Pharmacokinetic effects of a single-dose nutritional ketone ester supplement on brain ketone and glucose metabolism in alcohol use disorder – a pilot study

Xinyi Li1, Anthony J. Young2, Lais S. Pereira-Rufino1, Zhenhao Shi1, Juliana Byanyima1, Sianneh Vesslee1, Rishika Reddy1, Timothy Pond1, Mark Elliott2, Ravinder Reddy2, Robert K. Doot2, Jan-Willem van der Veen3, Henry R. Kranzler1, Ravi Prakash Reddy Nanga2, Jacob G. Dubroff2, Corinde E. Wiers1

1 Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, PA
2 University of Pennsylvania Perelman School of Medicine, Department of Radiology, Philadelphia, PA
3 National Institute on Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD

* Correspondence:
Corinde E. Wiers, Ph.D.
corinde.wiers@pennmedicine.upenn.edu

Keywords: beta-hydroxybutyrate, brain energetics, ketogenic diet, krebs cycle, metabolism, nutritional supplement

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Introduction: Acute alcohol intake decreases brain glucose metabolism and increases brain uptake of acetate, a metabolite of alcohol. Individuals with alcohol use disorder (AUD) show elevated brain acetate metabolism at the expense of glucose, a shift in energy utilization that persists beyond acute intoxication. We recently reported that nutritional ketosis and administration of ketone bodies as an alternative energy source to glucose reduce alcohol withdrawal severity and alcohol craving in AUD. However, the regional effects of nutritional ketosis on brain ketone (beta-hydroxybutyrate [BHB]) and glucose metabolism have not been studied in AUD.

Methods: Five participants with AUD underwent two magnetic resonance imaging (MRI) sessions and 4 participants with AUD underwent two positron emission tomography (PET) sessions with 18F-fluorodeoxyglucose. All participants completed one session without KE intervention and one session during which they consumed 395 mg/kg (R)-3-hydroxybutyl (R)-3-hydroxybutyrate Ketone Ester (KE) intervention (TdeltaS Global Inc.) before the scan. The order of the sessions was randomized. For the PET cohort, blood glucose and ketone levels were assessed and voxel-wise maps of the cerebral metabolic rate of glucose (CMRglc) were computed at each session. For the MRI cohort, brain anterior cingulate BHB levels were assessed using magnetic resonance spectroscopy.

Results

A single dose of KE elevated blood BHB and anterior cingulate BHB levels compared to baseline. Moreover, blood glucose levels were lower with KE than baseline, and whole-brain CMRglc decreased by 17%. The largest KE-induced CMRglc reductions were in the frontal, occipital, cortex, and anterior cingulate cortices.

Conclusion

These findings provide preliminary evidence that KE administration elevates ketone and reduces brain glucose metabolism in humans, consistent with a shift from glucose to ketones as a brain energy source. Average reductions in CMRglc of 17% are similar to global average reductions documented with administration of 0.25-0.5 g/kg of alcohol. Documenting the clinical and neurometabolic effects of nutritional ketosis will yield fundamental knowledge as to its potential beneficial effects as a treatment for AUD and its underlying neural mechanisms.
1 Introduction

Alcohol use disorder (AUD) is a chronic, relapsing condition that is associated with substantially elevated risk of neurocognitive impairments, co-occurring medical and psychiatric disorders, and mortality. In the United States, approximately 95,000 alcohol-related deaths were reported annually between 2011 and 2015, making alcohol the third-leading cause of preventable death (Esser et al. 2020). However, only 1.6% of patients with AUD receive FDA-approved medications to treat the disorder (Han et al. 2021) and available treatments are not efficacious for all patients (Campbell et al. 2018).

Improving brain energetics in individuals with AUD is a novel potential therapeutic intervention (Mahajan et al. 2021; Wiers et al. 2021). Acute alcohol intake increases the utilization of acetate, a metabolite of alcohol, at the expense of glucose utilization (Volkow et al. 2013; Volkow et al. 2017). In individuals with AUD, low brain glucose and high acetate metabolism persist beyond acute intoxication (Jiang et al. 2013; Tomasi et al. 2019; Volkow et al. 2017; Wang et al. 2013). Deprivation of acetate as an energy source during abstinence may contribute to alcohol withdrawal signs and symptoms, alcohol craving, and relapse in individuals with AUD (Mahajan et al. 2021). Ketone bodies ([β-hydroxybutyrate (BHB)], acetoacetate, and acetone) resemble acetate and may provide an alternative to it as an energy source in the brain (Courchesne-Loyer et al. 2017). Previous work in our laboratory has demonstrated the efficacy of a high-fat, low-carbohydrate ketogenic dietary intervention in reducing alcohol withdrawal severity and alcohol craving in AUD patients undergoing alcohol detoxification (Wiers et al. 2021). These findings are concordant with preclinical models showing that a ketogenic diet reduces both the signs of alcohol withdrawal (Bornebusch et al. 2021; Dencker et al. 2018; Tanabe et al. 2021) and alcohol self-administration (Blanco-Gandía et al. 2021; Wiers et al. 2021).

Given the restrictive nature of the KD and poor patient adherence to the strict dietary regimen (Ye et al. 2015), exogenous BHB ketone supplementation provides an easier alternative to elevate plasma ketone bodies (Stubbs et al. 2017). Exogenous ketone supplementation is a well-tolerated intervention that may pose various health benefits: ketones improved cognition in preclinical and clinical models of Alzheimer’s Disease (Kashiwaya et al. 2013; Newport et al. 2015; Pawlosky et al. 2020); stabilized brain networks, thereby protecting the hypometabolic, aging brain (Mujica-Parodi et al. 2020); and decreased appetite in healthy human volunteers (Stubbs et al. 2018). Preclinical studies of AUD found that exogenous ketone ester (KE) decreases alcohol withdrawal signs, similar to a ketogenic diet (Bornebusch et al. 2021). However, the ability of exogenous KE to cross the blood brain barrier and alter brain energetics in AUD has not been demonstrated.

Here, we piloted the pharmacokinetic effects of a single dose of KE on brain energetics, measured with either positron emission tomography (PET) with 18F-Fluoro-deoxyglucose (18F-FDG) or proton magnetic resonance spectroscopy (1H-MRS) in individuals with AUD. All participants underwent two imaging sessions, once after KE intervention and once without KE (baseline). We chose the anterior cingulate cortex (dACC) as the main region of interest for 1H-MRS because previous studies have evidenced a role for the dACC in inhibitory control (Gan et al. 2014), alcohol craving (Bauer et al. 2013), and decision making (Acheson et al. 2009) and associated aberrations in the dACC with subsequent worsening of problems with alcohol (Cheetham et al. 2014; Zakiniaeiz et al. 2017). Furthermore, our previous research showed significant effects of a ketogenic diet on brain ketone and glutamate metabolism and functional reactivity to alcohol cues in the dACC (Li et al. 2022; Wiers et al. 2021). We hypothesized that a single dose of KE would increase BHB levels in the brain and decrease the cerebral metabolic rate of glucose (CMRglc). For Original Research
2 Methods

2.1 Participants and ketone ester intervention

Study participants were recruited for study protocol NCT04616781 or NCT05015881 via online advertisements (BuildClinical, iConnect) and underwent the following screening assessment: Mini International Neuropsychiatric Interview (MINI) for a DSM-5 diagnosis of AUD and other neuropsychiatric disorders (1), a 30-day Timeline Follow-back (TLFB) for daily drinking patterns (2), the Alcohol Use Disorders Identification Test (AUDIT) for hazardous drinking behavior (3), and the Shipley Institute of Living Scale-2 (Shipley-2) test for crystallized and fluid intelligence (4). Inclusion criteria included: 1) meeting DSM-5 criteria for current AUD; 2) self-report of an average of at least 15 standard drinks per week in the last month; 3) self-report of having greater than a 1-yr history of heavy drinking; 4) having had a drink within 1 week of the study visit. Exclusion criteria included: 1) a current DSM-5 diagnosis of a major psychiatric disorder other than AUD; 2) intake of psychoactive medication within 24 hours of study participation; 3) history of seizures; 4) HIV seropositivity; 5) a history of head trauma with loss of consciousness for more than 30 min or associated skull fracture/abnormal MRI; 6) any contraindication for MRI (e.g., presence of ferromagnetic objects or claustrophobia), 7) a current, clinically significant physical disease or abnormality detected by medical history, physical examination, or routine laboratory evaluation that can impact brain function. A medical history and physical examination by a physician and routine laboratory results evaluated by a physician were conducted prior to study inclusion. Five AUD participants completed the MRI study (2 females/3 males; 45.2 ±17.0 years old), and four AUD participants completed the \(^{18}\text{F}\)-FDG procedures (4 males; 31±10 years old) (Table 1). Two study participants were enrolled in both studies. The study protocols were approved by the University of Pennsylvania Institutional Review Board and all participants provided written informed consent before study participation.

Both study protocols used a cross-over design, in which a computer-generated randomization scheme assigned 50% of subjects to start with KE and 50% without KE on study visit 1, and the reverse on visit 2. On the active day, KE ((R)-3-hydroxybutyl (R)-3-hydroxybutyrate KE solution, TdeltaS Global Inc.) was provided to participants at a dose of 395 mg/kg (2.2 mmol/kg) body weight.

Participants in the MRI study were asked to fast overnight and consumed a low-calorie breakfast approximately 2 hours before the scan. Participants were blinded to the study intervention and, during the baseline visit, received an isocaloric dextrose placebo (baseline) that was taste-matched using a bitterness additive (Symrise, US). The study drinks were prepared by the Penn Investigational Drug Service and provided to the participants 15 minutes prior to the MRI scan or approximately 45 minutes prior to the \(^{1}\text{H}\)-MRS scan.

Participants in the PET \(^{18}\text{F}\)-FDG study fasted for at least 6 hours prior to the study, as per standard \(^{18}\text{F}\)-FDG study protocols. Participants were aware of the study intervention. KE was diluted with diet soda or sparkling water by a trained staff member and administered to participants 1 hr prior to the PET scan. No intervention was provided on baseline (no KE) days.

2.2 Blood measures of ketones and glucose
Blood BHB and glucose levels were obtained from individuals participating in the PET 18F-FDG study. Blood BHB and glucose were measured at arrival, immediately prior to 18F-FDG injection, and 30 and 60 min post injection. On KE days, these measures corresponded with the time prior to KE intake, and 60 (immediately prior to scan), 90, and 120 min following KE intake. Measurements were made using a ketone and glucose meter (Abbott, Precision Xtra).

2.3 Brain 1H-MRS imaging and processing

Participants underwent an MRI on a 3.0T Magnetom Prisma scanner (Siemens Medical Solutions USA Inc., Malvern, PA) equipped with a 64-channel head coil. Structural images were acquired using T$_1$-weighted magnetization prepared rapid-acquisition gradient-echo (MPRAGE) sequences with the following parameters: TR 2400 ms; TE 2.24 ms; TI 1060 ms; FOV 256 mm; 208 slices; slice thickness 0.8 mm; flip angle 9°; effective voxel resolution, 0.8 x 0.8 x 0.8 mm.

Localized proton magnetic resonance spectroscopy (1H-MRS) was performed in a region of interest (ROI) located in the dACC (40×30×15 mm), for which we previously demonstrated a sensitivity to ketones (5, 6). A semi-Laser (sLaser) spectral editing sequence for BHB was acquired, using an adapted sequence previously described (7). The parameters were as follows: TR 2000 ms; TE 72 ms; 256 averages; Editing was performed with a gaussian pulse of 18.5 ms, amplitude of 47 Hz, and a bandwidth of 80 Hz at FWHM. For edit on, the pulse was centered at 4.14 ppm while for edit-off scans, it was centered at 5.26 ppm relative to a water position of 4.70 ppm. First- and second-order shimming was used to maximize the magnetic field Bo homogeneity in the voxel. Spectral fitting of the 1H-MRS datasets was carried with in-house written fitting software in IDL (NV5Geospatial, Broomfield, CO, USA) (8) with a modified basis set for the specific editing sequence and for ketone bodies (9). The basis set was simulated using GAMMA, part of the VESPA package (soher). The results from the analysis were inspected for nonrandom residuals and baseline fitting. Spectra with signal-to-noise ratio (SNR) < 15 and linewidth > 0.1 ppm were excluded from further analyses. A Cramér–Rao lower bound (CRLBs) of 20% for each individual peak was used as a quality criterion (8). To place the voxel in the same dACC ROI during the second scan, the program ImScribe (https://www.med.upenn.edu/CAMIPM/imscribe.html) was used, which is designed to allow reproducible selection of the same anatomical ROI in Siemens MRI studies within the same subject over multiple MRI scans. ImScribe uses high-resolution T$_1$-weighted images and the spectroscopy voxel information from the first scan as target template and T$_1$-weighted images of the subsequent scan and perform affine coregistration that provides the information of the new spectroscopic voxel placement for the later scans (10, 11). This was completed (~2 minutes) and this ROI was transferred to the Siemens’s console as a DICOM image and used to prescribe the 1H-MRS acquisition.

2.4 18F-FDG PET scanning and processing

On two separate study days participants underwent a 60-min 18F-FDG PET/CT scan using the PennPET Explorer (12), a 140 cm axial field of view whole-body PET scanner. Venous catheters were placed in the antecubital vein bilaterally for radiotracer injection and blood sampling. Commercially manufactured 18F-FDG (~10 mCi) was injected intravenously over a period of approximately 1 min. During the PET imaging procedures, the subjects rested quietly under dim illumination and minimal acoustic noise. To ensure that subjects did not fall asleep, they were monitored throughout the procedure and were asked to keep their eyes open.

Dynamic PET images were reconstructed into 4-mm voxels using time-of-flight list-mode ordered-subsets expectation maximization into 39 frames: 12 x 5 s, 6 x 10 s, 3 x 20 s, 2 x 30 s, 6 x 60 s, and 10
Images were corrected for interframe motion and analyzed in PMOD v3.7 (PMOD Technologies, Zurich, Switzerland). Whole brain and voxel-wise flux (K) were computed using Patlak graphical modeling (13) and an image-derived aortic arch blood pool SUV _peak_ input function with a plasma:whole blood ratio of 1:1. Measured 18F-FDG flux was converted to glucose metabolism using the formula MR_Glc = K*PG/LC, where PG is the averaged plasma glucose levels from pre-injection, 30-min, and 60-min post-injection samples, and LC is a lumped constant of 0.8 (14). The cerebral metabolic rate for glucose consumption (CMR_Glc) maps in μmol/100 mL/min were aligned to the subject’s structural MRI and then normalized to the MNI template with a 2-mm isotropic resolution using the FSL Software Library (version 5.0; http://www.fmrib.ox.ac.uk/fsl)(15).

2.5 Statistical analyses

All statistical analyses were conducted using SPSS (IBM, Armonk, NY). We performed linear mixed-effects analysis to examine the effects of the intervention (KE vs. baseline), time (assessment time points), and time x intervention interaction on blood measures of BHB and glucose. The models also controlled for visit order (KE at the first or second visit) and included subject-specific random intercepts. Post hoc pairwise comparisons were performed with Bonferroni correction. Paired t-tests were used to compare cingulate BHB and whole-brain CMR_Glc between KE and baseline study conditions. Exploratory voxel-wise FDG comparisons between KE vs baseline were performed using a paired t-test in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) with a cluster-defining threshold of uncorrected p<0.0001 and cluster size k>50, and cluster-level threshold of familywise error (FWE)-corrected p<0.05.

3 Results

3.1 Blood levels of ketones and glucose

BHB levels were significantly higher following KE than baseline (Intervention: F1,19.3=236, p<0.001; Intervention x time: F3,19.3=36, p<0.001) and they changed with time (F1,19.3=39, p<0.001). Post hoc analysis showed significant differences in BHB levels between baseline and KE at 60-, 90-, and 120-min post-KE administration. KE increased blood BHB levels approximately 27 fold from a pre-KE levels of 0.15mM ± 0.12SD to 4.06 mM ± 0.42SD 120 min following administration (Figure 1A). Blood glucose levels were lower during the KE intervention than baseline (Intervention: F1,19=31, p<0.001) and changed with time (F1,19=12, p<0.001), but no time x intervention interaction effects were observed (F3,19.0=1, p=0.4) (Figure 1B). Post hoc analysis showed lower blood glucose levels between the intervention arms prior to KE administration.

2.2 Brain BHB and CMR_Glc

BHB levels in the dACC were significantly higher 45 min after KE intake (mean=0.83 ±0.13 mM) than baseline visit (mean=0.28±0.11 mM) (t=13.4, p<0.001), as measured with 1H-MRS in 5 AUD participants (Figure 2A).

Whole-brain CMR_Glc decreased by 17% with KE (mean CMR_Glc = 14.4 μmol/100g/min ± 1.5SD) vs. baseline (mean = 17.4 ± 2.3 μmol/100g/min) (t=5.7, p=0.01) in 4 AUD participants (Figure 2B).

An exploratory voxel-wise analysis indicated that the largest KE-induced CMR_Glc reductions were in the frontal cortex, including the bilateral inferior frontal gyrus (IFG), occipital cortex, parietal and
temporal lobe, anterior cingulate cortex, bilateral amygdalae, hippocampi and insulae (all pFWE<0.05) (Figure 2B, Table 2).

4 Discussion

We found that a single dose of the KE (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (TdeltaS Global Inc.) rapidly elevated blood ketone levels and shifted brain energetics from glucose to ketones in individuals with AUD. While blood BHB remained low (~0.2 mM) through the baseline visit, it increased to 3.2 mM within 1 hr of KE administration and to 4.1 mM after 2 hr. Quantification of brain BHB levels and glucose utilization with ¹H-MRS and PET, respectively, showed higher dACC BHB levels and lower whole-brain glucose metabolism following KE administration compared to baseline in individuals with AUD.

Glucose is the primary fuel for the brain and is necessary for normal neural functioning, including maintaining a resting potential, generating an action potential, and synthesizing neurotransmitters and neuromodulators (16, 17). Ketone bodies are produced endogenously in the liver during periods in which glucose is not readily available, such as when an individual is adherent to a high-fat, low-carbohydrate ketogenic diet. They are carried through the bloodstream and transported into neurons by monocarboxylate transporters, where they are utilized for fuel (18). Exogenous KE supplements provide a faster, less dietary restrictive alternative to a ketogenic diet to achieve nutritional ketosis (19-21). As demonstrated in our study, within 1-2 hr of administration KE elevated blood BHB levels similar to those seen following 1-2 wk of adherence to a ketogenic diet (5). Similar blood BHB levels have previously been reported with the same dose of KE (19). Localized ¹H-MRS provides a non-invasive method to measure ketone levels in the brains of individuals adhering to a ketogenic diet (9, 22). We found rapid and efficient brain uptake of BHB following KE administration and demonstrated significantly higher BHB levels in the dACC during the KE session than the baseline session. Furthermore, KE yielded lower blood glucose levels, which may be due to a small KE-induced increase in insulin levels (19, 23). Moreover, we found an average 17% reduction in CMRglc from baseline to KE, which is comparable to that previously observed following 4 days of a ketogenic diet intervention (24). It is important to note that reductions in CMRglc have been found to be proportionate to plasma BHB levels (25), and not to hypoglycemia per se (24). In contrast, plasma levels of glucose correlate inversely with brain glucose metabolism and hyperglycemia has been associated with significantly lower brain glucose metabolism (26). Thus, our findings are in line with previous reports that CMRglc is inversely associated with blood and brain ketone levels (24), and thus that when plasma ketones increase, the human brain meets its metabolic needs by reducing CMRglc in relation to ketone availability and uptake.

Emerging evidence attributes heavy alcohol consumption and AUD to deficiencies in brain energy metabolism (18, 27). Acetate is a byproduct of alcohol metabolism and produces energy through conversion to acetyl-coenzyme A and metabolism in the tricarboxylic acid (TCA) cycle (28). Alcohol intoxication acutely increases plasma levels of acetate, brain uptake of acetate, and decreases brain glucose utilization (27, 29). Chronic use of alcohol produces metabolic adaptations that exacerbate this shift in brain energetics and increase the brain’s reliance on acetate for energy (27, 30). Similarly, gene and protein analysis from rodents and post-mortem human brain tissues show a reduction in glucose metabolism pathways (i.e., glycolysis and gluconeogenesis) and increased expression of monocarboxylated transporters after chronic alcohol use (31, 32). It has been hypothesized that deprivation of acetate as an energy source and inability to abruptly transition to utilizing glucose during abstinence contribute to alcohol withdrawal signs and symptoms and alcohol craving in individuals undergoing detoxication (18, 27). Heavy drinkers also demonstrated higher levels of ¹³C-labeled brain acetate than light drinkers (33). Ketone bodies are similar to acetate in that they also are converted to
acetyl-coenzyme A and produce energy in the TCA cycle. Targeting brain energetics with a ketogenic dietary intervention was previously shown to increase blood and brain ketone levels and attenuate withdrawal signs and symptoms and alcohol craving in individuals with AUD who were undergoing alcohol detoxification treatment (5). Here we demonstrated that KE rapidly increases blood and brain BHB levels and reduces the need for brain glucose utilization in individuals with AUD, and may thus serve as a more palatable alternative to a ketogenic dietary intervention in treating individuals with AUD.

Our study has several limitations and identifies potential areas for future study. First, although we employed a cross-over design to mitigate potential confounding effects of inter-individual differences, the study sample is small. Second, our sample was limited to individuals with AUD. It has been well demonstrated that individuals with AUD have lower brain glucose metabolism than non-dependent healthy controls (27, 34, 35). Moreover, alcohol-induced increases in acetate metabolism correlate with alcohol drinking history and were greater in heavy drinkers than social drinkers, suggesting that heavy or chronic alcohol exposure facilitates the use of acetate as a brain energy substrate (30). Thus, future studies are needed to compare KE-induced increases in BHB levels and reductions in CMRglc between individuals with AUD and non-dependent volunteers, to ascertain whether KE-induced elevations in ketones and reductions in CMRglc are greater among individuals who are very heavy alcohol consumers. Third, 1H-MRS cannot differentiate between intracellular and extracellular levels of BHB and is thus limited in assessing BHB utilization in the brain. Fourth, post hoc pairwise analysis showed lower blood glucose in the KE treatment arm compared to the baseline visit prior to KE administration, which may have been confounding. However, all CMRglc analyses were corrected for blood glucose level, and likely did not affect the strong KE-induced reductions in CMRglc. Indeed, previous studies reported an inverse relationship between blood and brain glucose, such that higher brain glucose uptake was seen in individuals with lower blood glucose levels (26, 36, 37). Therefore, our findings of decreased brain glucose uptake with KE despite lower blood glucose levels supports the robust effect of KE in altering brain energetics. Last, the implications of KE-induced changes in brain energetics on clinical outcomes in AUD are unknown. To address this gap in the literature, we plan to conduct studies that examine the effects of KE on alcohol withdrawal and alcohol craving in individuals with AUD.

In sum, our findings provide the first evidence that KE administration rapidly shifts brain energetics from glucose to ketone metabolism in individuals with AUD. Understanding the neurometabolic effects of KE may provide a scientific basis for studies examining the feasibility of utilizing KE as a treatment option for AUD or other neuropsychiatric and neurological disorders. Such findings may also help to identify potential neural mechanisms for these clinical effects.

5 Author Contributions

CEW designed the study. XL, JB, SV, RR, TP, ME, RR, HK, RPRN, JGD collected the data. AY, LSP, RKD, RR, RPRN, JVDV, CEW, and ZS analyzed the data and interpreted the results. XL, ZS, HK, AY, RPRN, and CEW wrote the manuscript. All authors provided critical revision of the manuscript for intellectual content and approved the final version of the manuscript.

6 Funding

This work was supported by the Institute for Translational Medicine and Therapeutics’ (ITMAT) Transdisciplinary Program in Translational Medicine and Therapeutics (Wiers & Dubroff), a NARSAD Young Investigator Grant (28778, Wiers), and the following National Institutes of Health grants: AA026892 (Wiers), DA051709 (Shi), DA046345 (Kranzler), and and P41 EB029460 (Reddy). Dr. Li was supported by T32DA028874.
7 Acknowledgments

We thank Laurie Downing, Kim Olson, Klaudia Glogowska, Rachel Weyl, Erin Schubert, Matt Furey, Regan Scheffer, Kayla Spooner, Reagan Wetherill, Nora Volkow, Paco Bravo, Aiden Adams, David Mankoff, Robert Mach, and the Penn PET Center for their contributions.

8 Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

9 Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

10 References

8. van der Veen JW, Marenco S, Berman KF, Shen J. Retrospective correction of frequency drift in spectral editing: The GABA editing example. NMR Biomed. 2017;30(8).

11 Figure legends

Figure 1. Blood ketone and glucose levels with Ketone Ester (KE). (A) Blood ketone (BHB) levels increased 27x with KE (mean baseline = 0.15 mM ± 0.12, KS=4.06 mM ± 0.42, Intervention x Time: F3,6=31.37, p<0.001). (B) There was no Intervention x Time effect for glucose levels, but significant main effects of Intervention (F1,19=31, p<0.001) and Time (F1,19=12, p<0.001).

Figure 2. Brain pharmacokinetics of Ketone Ester (KE). (A) Beta-hydroxybutyrate (BHB) levels in the anterior cingulate cortex were significantly higher 45 min after KE intake (mean=0.83±0.13) than at the baseline visit (mean=0.28±0.11) as measured with ¹H-MRS in 5 AUD participants. (B) Whole-brain metabolic rate of glucose (CMRglc) decreased significantly with KE (mean CMRglc=14.4±1.5 μmol/100g/min) vs. baseline (mean=17.4±2.3 μmol/100g/min) in 4 AUD participants. Average whole-brain CMRglc shows the strongest effects of KE in lowering brain glucose metabolism in the frontal cortex, occipital cortex, temporal cortex, and anterior cingulate (all p < 0.05). *p < 0.05 ***p < 0.001.

12 Tables

Table 1. Demographics and clinical characteristics of the participants in the ¹H-MRS and ¹⁸F-FDG PET studies. Data are presented as mean ± SD

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>MRI study (n=5)</th>
<th>FDG study (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex at birth</td>
<td>2 females/ 3 males</td>
<td>4 males</td>
</tr>
<tr>
<td>Age (years)</td>
<td>45.2 ±17.0</td>
<td>31 ± 10</td>
</tr>
<tr>
<td>Race</td>
<td>3 African American/ 2 Caucasian</td>
<td>2 African American/ 2 Caucasian</td>
</tr>
</tbody>
</table>
BMI (kg/m²) | 26.3 ± 5.3 | 30.6 ± 2.7
Shipley IQ score | 106.6 ± 7.2 | 106.5 ± 20.0
Drinks/week | 28.3 ± 10.1 | 27.2 ± 3.0
AUDIT | 17.4 ± 6.8 | 15.0 ± 4.8

Abbreviation: AUDIT, Alcohol Use Disorders Identification Test; BMI, Body-Mass Index

Table 2. Brain regions showing a significant main effect of Intervention.

<table>
<thead>
<tr>
<th>Brain Region</th>
<th>Cluster size (mm³)</th>
<th>Z</th>
<th>MNI coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>KE < Baseline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontal cortex, IFG, Precentral gyrus</td>
<td>199</td>
<td>5.32</td>
<td>62, 2, 36</td>
</tr>
<tr>
<td>Frontal cortex, IFG, Precentral gyrus, Insula</td>
<td>8449</td>
<td>5.18</td>
<td>-46, -12, 28</td>
</tr>
<tr>
<td>Precuneus, Parietal lobe</td>
<td>524</td>
<td>4.98</td>
<td>-24, -60, 42</td>
</tr>
<tr>
<td>Occipital cortex, Fusiform gyrus, Temporal lobe</td>
<td>4019</td>
<td>4.93</td>
<td>60, -70, 24</td>
</tr>
<tr>
<td>Anterior Cingulate, dACC, Posterior Cingulate</td>
<td>1300</td>
<td>4.53</td>
<td>-8, 14, 26</td>
</tr>
<tr>
<td>Insula</td>
<td>207</td>
<td>4.22</td>
<td>40, 0, 16</td>
</tr>
<tr>
<td>Brainstem, Pons</td>
<td>798</td>
<td>4.21</td>
<td>10, -16, -34</td>
</tr>
<tr>
<td>Amygdala, Hippocampus</td>
<td>332</td>
<td>4.19</td>
<td>-24, -4, -24</td>
</tr>
<tr>
<td>Superior frontal gyrus</td>
<td>174??</td>
<td>4.18</td>
<td>-14, 22, 58</td>
</tr>
<tr>
<td>Amygdala, Hippocampus</td>
<td>193</td>
<td>3.86</td>
<td>38, 0, -20</td>
</tr>
<tr>
<td>Precentral, Middle frontal gyrus</td>
<td>238</td>
<td>3.81</td>
<td>38, -12, 60</td>
</tr>
<tr>
<td>Precuneus, Parietal lobe</td>
<td>399</td>
<td>3.79</td>
<td>30, -56, 48</td>
</tr>
<tr>
<td>Baseline < KE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No significant clusters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: dACC, dorsal Anterior Cingulate Cortex, IFG Inferior Frontal Gyrus, MNI, Montreal Neurological Institute