T cells with normal levels of NR4A3 (74). Among DEGs found between UC and controls in monocytes, IFI27, GBP3, GBP5, and BCA1 were identified as upregulated. IFI27, GBP3, and GBP5 are inducible through interferon signaling (75), which plays a central role in IBD, as well as other autoimmune disorders (76); furthermore, GBP3 and GBP5 are involved in the activation of inflammasomes (75, 77), multiprotein complexes that are activated during infection or stress (78). High expression of BCA1 in macrophages has been associated with greater macrophage infiltration into tissues in models of autoimmunity, while selective inhibition of BCA1 activity has been demonstrated to have a therapeutic effect on these models (79).

The enrichment of ribosome associated terms and pathways enriched among DEGs in CD4+ T cells and CD8+ T cells in UC compared to controls, was not detected in CD despite evidence suggesting disruption of ribosome activity in both subtypes of IBD (80). However, previous research supports ribosomal pathways as being among the most dysregulated functions in
individuals with UC (81), perhaps indicating that while ribosomal proteins may participate in the pathogenesis of CD, they may play a greater role in the development and pathogenesis of UC.

The results of this study hold future implications for clinicians. DEGs that identify active inflammation may be of utility in differentiating patients with active disease and disease in remission without the need for more invasive endoscopy. Additionally, these DEGs show promise of indicating degree of inflammation allowing clinicians to stratify severity of active disease and adjust treatment plans accordingly. Zinc homeostasis dysregulation in eosinophilic disorders provides a potential treatment target in a condition where presently there are few pharmacologic treatment options (82). Patients with EoE are known to have zinc deficiencies associated with elimination diets (83), but further investigation as to how these diets affect overall zinc regulation is needed.

While this study is limited by a small sample size, overall, our study demonstrates the utility of single-cell RNA-sequencing of patient blood cells to characterize the genomic landscape of pediatric IBD subtypes and eosinophilic disorders. These data indicate both overlapping and distinct DEGs, enriched Gene Ontology terms, and enriched pathways associated the pathogenesis of inflammation among individuals with CD, UC, EoD, and EoE, offering further insight into which genes and pathways may serve as useful markers of disease in the peripheral blood mononuclear cells of patients.
References

55. Yao KH, Hua L, Wei LS, Meng JM, Hu JH. Correlation Between CASC8, SMAD7 Polymorphisms and the Susceptibility to Colorectal Cancer An Updated Meta-Analysis Based on GWAS Results. Medicine. 2015;94(46).

