Title: An assessment of census-tract level socioeconomic position as a modifier of the relationship between PM 2.5 concentrations and cardiovascular emergency department visits in Missouri

Authors:

Zachary H. McCann; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University

Howard H. Chang; Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University

Rohan D’Souza; Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University

Noah Scovronick; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University

Stefanie Ebelt; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University
Abstract:

Ambient PM2.5 exposure elevates the risk for cardiovascular disease morbidity (CVDM). The aim of this study is to characterize which area-level measures of socioeconomic position (SEP) modify the relationship between PM2.5 exposure and CVDM in Missouri at the census-tract (CT) level. We use individual level Missouri emergency department (ED) admissions data (n = 3,284,956), modeled PM2.5 data, and yearly census tract data from 2012-2016 to conduct a two-stage analysis. Stage one uses a case-crossover approach with conditional logistic regression to establish the baseline risk of ED visits associated with interquartile range (IQR) changes in PM2.5. In the second stage, we use multivariate meta-regression to examine how census tract level SEP modifies the relationship between ambient PM2.5 exposure and CVDM. We find that overall, ambient PM2.5 exposure is associated with increased risk for CVDM. We test effect modification in statewide and urban census tracts, and in the warm-season only. Effect modification results suggest that among SEP measures, poverty is most consistently associated with increased risk for CVDM. For example, across Missouri the highest poverty CTs are at an elevated risk for CVDM [OR = 1.010 (95% CI 1.007, 1.014)] compared to the lowest poverty CTs [OR = 1.004 (95% CI 1.000, 1.008)]. Other SEP modifiers generally display an inconsistent or null effect. Overall, we find some evidence that area-level SEP modifies the relationship between ambient PM2.5 exposure and CVDM, and suggest that the relationship between air-pollution, area-level SEP, and CVDM may be sensitive to spatial scale.
Exposure to ambient fine particulate matter <2.5 μm in aerodynamic diameter (PM2.5) is associated with increased levels of cardiovascular disease morbidity (CVDM). [1–3] Identifying the populations at increased risk of exposure to health effects from PM2.5 is an important step in public health protection from this key and complex air pollutant.

The Environmental Protection Agency (EPA) has identified several characteristics of area-level socioeconomic position (SEP) that put communities at risk for elevated exposure to environmental contaminants, including ambient PM2.5. These characteristics include high concentrations of people of color (POC), individuals with low incomes, unemployment, households with limited English proficiency, low educational attainment, and elderly residents. [4] Recent research confirms that several EPA area-level SEP indicators, including areas with larger proportions of POC, highly concentrated poverty, and high unemployment rates are associated with increased PM2.5 exposure. [5–9] Despite clear evidence of the deleterious cardiovascular effects of ambient PM2.5, and an unequal burden of PM2.5 exposure across social strata, evidence surrounding the role of area-level SEP in modifying the relationship between PM2.5 exposure and CVDM is sparse with mixed findings. [10–13]

The use of Zone Improvement Plan (ZIP) codes and ZIP Code Tabulation Areas (ZCTAs), the most commonly available spatial units for these types of studies, may be one reason for inconsistent results. [14] Population-based short-term health effect studies are conducted by leveraging large administrative databases (e.g., hospital billing data), where ZIPs or ZCTAs are often the finest spatial resolution available for patient residential information.

Emerging evidence suggests that census tracts (CTs) may be better suited for detecting how area-level SEP modifies air pollution-related CVDM risk. [1,15–17] Compared to ZIPs and ZCTAs, CTs contain relatively homogenous populations with respect to income, housing, and racial characteristics, map well to other geographic features (e.g., counties, states, census blocks), and are better able to capture population-level statistical data. [18,19] While these unique characteristics of CTs make them an ideal areal unit for studying the role of area-level SEP in environmental health applications, few previous air pollution epidemiological studies have had the ability to apply them.

We leveraged a unique data source of daily emergency department (ED) visits and admissions data in the state of Missouri that included information on patient residential CT to better understand how census tract-level SEP affects the risk of acute CVDM due to ambient PM2.5 exposure. We hypothesized that, relative to residents of census tracts with high SEP, residents of census tracts with low SEP will be at an elevated risk for PM2.5-related acute CVDM ED visits and admissions.

Methods:

Emergency Department Visit Data

Patient-level ED visit data were obtained from the Missouri Department of Health and Senior Services for the period 2012-2016. Our definition of an ED visit included visits by patients that were subsequently admitted to the hospital. The study population was restricted to all ED patients who had a residential address geocoded to the CT level in the state of Missouri. Cause-specific ED visits for CVDM were identified as those with primary or secondary International Classification of Diseases (ICD) version 9 codes 390-459 or ICD version 10 codes I00-I99.
Our total sample included 3,539,599 ED visits from 1,393 CTs by Missouri residents during 2012-2016, among which 1,617,158 ED visits were from 641 CTs in urban areas (Figure 1). We defined urban CTs as those contained within counties that comprise Metro-Statistical Areas (MSAs) with at least 1 million residents living in the state of Missouri. These included the St. Louis, MO-IL and Kansas City, MO-KS MSAs. [20]. The Institutional Review Board (IRB) at Emory University approved this study and granted an exemption from informed consent requirements.

Ambient PM$_{2.5}$ and Meteorological Data

Daily ambient air pollution data were retrieved from the Socioeconomic Data and Applications Center (SEDAC) for the period 2012 to 2016. The PM$_{2.5}$ product provided daily concentrations at 1km x 1km grid cell resolution, estimated using an ensemble of machine learning algorithms that had good predictive performance ($R^2 > 0.86$). [22] Daily CT-level PM$_{2.5}$ concentrations were obtained by averaging the daily concentration of PM$_{2.5}$ from 1km x 1km grid cells with centroids located with each given CT.

Daily 1km x 1km meteorological data were retrieved from the Daily Surface Weather and Climatological Summary (Daymet) [21] and included daily maximum temperature and daily average dewpoint temperature. Census tract-level exposures were estimated by assigning the 1km x 1km Daymet grid cell to the census tract centroid.

Area-Level Effect Modifiers

Area-level modifiers were obtained from the Census Bureau’s American Fact Finder (AFF) based on the EPA’s EJ Screen tool. [4] For all area level modifiers, we used 2012-2016 5-year estimates at census tracts. We examined five area-level modifiers: (1) the percentage of POC, defined as individuals identifying as not white alone and not white and Hispanic or Latino, (2) the percentage of people for whom poverty status is determined (calculated using yearly Census Bureau poverty thresholds based on family size and number of children [22]), (3) the percentage of people unemployed (among those >16 years of age and in the labor force), (4) the percentage of limited English speaking households (households where no person aged 14 years or older speaks English “very well”), (5) the percentage of people ≥25 years of age without a high school diploma, and (6) the percentage of a county age 65 years and over. Higher percentage values are associated with lower SEP or a larger proportion of elderly CT residents.

Analytic Methods

We applied a two-stage modeling approach to estimate associations between daily CT-specific PM$_{2.5}$ concentrations and CVD ED visits, as well as to evaluate effect modification by area-level SEP. In Stage 1, associations between pollution concentrations and CVD ED visits were estimated for every census tract in Missouri using conditional logistic regression, matching on year, month, and day of the week of the ED visit. The general structure of each Stage 1 model was:

$$\text{Logit}[\Pr(Y_{kt}=1)] = \beta_0 + \sum^{x}_{k=1} \zeta_{k} V_{k} + f(\text{PM}_{2.5_{t-I}}) + \beta_1 \text{(Temperature}_{kt}) + \beta_2 \text{(Humidity}_{kt}) + \beta_3 \text{(Holiday}_{kt})$$

Eq. 1

where Y_{kt} indicates whether patient k visited the ED on day t ($1 = \text{case}; 0 = \text{control day}$). V_{k} denotes the indicator variables that distinguish the case–control sets for individuals within the study, x is the total number of case–control sets, and ζ_{k} indicates parameters that are specific to
the case–control sets (not estimated in conditional logistic regression). We estimated PM$_{2.5}$ effects for same day (lag 0) and 3-day moving average (MA) (lags 0–2) exposures. We chose a 3-day MA of PM$_{2.5}$ as our *a priori* lag structure based on previous work. [23–26] Models included control for maximum temperature and mean dew point using restricted cubic splines with knots at the 25th and 75th percentiles, and holidays using a binary indicator that designated whether or not day t occurred on a holiday.

In Stage 2, we used random effects meta-regression to combine CT-specific PM$_{2.5}$ effect estimates accounting for (1) uncertainty associated with each CT-specific log odds ratio as measured by its asymptotic standard error, and (2) between-CT variability of the true unobserved CT-specific log odds ratio.

We excluded patients with invalid census tract assignments from Stage 1 analysis. Census tracts with Stage 1 models that did not converge because they had fewer than 50 total ED visits during the study period and census tracts with missing SEP data were excluded from Stage 2 analysis (n = 12). After excluding observations with invalid and missing data, the analytic sample contained observations for 3,314,398 (93.6%) individuals from 1,381 CTs (Supplemental Table 1).

In Stage 2, we also explored how area-level social and economic indicators modified the relationship between ambient PM$_{2.5}$ and CVD ED visits by fitting the following meta-regression equation:

$$\beta_z = \alpha_{10} + \alpha x_{z1} + \cdots + \alpha_{1p} x_{zp} + \epsilon_z \quad \text{Eq. 2}$$

Where β_z is the true effect estimate for census tract z (estimated by log odds ratios, $\hat{\beta}_z$) and $x_{z1}, \ldots x_{zp}$ are area-level modifiers, $\alpha_1, \ldots \alpha_p$ are the corresponding regression coefficients, and ϵ_z represents between-CT variation, assumed to be mean-zero normal. In these models, we used SEP indicators categorized by quartiles. We used the first quartile of each indicator, corresponding to the CTs with highest SEP, as the reference level.

In secondary analyses, we considered analyses restricted to urban counties and warm seasons. We defined the warm season as the five months of the year with the highest average maximum temperature (i.e., May through September). [27]

All analyses were done in Stata 17.

RESULTS

Descriptive Statistics

Table 1 presents descriptive statistics for PM$_{2.5}$, meteorological data, and area-level SEP for all CTs and urban CTs in Missouri included in the analytic sample. Mean daily ambient PM$_{2.5}$ across all CTs was 8.64 µg/m3 and among urban CTs was 8.86 µg/m3. PM$_{2.5}$ concentrations were higher during the warm season. Figure 2 displays the distributions of area-level effect modifiers across all CTs and urban CTs, respectively. For both statewide and urban samples, census-tract level SEP data displays a positive skew across all indicators.

Correlations among statewide and urban daily indicators (i.e., PM$_{2.5}$, temperature, dewpoint) can be found in Supplemental Table 2, and correlations between yearly area-level SEP indicators are in Supplemental Table 3. Among SEP indicators, only the percentage of CT residents below 100% of the federal poverty level (FPL) and the percentage of CT residents without a high
school diploma (or equivalent) are strongly correlated ($r \geq .70$) in both the statewide and urban samples. The percentage of CT residents without a high school diploma (or equivalent) is strongly correlated with the percentage of unemployed CT residents in the statewide sample.

Overall Associations between PM$_{2.5}$ and ED Visits

Overall, PM$_{2.5}$ was consistently associated with elevated risk of acute CVDM (Table 2), with associations slightly stronger in the warm season than year-round. Specifically, in the warm season, the OR for CVDM ED visits per interquartile range increase (1.40 µg/m3) in lag 0 PM$_{2.5}$ was 1.009 (95% CI 1.005, 1.012); the OR based on 3-day MA PM$_{2.5}$ was 1.008, (95% CI 1.004, 1.011). Associations were slightly attenuated when restricted to urban CTs, with a warm season lag 0 OR of 1.007 (95% CI 1.002, 1.011) and 3-day MA OR of 1.005 (95% CI 1.000, 1.010).

Effect Modification Analysis

We found evidence of effect modification of PM$_{2.5}$-acute CVDM associations by area-level SEP (statewide results presented in Figure 3 and Supplemental Table 4). In particular, CTs with the lowest levels of poverty had weaker associations [e.g., lag 0 OR of 1.004 (95% CI 1.000, 1.008)] compared to CTs with the highest levels of poverty [e.g., lag 0 OR of 1.010 (95% CI 1.007, 1.014)]. This effect modification was more pronounced during the warm season, with even stronger associations observed for CTs with the highest levels of poverty [e.g., lag 0 OR of 1.015 (95% CI 1.009, 1.022)]. Patterns of stronger associations among CTs of lower SEP were also observed when using SEP indicators for % high school diploma and % unemployed, and again particularly in the warm season.

Patterns of effect modification were similar, overall, when restricted to urban CTs (Supplemental Figure 1, Supplemental Table 4). For example, in the urban analysis, the estimated effect of warm season PM$_{2.5}$ on acute CVDM was significantly higher among CTs with the highest levels of poverty [lag 0 OR of 1.015 (95% CI 1.005, 1.026)] compared to CTs with the lowest levels of poverty [lag 0 OR of 0.999 (95% CI 0.992, 1.007)].

In both statewide and urban analyses, we observed some evidence of non-linear effect modification, with weaker PM$_{2.5}$-acute CVDM associations among the middle categories of % POC and % limited English-speaking households than the lowest and highest categories. For example, in the warm season, CTs with % POC in Q2 had the weakest PM$_{2.5}$-acute CVDM association [lag 0 OR of 0.995 (95% CI 0.985, 1.005)] compared to associations for CTs with % POC in Q1, Q3 or Q4 (Supplemental Table 4, Figure 3).

Overall, there was little evidence of effect modification by % age 65+ years.

DISCUSSION AND CONCLUSION

In this analysis of over 3.3 million ED visits in the state of Missouri for cardiovascular conditions, we examined CT-level SEP as a potential modifier for the relationship between ambient PM$_{2.5}$ and CVD ED visits. We used multiple SEP measures to assess potential effect modification due to area-level social factors in analyses considering statewide and urban-only domains. In overall models we observed that increases in daily PM$_{2.5}$ concentrations significantly increase the odds of visits to the ED for acute CVDM across the state of Missouri in both year-round and warm season-only analyses. Same day (lag 0) effect estimates were similar to 3-day moving average effect estimates, and warm season effect estimates were stronger than their year-
round counterparts. Estimated effects in statewide analyses were largely similar to those restricted to urban-only CTs. These findings are consistent with previous literature, which has established that PM$_{2.5}$ is a risk factor for CVDM. [28,29] Previous literature also supports our findings of a seasonal effect of PM$_{2.5}$ on CVDM, but is split on whether cold or warm season exposure presents greater risk. [30–33] Others have suggested that humidity, not temperature, is the primary driver of observed seasonal differences in CVDM associated with PM$_{2.5}$ concentrations. [10,34]

Effect modification varied based on SEP indicator, but results are concurrent with previous literature that suggest CTs may be better suited for understanding how area-level social inequities affect health outcomes. [5,16] The most robust evidence for modification of the PM$_{2.5}$–acute CVDM association in this study was observed when examining the percent of people living below 100% FPL as the SEP indicator. Across all lags and seasons CTs with the highest levels of poverty consistently had an elevated odd of CVDM due to PM$_{2.5}$ compared to CTs with the lowest levels of poverty. Patterns of effect modification were similar when considering percent high school education as the SEP indicator. The pattern of effect modification for some indicators, such as percent POC and percent limited English-speaking households, were not as clear.

The varied nature of results by SEP indicators suggests that not all measures of SEP weigh equally on the risks of PM$_{2.5}$-related CVDM. Rather, SEP reflects access to specific social advantages, and disadvantages, that confer different levels of risk to CT residents. Our finding that poverty is a salient social factor in modifying the association between PM$_{2.5}$ concentrations and CVDM is consistent with other literature, [36] and is seen with other air pollutants. [37,38] The exact mechanisms driving this relationship are unclear, but increased levels of psychosocial stress, reduced access to individual and community resources, or a lack residential green space, all associated with high rates of poverty and low levels of education could be responsible for these findings. [39] Research has also shown that education may be related to adherence to public health guidelines for air quality alerts, which might drive the observed effect modification relationship by education on PM$_{2.5}$-related CVDM in the warm season in this study. [26]

Our finding that, compared to CTs with the lowest and highest percentages of POC, CTs with the second lowest percentages of POC were at lower risk for PM$_{2.5}$-related CVDM during the warm season was unexpected. Although it is difficult to find an exact analogue for this study, previous research has found a similar pattern between air pollution exposure and ED visits when dividing SEP indicators into quartiles. [40] It is important to recognize that the results in these analyses are relative risks, presented by SEP quartile. It is possible that the highest urban SEP quartiles (Q1) have very low overall risks for CVDM associated with PM$_{2.5}$ concentrations during the warm season. A higher relative risk for ED visits in CTs with the fewest POC may reflect a lower overall risk for ED visits relative to CTs with the second lowest rate of POC, as opposed to a true protective effect.

The lack of evidence of the percentage of residents aged 65 years and over functioning as an effect modifier was also unexpected, given the relationship between age, PM$_{2.5}$, exposure and CVDM. [14] In our sample the percentage of CT residents age 65 years and older was inversely correlated with the percentage of CT residents below 100% FPL (Supplemental Table 3). Thus, while age may confer greater risk for individuals, community level risk may be offset by lower levels of poverty and greater access to material resources.
Our study faced several limitations. Our SEP measurements were individual census tract parameters. While we observed some significant effect modification, none of these indicators were able to fully capture the complex nature and interaction of social conditions within CTs. In addition, we only tested six potential area-level SEP modifiers, leaving room for potential omitted variables. Overall risk across different SEP groups may also interfere with the ability to detect effect modification due to area-level SEP. In these analyses we focused on the relationship between PM$_{2.5}$ and CVDM. Although this relationship is important for better understanding acute cardiovascular health, it is possible that other pollutants could be affecting CVDM. Finally, our analysis was limited to the state of Missouri. It is not clear if our results are generalizable to other states. Further, while we included all ED visits for all patients who visited hospitals in Missouri, we cannot be sure of the characteristics of Missouri residents that chose to visit EDs elsewhere.

Our research provides evidence that census tract level poverty rates contribute to vulnerability to PM$_{2.5}$-related CVDM in Missouri, particularly during the warm season. Other SEP indicators, such as rates of high school diploma attainment and unemployment rate, trend in the expected direction but do not achieve significance. Previous literature on the effect modification relationship between SEP and CVDM associated with PM$_{2.5}$ concentrations has been mixed. Our findings suggest that the ability to detect effect modification is sensitive to the SEP measures chosen. Spatial scale may also play an important role in detecting effect modification. Spatial units that are, on average, smaller and align to social and economic boundaries, such as CTs, may be more sensitive to effect modification than those that do not. Moving forward we recommend that researchers incorporate multiple SEP indicators in their research, and test their findings at multiple spatial resolutions.

Acknowledgements: The data used in this document/presentation was acquired from the Missouri Department of Health and Senior Services (DHSS). The contents of this document including data analysis, interpretation or conclusions are solely the responsibility of the authors and do not represent the official views of DHSS.

We would also like to acknowledge several collaborators. Thank you to Haisu Zhang for help curating exposure and meteorological data, Morgan Lane for her assistance with ensuring compliance with IRB protocols and state-level data use agreements, and Shannon Moss for helping to facilitate access to patient health information.

7 Collins TW, Grineski SE. Racial/ethnic disparities in short-term PM2.5 air pollution exposures in the United States. Environ Health Perspect 2022;130:87701. doi:10.1289/EHP11479

doi:10.3390/ijerph15030472

Table 1: Descriptive Statistics for Census Tract Level PM2.5 Concentrations, Meteorology, and Socioeconomic Position Indicators in Missouri (2012-2016)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>25th %ile</th>
<th>Median</th>
<th>75th %ile</th>
<th>Max</th>
<th>IQR</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>All CTS in Missouri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM$_{2.5}$ (ug/m3)</td>
<td>8.64</td>
<td>0.88</td>
<td>6.12</td>
<td>8.02</td>
<td>8.47</td>
<td>9.42</td>
<td>11.32</td>
<td>1.40</td>
<td>1,381</td>
</tr>
<tr>
<td>PM$_{2.5}$ (Warm) (ug/m3)</td>
<td>9.12</td>
<td>4.14</td>
<td>0.69</td>
<td>5.95</td>
<td>8.55</td>
<td>11.59</td>
<td>36.06</td>
<td>5.64</td>
<td>1,375</td>
</tr>
<tr>
<td>Max Temp (°C)</td>
<td>19.24</td>
<td>0.86</td>
<td>15.67</td>
<td>18.81</td>
<td>19.29</td>
<td>19.75</td>
<td>21.70</td>
<td>0.94</td>
<td>1,381</td>
</tr>
<tr>
<td>Max Temp (Warm) (°C)</td>
<td>28.77</td>
<td>4.64</td>
<td>11.15</td>
<td>26.02</td>
<td>29.08</td>
<td>32.12</td>
<td>41.24</td>
<td>6.10</td>
<td>1,375</td>
</tr>
<tr>
<td>Dewpoint (°C)</td>
<td>7.21</td>
<td>0.89</td>
<td>3.26</td>
<td>6.83</td>
<td>7.29</td>
<td>7.77</td>
<td>10.21</td>
<td>0.93</td>
<td>1,381</td>
</tr>
<tr>
<td>Dewpoint (Warm) (°C)</td>
<td>16.13</td>
<td>4.50</td>
<td>0.06</td>
<td>13.56</td>
<td>17.02</td>
<td>19.58</td>
<td>25.77</td>
<td>6.02</td>
<td>1,375</td>
</tr>
<tr>
<td>People of Color (% CT not white)</td>
<td>22.34</td>
<td>26.19</td>
<td>0.39</td>
<td>5.52</td>
<td>11.55</td>
<td>25.48</td>
<td>100.00</td>
<td>19.97</td>
<td>1,381</td>
</tr>
<tr>
<td>Poverty (% CT population below 100% FPL)</td>
<td>17.14</td>
<td>11.73</td>
<td>0.00</td>
<td>8.66</td>
<td>14.75</td>
<td>22.75</td>
<td>74.40</td>
<td>14.09</td>
<td>1,381</td>
</tr>
<tr>
<td>Unemployment (% CT in labor force but no job)</td>
<td>5.35</td>
<td>3.07</td>
<td>0.00</td>
<td>3.31</td>
<td>4.59</td>
<td>6.37</td>
<td>21.33</td>
<td>3.06</td>
<td>1,381</td>
</tr>
<tr>
<td>Limited English Proficiency (% CT Households with no member that speaks English at least “very well”)</td>
<td>1.26</td>
<td>2.58</td>
<td>0.00</td>
<td>0.00</td>
<td>0.44</td>
<td>1.38</td>
<td>30.16</td>
<td>1.38</td>
<td>1,381</td>
</tr>
<tr>
<td>No HS Diploma (% CT age 25 years and older without HS diploma or equivalent)</td>
<td>12.92</td>
<td>7.77</td>
<td>0.00</td>
<td>7.05</td>
<td>11.81</td>
<td>17.36</td>
<td>46.91</td>
<td>10.32</td>
<td>1,381</td>
</tr>
<tr>
<td>% Age 65 Years and Over</td>
<td>14.92</td>
<td>5.85</td>
<td>0.00</td>
<td>11.09</td>
<td>14.66</td>
<td>18.21</td>
<td>56.76</td>
<td>7.11</td>
<td>1,381</td>
</tr>
<tr>
<td>Urban CTS in Missouri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM$_{2.5}$ (ug/m3)</td>
<td>8.86</td>
<td>0.86</td>
<td>6.95</td>
<td>8.12</td>
<td>8.97</td>
<td>9.64</td>
<td>10.40</td>
<td>1.53</td>
<td>641</td>
</tr>
<tr>
<td>PM$_{2.5}$ (Warm) (ug/m3)</td>
<td>9.27</td>
<td>4.35</td>
<td>0.69</td>
<td>5.90</td>
<td>8.74</td>
<td>11.83</td>
<td>36.06</td>
<td>5.93</td>
<td>639</td>
</tr>
<tr>
<td>Max Temp (°C)</td>
<td>19.15</td>
<td>0.44</td>
<td>17.60</td>
<td>18.86</td>
<td>19.19</td>
<td>19.45</td>
<td>20.75</td>
<td>0.59</td>
<td>641</td>
</tr>
<tr>
<td>Max Temp (Warm) (°C)</td>
<td>28.77</td>
<td>4.89</td>
<td>11.69</td>
<td>26.00</td>
<td>29.14</td>
<td>32.37</td>
<td>41.24</td>
<td>6.37</td>
<td>639</td>
</tr>
<tr>
<td>Dewpoint (°C)</td>
<td>7.23</td>
<td>0.54</td>
<td>5.46</td>
<td>6.89</td>
<td>7.24</td>
<td>7.65</td>
<td>8.85</td>
<td>0.76</td>
<td>641</td>
</tr>
<tr>
<td>Dewpoint (Warm) (°C)</td>
<td>16.32</td>
<td>4.46</td>
<td>1.41</td>
<td>13.62</td>
<td>17.18</td>
<td>19.81</td>
<td>24.53</td>
<td>6.19</td>
<td>639</td>
</tr>
<tr>
<td>People of Color (% CT not white)</td>
<td>27.78</td>
<td>28.08</td>
<td>0.87</td>
<td>8.14</td>
<td>15.59</td>
<td>34.94</td>
<td>100.00</td>
<td>26.80</td>
<td>641</td>
</tr>
<tr>
<td>Poverty (% CT population below 100% FPL)</td>
<td>13.26</td>
<td>11.20</td>
<td>0.00</td>
<td>5.22</td>
<td>9.91</td>
<td>17.50</td>
<td>70.69</td>
<td>12.27</td>
<td>641</td>
</tr>
<tr>
<td>Unemployment (% CT in labor force but no job)</td>
<td>5.41</td>
<td>3.05</td>
<td>0.00</td>
<td>3.23</td>
<td>4.72</td>
<td>6.64</td>
<td>17.18</td>
<td>3.41</td>
<td>641</td>
</tr>
<tr>
<td>Limited English Proficiency (% CT Households with no member that speaks English at least “very well”)</td>
<td>1.57</td>
<td>3.12</td>
<td>0.00</td>
<td>0.00</td>
<td>0.62</td>
<td>1.76</td>
<td>30.16</td>
<td>1.76</td>
<td>641</td>
</tr>
<tr>
<td>No HS Diploma (% CT age 25 years and older without HS diploma or equivalent)</td>
<td>9.99</td>
<td>7.63</td>
<td>0.00</td>
<td>4.53</td>
<td>8.23</td>
<td>13.28</td>
<td>46.91</td>
<td>8.74</td>
<td>641</td>
</tr>
</tbody>
</table>
HS diploma or equivalent

% Age 65 Years and Over

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14.89</td>
<td>5.88</td>
<td>0.00</td>
<td>11.07</td>
<td>14.64</td>
<td>18.19</td>
<td>56.76</td>
<td>7.13</td>
<td>641</td>
</tr>
</tbody>
</table>

Statewide SEP percentiles based on distribution of mean yearly values (2012-2016) across 1,381 census tracts across Missouri in statewide analysis, 1,375 census tracts in statewide warm season analysis

Urban SEP percentiles based on distribution of mean yearly values (2012-2016) across 641 census tracts in urban analysis, and 639 census tracts in urban warm season analysis

SEP, Socioeconomic Position; SD, Standard Deviation; Min, Minimum value; 25th %ile, 25th percentile; 75th %ile, 75th percentile; Max, Maximum value; IQR, interquartile range; PM2.5, particulate matter <2.5 μm in diameter (fine particulate matter); FPL, federal poverty level; HS, high school
Table 2: Results for Overall Statewide and Urban Estimates Between Ambient PM$_{2.5}$ Concentration and Cardiovascular ED Visits Across Missouri

<table>
<thead>
<tr>
<th></th>
<th>Statewide</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lag 0</td>
<td>3 Day MA</td>
</tr>
<tr>
<td></td>
<td>1.005***</td>
<td>1.006**</td>
</tr>
<tr>
<td></td>
<td>(1.004,1.007)</td>
<td>(1.004,1.008)</td>
</tr>
<tr>
<td>Urban</td>
<td>1.005***</td>
<td>1.004***</td>
</tr>
<tr>
<td></td>
<td>(1.002,1.007)</td>
<td>(1.002,1.007)</td>
</tr>
</tbody>
</table>

Cell: B

(95% Confidence Interval)

*** p<.001, ** p<.01, * p<.05, two tailed test

Q1 (Referent)
Figure 1. Map of Missouri Counties and Census Tracts

Study area for the main analyses. Grey areas represent non-urban census tracts. Blue areas represent urban census tracts. White hash marks represent excluded census tracts (≤50 cardiovascular ED visits over the course of the study or missing socioeconomic data).
Figure 2. Distribution of Socioeconomic Position Indicators in Missouri (2012-2016)

A. Represents distributions across the statewide analytic sample (n=1,381 census tracts);
B. Represents distributions across the statewide analytic sample (n = 641 census tracts);
In each histogram the leftmost vertical dashed lines represent the 25th percentile, the central dashed line represents the median, and the rightmost dashed line represents the 75th percentile.
Figure 3: Results for Effect Modification Estimates in Missouri by Socioeconomic Position Indicator and Quartile (n = 1,381)

*** p<.001, ** p<.01, * p<.05, two tailed test

Q1 (Referent)