Impact of antibiotics and hospitalization on the nasopharyngeal microbiome in very preterm infants

Polona Rajar¹,²†, Achal Dhariwal²†, Gabriela Salvadori², Heidi Aarø Åmdal², Dag Berild³,⁴, Ulf R. Dahle⁵, Drude Fugelseth¹,⁴, Gorm Greisen⁶, Ulrik Lausten-Thomsen⁶, Ola Didrik Saugstad⁷, Fernanda Cristina Petersen², Kirsti Haaland¹*

¹ Department of Neonatal Intensive Care, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
² Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
³ Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.
⁴ Institute of Clinical Medicine, Faculty of Medicine, Oslo University, Oslo, Norway.
⁵ Centre for Antimicrobial Resistance, Norwegian Institute of Public Health, Oslo, Norway
⁶ Department of Neonatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
⁷ Department of Paediatric Research, University of Oslo, Oslo, Norway.

† These authors contributed equally: Polona Rajar, Achal Dhariwal.

* Correspondence:
Kirsti Haaland
Department of Neonatal Intensive Care Unit Ullevål, Division of Paediatric and Adolescent Medicine, Oslo University Hospital,
Kirkeveien 166, 0450 Oslo, Norway
Tel: 0047 22117622
uxkila@ous-hf.no

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Rationale: Preterm infants are often exposed to antibiotics early in life. They are at increased risk for inflammation and infection due to immature immune system, weak mucosal barriers of the intestinal and respiratory tract and ineffective defense from non-pathogens of normal flora. Longitudinal research of respiratory microbiota of preterm infants is limited.

Objectives: Investigate the development of nasopharyngeal microbiota in preterm infants from birth until six months corrected age.

Methods: In our observational cohort study, we obtained 369 nasopharyngeal aspirates from 66 very preterm infants sampled at six time points spanning from birth until six months corrected age. Deep shotgun metagenomic sequencing was used to determine the microbiome composition.

Measurements and Main Results: Preterm infants were grouped according to postnatal antibiotic exposure (naïve; n=21, “Only Early antibiotics”; n=24 and “Other antibiotics”; n=21). Inter-individual variability, followed by postmenstrual age had the largest significant effect on the overall microbiome composition. We identified six microbial community types, determined by various abundances of *Cutibacterium, Gemella, Serratia, Streptococcus* and *Staphylococcus*. Antibiotic exposure resulted in significant, apparently transient diversity changes. The abundance of *Serratia* indicates that hospitalization can lead to microbiome scars lasting for at least six months after discharge.

Conclusions: Genera associated with respiratory health in non-premature populations were sparse. The respiratory microbiome of preterm infants is transiently affected by antibiotic exposure, while signatures of hospitalization may persist for at least six months after hospital discharge.
Introduction

Microbial colonization after birth is a dynamic process, influenced by environmental and host factors, and carries implications for long-term health (1-3). Current knowledge is mostly based on intestinal microbiota studies of term infants, while limited information is available regarding preterm infants and microbiota inhabiting body niches such as the respiratory tract (4-6).

After birth, upper respiratory tract mucosa is rapidly colonized with microbes originating from mothers’ genito-rectal, skin and oral flora, and the environment, followed by an increase in absolute bacterial abundance and a shift towards distinct bacterial communities within weeks (3, 7, 8). Nasopharyngeal microbiota of term infants further differentiates towards stable microbial profiles by six months of age, influenced by environmental factors including mode of delivery, feeding type and antibiotic therapy (3, 6, 7, 9). Timed signals from the respiratory microbiota are necessary for the infant’s immune system maturation, also influencing the risk of later airway inflammation (10-13). Dysbiosis in airway microbiota during this critical developmental phase has been described in a variety of respiratory conditions, but determination of causality requires further investigation (14-17).

Preterm infants have an increased risk of developing inflammation and infection-related pathologies and are often exposed to factors modifying microbiome development in early life, such as long hospitalization and antibiotic treatment (2, 18). Antibiotics in particular have a major ecological impact on the microbiome composition, although less is known of the consequences on non-intestinal sites (19, 20). In Norway, 77% of infants born at gestational age (GA) <32 weeks are exposed to antibiotics during their first week of life, and 75% are treated with antibiotics within 72 hours after birth due to suspected early onset neonatal sepsis (EONS) (21).
Consequences of preterm birth and respiratory infections are the leading causes of global mortality in early life (22). Compared with term born infants, preterm infants carry a higher incidence of respiratory morbidity, even in the absence of confirmed lung injury in the neonatal period (23-25). Few studies have described the longitudinal development of preterm infants’ respiratory microbiome, which could offer some insight into their increased risk of developing respiratory pathologies also later in life (17).

Studies investigating respiratory microbiome have mainly used 16S rRNA amplicon sequencing. To obtain higher taxonomic resolution including species recognition needed to distinguish commensals from possible pathogens and understand the interbacterial dynamics, we utilized whole metagenomic sequencing (WMS) (15, 26-28).

The aim of this study was to investigate the longitudinal development of the preterm nasopharyngeal microbiome by use of WMS, and how it was affected by different variables including antibiotic exposure from birth until six months corrected age.
Materials and Methods

Study design and sample collection

We approached parents of all infants with GA from 28 weeks 0 days to 31 weeks 6 days born at or transferred to Ullevål Neonatal Intensive Care Unit (NICU) at Oslo University Hospital within 48 hours after birth between July 2019 and January 2021. Patients’ metadata were collected from electronic journals. Nasopharyngeal aspirates (NPAs) were obtained within 48 hours of six time points: day of life (DOL) 0 (day of birth), DOL 7, DOL 14, DOL 28, DOL 56 or discharge and at six months corrected age as previously described (28). Samples were stored at -80°C for up to three years before processing in the laboratory. Throughout all further steps, samples belonging to the same infant were processed concomitantly.

Sample processing

Metagenomic DNA extraction was performed using standard operating procedures published previously (28) with some minor modifications (Online Supplement). After host DNA removal (MolYsis™ Basic5, Molzym), all samples were spiked with 20 µl of Spike-in Control II Low Microbial Load (Catalog D6321 & D6321-10, ZymoBIOMICSTM™, Irvine, CA), immediately followed by DNA extraction (MasterPure™ Gram Positive DNA Purification Kit, Epicentre). Zymo Femto™ Quantification kits (ZymoBIOMICSTM™) were used to quantify human (Zymo E2005) and microbial DNA (Zymo E2006) in all extracted samples with real time qPCR. Further, Nextera DNA Flex kit (Illumina Inc., San Diego, CA) was used for metagenomic library preparation following manufacturer’s instructions. Library concentration and purity were measured using Qubit™ dsDNA HS kit (Invitrogen) and Bioanalyzer 2100 (Agilent, Santa Clara, CA). WMS was conducted at the Norwegian Sequencing Centre (Oslo, Norway), on a NovaSeq S4 platform (Illumina Inc.) using a paired-end sequencing approach with a targeted read length of 150 bp in high-output mode.
Bioinformatics processing and microbiome profiling

FASTQC (v.0.11.9) was used to assess the quality of raw and clean reads (29). Quality and adapter trimming, as well as quality control were performed with Trim galore (v.0.6.1) (30). All reads were aligned with human reference genome (GRCh38) and human DNA sequences were removed using Bowtie2 (v.2.3.4.2) (31). MetaPhlAn 3.0 (32) was used for taxonomic microbiome profiling of the remaining clean, high-quality reads, using a customized database by adding clade-specific marker gene from the mock species ($q=0.05$).

Statistical analysis and data visualization

Details regarding statistical analysis of cohort demographics, 16S rRNA qPCR results and downstream analysis of WMS data are described in the Online Supplement. Figures were created using ggplot2 (v.3.4.0) package (33) and GraphPad Prism 9.4.1(458)© GraphPad Software, LLC (Boston, MA, USA).
Results

Patient cohort and sample processing

We obtained 369 NPA samples from 66 infants at six sampling time points between birth and six months corrected age (Figure 1A), including 108 samples from 21 infants not exposed to any postnatal antibiotics (Supplementary Figure E1). Infants exposed to postnatal antibiotic (n=45) had lower GA and birth weight (BW), and their mothers were more often treated with antibiotics during pregnancy (Table 1).

We divided antibiotic exposed infants into two groups (Table 1): infants receiving “Only Early antibiotics” (n=24) due to increased risk for EONS (intravenous ampicillin and gentamycin), initiated within 24 hours after birth and discontinued after mean (SD) 4 (2) days, and “Other antibiotics” group (n=21). This group received different combinations of either early antibiotics (initiated within 72 hours after birth); late antibiotics (initiated >72 hours after birth); and/or antibiotics after discharge (intravenous or per oral route). None of the infants had a positive blood culture obtained prior to initiation of early antibiotics, and 13 had a positive blood culture prior to initiation of late antibiotics. Five infants received antibiotics in the period between discharge from the NICU and six months corrected age.

Twenty-four samples from 16 infants were excluded due to negative 16S rRNA qPCR values after subtracting spike-in quantity (Supplementary Table E1). Libraries of remaining 345 samples proceeded to WMS in one pool with 5 nM concentration (Figure 1B). The mean (range) number of raw sequencing reads obtained was 35 million (M) (2550–93 M). One sample was excluded before downstream analysis as no reads were assigned to other than Spike-in species. On average 6 M (range: 439–24 M) reads were assigned to bacteria from the remaining 344 samples. Human DNA content was on average 55% (range 0.86%-99%) (Supplementary Table E2).
Increase in absolute bacterial abundance after premature birth

Twenty-two of the 25 samples excluded before WMS analysis belonged to infants exposed to postnatal antibiotics (p<0.05) (Supplementary Table E1). In the remaining 344 samples, absolute bacterial abundance increased until time point 4, followed by stabilization and a slight decrease in bacterial abundance at six months corrected age (Figure 2A). Infants exposed to “Other antibiotics” had significantly lower 16S load at time points 3 and 6 (p<0.05) compared to antibiotic naïve infants (Figure 2B).

Composition and α-diversity of the developing preterm nasopharyngeal microbiome

Across all samples, the dominant phyla were Proteobacteria and Firmicutes, followed by Actinobacteria, Fusobacteria and Bacteroides (Figure 3A). Staphylococcus, Streptococcus and Cutibacterium were the most prevalent genera (found in >90% of samples) and were dominant (>50% abundance) in more than 10% of samples. Immediately after birth, Serratia had the highest mean relative abundance (81%), followed by Streptococcus (7%) and Staphylococcus (5%) (Figure 3B).

On the species level, C. acnes, S. mitis and S. epidermidis were the most prevalent (found in >88% of samples), but no single species was dominant (>50% abundance) in >10% of samples, regardless of antibiotic exposure (Figure 3C). S. epidermidis mean relative abundance increased until time point 3, after which S. aureus became the dominant species of Staphylococci genera. Of the Streptococci genus, S. mitis was the most abundant throughout all sampling time points, regardless of antibiotic exposure until six months corrected age, when we observed a higher mean relative abundance of S. pneumoniae (29%) in the “Other antibiotics” group.

At six months corrected age, mean relative abundance of Staphylococcus accounted for <1%, and Moraxella emerged as one of the most abundant genera (mean relative abundance of 22%; 18% M. catarrhalis and 4% M. nonliquefaciens), together with Streptococcus (26%) and
Serratia (25%). Mean relative abundances of Corynebacterium and Dolosigranulum modestly increased with time but remained low at six months corrected age (<5%) regardless of antibiotic exposure.

Shannon’s α-diversity indices at species level showed an increase in average over time (ANOVA, F: 4.8395, p<0.001) (Figure 2C) and did not differ between antibiotic exposure groups at any sampling time point. We observed a significant increase in α-diversity (LME, p adj. <0.05) in the “Only Early antibiotics” group at time points mostly coinciding with discontinuation of ampicillin plus gentamycin (Figure 2D).

Recognition of distinct microbiome community types

We identified six distinct community types (I-VI) characterizing microbiome composition (Figure 4A). Types I and V had higher abundances of Staphylococcus, Streptococcus and Serratia (Figure 4B). Other community types were characterized by a higher, but not dominant abundance of a single genera (community type); Streptococcus (II) and Cutibacterium (IV) or dominated by one single genera; Serratia (III) and Staphylococcus (VI). Community types were significantly associated with microbiome (PERMANOVA, R² 1.5%, p=0.001) confirming the compositional differences in the six identified community types. Sampling time point was significantly associated with community type clustering (Kruskal–Wallis H test, p<0.05), while there was no significant difference in community type clustering according to antibiotic exposure group (Kruskal–Wallis H test, p=0.32) (Figure 4C-D), even after grouping community types as low (type III, V and VI) or high (type I, II and IV) α- diversity (Shannon index) type (Figure 4E).

Next, we calculated the number of changes between different community types for each infant. Infants exposed to “Other antibiotics” had a significantly higher number of changes between
community types per observed time point compared with other exposure groups (p<0.05) (Figure 4F).

Variables influencing the overall microbiome composition

Clinical variables significantly associated with microbiome composition were “individual” (Patient ID) (R² 32.5%, p=0.001) and age. Postmenstrual age (PMA) (R² 7.9%, p=0.001) had a higher association than day of life (DOL) (R² 2.8%, p=0.001), GA at birth (R² 1.9%, p=0.001) and BW (R² 1.4%, p=0.001). Mode of birth and antibiotic treatment (during pregnancy, birth and postnatally) did not significantly affect the overall microbiome composition (Supplementary Table E3).

Variables that differed between the three different antibiotic exposure groups and had a significant impact on microbiome composition were GA and BW. As they are closely correlated (chi. Sq test: p<0.0001), we adjusted for GA in the following multivariate analysis. The largest effect on microbiome composition remained attributed to individual variation (R² 30.6%, p=0.001), followed by PMA (R² 7.7%, p=0.001), sampling time point (R² 6.9%, p=0.001) and DOL (R² 2.8%, p=0.001) (Figure 5).

Transient effect of postnatal antibiotics on microbiome composition

Cross-sectional analysis (per sampling time points) revealed significant (p<0.05) associations between different antibiotic regimes and microbiome composition (Supplementary Figure E2, Supplementary Table E4). Here, we explored the effect of early, late and after discharge antibiotics separately. At time point 1, there were no significant differences in the microbiome composition of infants exposed to early antibiotics compared with antibiotic naïve infants (R² 1.2%, p=0.943). The effect of early antibiotics was largest at time point 2 (R² 3.0%, p=0.015), while the duration did not have a significant effect (R² 2.0%, p=0.255). The effect of early antibiotics was short-lived and not evident at time point 3 (R² 1.4%, p=0.653).
Effect of late antibiotics was significant at sampling time point 3 (R^2 3.2%, $p=0.005$) and diminished over the following time points. Only five infants received antibiotics after discharge from the NICU which did not have a significant effect on the microbiome composition at six months corrected age (R^2 2.2%, $p=0.188$).

Effect of *S. marcescens* outbreak on the microbiome composition

A few months into our study, an outbreak with *S. marcescens* was detected in the NICU. Six infants, of which three were included in our study, tested positive for *S. marcescens* from different clinical samples. After two screenings seven days apart of all hospitalized infants, the second screening retrieved no positive nasopharyngeal cultures, and the outbreak was declared to be over (Figure 6B). Environmental samples were negative, and no source of the outbreak was identified. However, WMS analysis of NPA samples revealed long term carriage of *S. marcescens* in infants hospitalized during and after the outbreak (Figure 6A). Hospitalization prior to, during or after *Serratia* outbreak, was modestly but significantly associated with overall microbiome composition (PERMANOVA, R^2 1.3%, $p=0.001$). In addition, effect of hospitalization before (10 infants) or after *Serratia* outbreak was the only significant variable (Supplementary Table E4) influencing microbiome composition at six months corrected age (PERMANOVA, R^2 4.7%, $p=0.003$) (Figure 6C).
Discussion

To our knowledge, this is the first investigation of longitudinal development of preterm nasopharyngeal microbiota using WMS. We found transient effects of antibiotic therapy on microbial diversity and composition during the development of nasopharyngeal microbiome from birth until six months corrected age, and more pronounced effect of inter-individual variation, age, weight, and hospitalization.

We found low bacterial abundance immediately after birth, followed by a rapid increase in the first weeks and a steady increase for up to two months after birth, before stabilization. Similar trends have been described for term and preterm infants (3, 7, 34, 35). Samples obtained from antibiotic exposed infants were significantly more likely to have low biomass, and infants exposed to “Other Antibiotics” had significantly lower absolute bacterial abundance at two weeks after birth and at six months corrected age compared with other groups. Trends in our results point towards general suppression of bacterial colonization and lower bacterial density in nasopharyngeal microbiota of infants exposed to antibiotics in early life.

We observed mixed microbiota across all sampling time points, as described in preterm infants earlier (36). This is in stark contrast to the nasopharyngeal microbiome of healthy vaginally born term infants that develops from initial mixed flora to S. aureus dominated profiles within weeks, followed by a differentiation towards Corynebacterium and Dolosigranulum in the first months of life, and stable profiles dominated by either M.catarrhalis/nonliquefaciens, S.pneumoniae or H.influenza at six months of age (6, 7, 14). We identified six community types driven by five genera (Cutibacterium, Gemella, Serratia, Streptococcus and Staphylococcus) and found no differences in community types according to antibiotic exposure. Profiles described in term infants were not seen at six months corrected age, underlining a possible long-term effect of prematurity on the microbiome that extends beyond our observational period.
Similar findings have been described in moderately preterm infants, their nasopharyngeal microbiota being dominated by *Streptococcus* at one year of age while dominating profiles, as described in term infants, were seen at six years of age (37).

Microbiome development in early life is a dynamic process and changes between community types are expected and were seen also in antibiotic naïve infants. Different antibiotic regimes exhibit different effects on microbiome composition. A recent randomized controlled trial of three different empiric antibiotic regimes showed that penicillin and gentamicin had the least outspoken ecological effect on the infant gut microbiota (38). Infants in the “Other antibiotics” group, exposed to several different classes of antibiotics (Beta-lactam, Aminoglycoside, Glycopeptides, Nitroimidazole, Lincosamide) exhibited a higher magnitude of changes between clusters, which might further derail the course of natural microbiota development.

Inter-individual variability had the largest effect of the explored variables influencing nasopharyngeal microbiome composition, in line with published findings for term and preterm infants (15, 36). Beside individual, age and weight had the largest effect on microbiome composition in our cohort. Similar findings have been published for the preterm gut microbiome, with gestational and postnatal age having more significant effect than mode of birth, known to shape the microbiome composition of term infants (39, 40).

Use of antibiotics in term infants has been connected to lower colonization rates with beneficial *Corynebacterium* and *Dolosigranulum* genera, and increased colonization with gram-negative bacteria (3, 14, 41, 42). Microbiome profiles with dominant *Corynebacterium* or *Dolosigranulum* genera were sparse in our cohort, regardless of antibiotic exposure, possibly due to no infants being exclusively breastfed (9). We found high prevalence of *Moraxella* across all time points, and 16% of samples obtained at six months corrected age were dominated by *Moraxella*, with no significant differences between antibiotic exposure groups. Early
colonization with *Moraxella* and low abundances of *Corynebacterium* and *Dolosigranulum* may predispose infants to an increased risk of chronic inflammation in airway mucosa (3, 43). Further, presence of respiratory pathogens during early colonization may trigger an inflammatory immune response in the respiratory mucosa and result in increased risk for acute respiratory infections and chronic inflammation (43, 44). A longer follow-up of our cohort might reveal if these observations modulate future respiratory health outcomes (16, 37, 45).

Antibiotic disruptions of microbiota in early life have been associated with several diseases (16, 46, 47). Early antibiotics (regardless duration) had a significant effect on microbiome composition at time point 2. Implementation of stewardship actions focused on reducing initiation of early antibiotic therapy therefore seem potentially rewarding and have been implemented at some NICUs, but not yet for the smallest preterm infants (48, 49). We also observed a significant effect of late antibiotics, and of any postnatal antibiotics (measured as yes or no) at time point 3. Any visible effect of antibiotics diminished already before discharge from the NICU and was not detectable at six months corrected age. However, even transient effect on the infant’s microbiome may increase the risk of disease later in life (17), influence the immune system and the presence of antibiotic resistance genes in both bacterial pathogens and commensals (40).

Beside antibiotics, intensive care procedures causing disrupted anatomical barriers in the intestinal and respiratory tract (intubation, feeding tube) may influence colonization patterns (50). In addition, long hospital stays expose preterm infant to potentially pathogen bacteria while their immune system is developing (51). The local NICU environment has been shown to influence the infants gut and skin microbiome and resistome (52). We explored the effect of hospitalization prior to, during, or after a *S. marcescens* outbreak and found significant effect on microbiome composition lasting until six months corrected age. *S. marcescens* is a low
virulent opportunistic pathogen often found in NICU environment but can cause nosocomial infections in preterm infants. We recovered *S. marcescens* from infants with negative screening cultures, indicating that WMS could be a promising tool in infection control during an outbreak (53).

Low biomass studies are prone to contamination and bias, and meticulous control is needed to ensure reliable results (54). We included infants across a period of 19 months, minimizing the confounding effect of seasonal changes (55). Infants stayed in a controlled environment (NICU) for most sampling time points, did not start day care before last sampling, and followed the same vaccination program (14, 17). We used nasopharyngeal aspirates in contrast to nasal swabs to minimize contamination with the microbiome of anterior nostrils (56). Further, we used standard protection equipment, minimized number of people obtaining and processing NPA samples, and sequenced all samples simultaneously on the same sequencing platform.

There are limitations to our study. Due to very low qPCR signal, negative controls were not sequenced. Processing samples of each infant concurrently could have augmented the effect on individuality on the microbiome composition. Further, our samples varied greatly in obtained number of raw and bacterial reads despite equimolar library pooling prior to WMS. There is a lack of established methods regarding optimal data normalization, so we focused our analysis on methods less sensitive to the variation in sequencing depth (57, 58). The size of our population limited the number of variables possible to explore. We chose to focus on those described to influence the microbiome and may have missed variables that could have been significant.

Premature infants are exposed to a combination of variables that modify microbiota across all body niches (59, 60). It has been proposed that some respiratory health outcomes are mediated
by intestinal microbiota rather than nasopharyngeal (9, 15, 61). Analysis of intestinal microbiota of our cohort might further our findings.

To our knowledge, this is the most detailed longitudinal description of preterm infants’ nasopharyngeal microbiota development using WMS so far. Their nasopharyngeal microbiota differed from that described in healthy term infants and was mainly dictated by individual variability and age. Antibiotic exposure resulted in significant transient bacterial abundance and diversity changes, while the effect of hospital environment lasted for at least six months after discharge. Further research is needed to understand the combined effect of prematurity on the developing microbiome and improve long term health outcomes of preterm infants.
Ethical statement

The study was performed in accordance with the Declaration of Helsinki and approved by the Hospital’s Data Protection Officer and the Regional Committee for Medical and Health Research Ethics-South East, Norway (2018/1381 REKD).

Consent statement

Written informed consent was obtained from the infant’s parents. The participants received no compensation.

Author contributions: FCP and KH conceived the study. All authors contributed to the design of the study and interpretation of data. PR and KH included the infants, collected samples and patient metadata. PR, GS and HAA processed the samples under FCP supervision. AD analysed shotgun metagenomic data. PR and AD carried out statistical data analysis and created the figures. PR wrote the manuscript. All authors discussed the results, critically revised the manuscript, and agreed to the published version of the manuscript.

Funding: This work was financed by the Norwegian Research Council (NFR) project numbers 273833 and 322375, by Olav Thon Foundation, by the Faculty of Dentistry at the University of Oslo and by Oslo University Hospital.

Impact statement: The respiratory tract microbiome in preterm infants differs from that of term born infants up to six months corrected age. The hospital environment may be detrimental for preterm infant’s microbiome development. Knowledge of the effect of antibiotics in early life may influence decisions of empiric antibiotic treatment in neonatal medicine.

Data availability
The raw sequencing data (after removal of human DNA) for all samples are publicly available at NCBI SRA under BioProject ID: PRJNA1009231.

Acknowledgments

We would like to thank the parents of participating infants, and the clinical staff at the Neonatal Intensive Care units at Ullevål hospital for their assistance with sample collection. The sequencing service for this work was provided by the Norwegian Sequencing Centre (www.sequencing.uio.no) and the computations were performed on resources provided by Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway.

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References

Figures and legends

Figure 1. Patient inclusion and sample processing. (A) Flowchart describing patient inclusion process and availability of infants until last follow up at six months corrected age. (B) Overview of obtained nasopharyngeal aspirate samples and excluded samples prior to main microbiome analysis. WMS: whole metagenomic sequencing.
Figure 2. Effect of antibiotics on absolute bacterial abundance (16S rRNA gene, qPCR) and alpha diversity (Shannon diversity index). (A). Bacterial abundance (ng) from birth until six months corrected age for all infants. The central horizontal line in the box plots represents median and the whiskers range values for each time point. There was statistically significant difference in mean bacterial abundance (ANOVA, F:11.66, p<0.001) across sampling time points, with several early time points significantly different from the latter (Turkey post-hoc analysis). These significant differences were seen between time points 1 and 3, 4 and 5 (p<0.001), time points 1 and 2, 6 (p<0.05), time points 2 and 4, 5 (p<0.05) and time points 6 and 4, 5 (p<0.05). (B): Mean bacterial abundance at sampling time points according to antibiotic (AB) exposure. * Marks significant lower mean values for infants exposed to Other ABs compared to AB naïve at time points 3 and 6 (p<0.05). We were not able to obtain samples...
prior to initiation of early antibiotics, as they were most often started immediately after birth during stabilization of the infants, so our baseline samples in the “Only Early AB” group could have been already influenced by the first doses of antibiotics. (C) Violin plots showing α-diversity for each sampling time point. Horizontal dotted line are median and upper and lower quartiles. The width of each plot corresponds with the frequency of data points. (D) Violin plots showing α-diversity for each sampling point of “Only Early AB” group. Significant different time points (p<0.05) are connected with lines and marked with *.
Figure 3. **Taxonomic composition of the nasopharyngeal microbiome.** Mean relative bacterial abundance according to sampling time points and antibiotic exposure groups at (A) phylum, (B) genus and (C) species level. The left figure in each panel illustrates the mean relative bacterial abundance according to sampling time points (x axis). The middle figure of each panel illustrates the mean relative bacterial abundance according to time point and antibiotic (AB) exposure groups, with the range in day of life (DOL) of obtained samples within each sampling time point written at the top of the figure. Taxonomy legend is listed on the right side of each panel.
Figure 4. Community types. (A) Identification of six community type clusters (PERMANOVA, R^2 1.5%, $p=0.001$). Each point represents one patient sample (n=343). The points are colored according to community type grouping and shaped according to antibiotic (AB) exposure. One sample could not be assigned to any of the recognized community types. (B) Mean (SD) relative abundances of main contributing taxa of each community type. (C) Community types identified at different sampling time points across the whole cohort and
according to postnatal antibiotic exposure. (D) Occurrence of community types grouped based on antibiotic exposure. (E) Mean (SD) α-diversity of samples belonging to each community type. (F) Average the number of changes between different community types for each infant according to antibiotic exposure group.

Figure 5. Individual variability and postmenstrual age (PMA) significantly influence microbiome composition. PCA plots (using CLR transformed species abundance) visualizing β-diversity of nasopharyngeal microbiota. (A) Effect of individual and (B) PMA on microbiome composition. Each point represents one patient sample (n=344). The points are additionally colored according to individual or PMA grouping and shaped according to antibiotic (AB) exposure. Multivariate analysis statistics are listed in the table below the corresponding PCA plot.
Figure 6. *S. marcescens* outbreak at the NICU. (A) Samples in chronological order according to sampling date. Each bar represents one sample. Relative abundance of *Serratia* species is colored, while the abundance of other species is illustrated in gray tones. The period of recognized outbreak at the NICU is marked. (B) Overview of infants that were screened at least once during the two main screening days (x axis) of all infants at the NICU (n=13) (y axis). Nine infants had any reads assigned to *S. marcescens* within a few days of the negative screening sample. Four infants had lower relative abundance of *S. marcescens* (<1.3%) and five infants had higher relative abundance of *S. marcescens* ranging from 16.5% - 85.0%. (C) PCA plot. Points present samples obtained at six months corrected age from (red) infants that were discharged or moved to a different NICU before the outbreak and (blue) infants that were hospitalized and discharged from the NICU during or after the outbreak.
Tables

<table>
<thead>
<tr>
<th></th>
<th>Whole cohort (n=66)</th>
<th>AB naive (n=21)</th>
<th>AB exposed (n=45)</th>
<th>Only early ABs (n=24)</th>
<th>Other ABs (n=21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>12 (57%)</td>
<td>33 (73%)</td>
<td>18 (75%)</td>
<td>15 (71%)</td>
<td></td>
</tr>
<tr>
<td>GA, weeks (mean, SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>31, 6/7</td>
<td>29 4/7, 1 **</td>
<td>29 4/7, 1 **</td>
<td>29 3/7, 1 **</td>
<td></td>
</tr>
<tr>
<td>BW, grams (mean, SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>1562, 188</td>
<td>1280, 262 **</td>
<td>1278, 255 **</td>
<td>1282, 275 **</td>
<td></td>
</tr>
<tr>
<td>BW, group, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELBW</td>
<td>0 (0%)</td>
<td>6 (13%)</td>
<td>3 (12%)</td>
<td>3 (14%)</td>
<td></td>
</tr>
<tr>
<td>VLBW</td>
<td>8 (38%)</td>
<td>31 (69%)</td>
<td>17 (71%)</td>
<td>14 (67%)</td>
<td></td>
</tr>
<tr>
<td>LBW</td>
<td>13 (62%)</td>
<td>8 (18%)</td>
<td>4 (17%)</td>
<td>4 (19%)</td>
<td></td>
</tr>
<tr>
<td>Vaginal delivery n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caesarian section, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal delivery</td>
<td>17 (81%)</td>
<td>29 (64.5%)</td>
<td>15 (62.5%)</td>
<td>13 (62%)</td>
<td></td>
</tr>
<tr>
<td>Abdominal delivery during pregnancy, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>21 (100%)</td>
<td>32 (71%) *</td>
<td>13 (54%) **</td>
<td>19 (90%)</td>
<td></td>
</tr>
<tr>
<td>< 10 days</td>
<td>0 (0%)</td>
<td>10 (22%)</td>
<td>10 (42%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>≥10 days</td>
<td>0 (0%)</td>
<td>3 (7%)</td>
<td>1 (4%)</td>
<td>2 (10%)</td>
<td></td>
</tr>
<tr>
<td>Intrapartum AB prophylaxis, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None documented</td>
<td>2 (10%)</td>
<td>3 (7%)</td>
<td>1 (4%)</td>
<td>2 (10%)</td>
<td></td>
</tr>
<tr>
<td>Given</td>
<td>19 (90%)</td>
<td>42 (93%)</td>
<td>23 (96%)</td>
<td>19 (90%)</td>
<td></td>
</tr>
<tr>
<td>ROM, hours (mean, SD)</td>
<td>3, 12</td>
<td>201, 491</td>
<td>258, 422 *</td>
<td>136, 563</td>
<td></td>
</tr>
<tr>
<td>Apgar at 10 min (mean, SD)</td>
<td>9, 1</td>
<td>9, 1</td>
<td>8, 1</td>
<td>9, 1</td>
<td></td>
</tr>
<tr>
<td>Nutrition, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully breastfed</td>
<td>7 (39%)</td>
<td>13 (30%)</td>
<td>5 (22%)</td>
<td>8 (40%)</td>
<td></td>
</tr>
<tr>
<td>> 50% MOM</td>
<td>3 (17%)</td>
<td>11 (26%)</td>
<td>7 (30%)</td>
<td>4 (20%)</td>
<td></td>
</tr>
<tr>
<td>> 50% formula</td>
<td>6 (33%)</td>
<td>8 (18%)</td>
<td>5 (22%)</td>
<td>3 (15%)</td>
<td></td>
</tr>
<tr>
<td>Only formula</td>
<td>2 (11%)</td>
<td>11 (26%)</td>
<td>6 (26%)</td>
<td>5 (25%)</td>
<td></td>
</tr>
<tr>
<td>Lost to follow up</td>
<td>3 (14%)</td>
<td>2 (4%)</td>
<td>1 (4%)</td>
<td>1 (5%)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Cohort demographics. AB: antibiotic; GA: gestational age; BW: birth weight; LBW: low birth weight (from 1500g to < 2500g); VLBW: very low body weight (from 1000g to < 1500g); ELBW: extremely low body weight (< 1000g); ROM: rupture of membranes; MOM: mothers’ own milk. * p<0.05, ** p<0.001.