Title: Gaps in the phenotype descriptions of ultra-rare genetic conditions: review and multi-center consensus reporting guidelines

Author list:
Ali AlMail1,2, Ahmed Jamjoom1,3, Amy Pan4, Min Yi Feng4, Vann Chau3,5, Alissa D’Gama6,7,8, Katherine Howell9,10, Nicole S.Y. Liang4,11, Amy McTague12,13, Annapurna Poduri6,14, Kimberly Wiltrout16,14, IPCHiP Executive Committee*, Anne S. Bassett15, John Christodoulou10, Lucie Dupuis11, Peter Gill3, Tess Levy16, Paige Siper16, Zornitza Stark11,17,18, Jacob A.S. Vorstman15,19, Catherine Diskin3, Natalie Jewitt3, Danielle Baribeau15,20,**, Gregory Costain2,3,4,11,**

1Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
2Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, Canada
3Department of Paediatrics, University of Toronto, Toronto, Canada
4Department of Molecular Genetics, University of Toronto, Toronto, Canada
5Division of Neurology, Hospital for Sick Children, Toronto, Canada
6Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
7Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
8Department of Pediatrics, Harvard Medical School, Boston, MA, USA
9Department of Neurology, Royal Children’s Hospital, Melbourne, Australia
10Murdoch Children’s Research Institute, Melbourne, Australia
11Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, Canada
12Department of Neurology, Great Ormond Street Hospital, London, UK
13Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
14Department of Neurology, Harvard Medical School, Boston, MA, USA
15Department of Psychiatry, University of Toronto, Toronto, Canada
16Division of Psychiatry, Ichan School of Medicine at Mount Sinai, New York City, New York, United States of America
17Department of Paediatrics, University of Melbourne, Melbourne, Australia
18Victorian Clinical Genetics Service, Melbourne, Australia
19Department of Psychiatry, Hospital for Sick Children, Toronto, Canada
20Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada

*IPCHiP Executive Committee members: Nancy C Andrews, Alan H Beggs, John Christodoulou, J Helen Cross, Christian R Marshall, Kathryn N North, Stephen W Scherer, Neil J Sebire, Piotr Sliz

**Contact information: Danielle Baribeau, MD, PhD, FRCPC, E-mail: dbaribeau@hollandbloorview.ca; Gregory Costain, MD, PhD, FRCPC, E-mail: gregory.costain@sickkids.ca
ABSTRACT

Background: Genome-wide sequencing and genetic matchmaker services are propelling a new era of genotype-first ascertainment of novel genetic conditions. The degree to which reported phenotype data in discovery-focused studies address informational priorities for clinicians and families is unclear.

Methods: We identified reports published from 2017-2021 in ten genetics journals of novel Mendelian disorders ascertained genotype-first. We adjudicated the quality and detail of the phenotype data via 46 questions pertaining to six priority domains: (I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy. For a subset of articles, all subsequent published follow-up case descriptions were identified and assessed in a similar manner. A modified Delphi approach was used to develop consensus reporting guidelines, with input from content experts across four countries.

Results: In total, 200 of 3243 screened publications met inclusion criteria. Relevant phenotypic details across each of the six domains were rated superficial or deficient in >87% of papers. For example, less than 10% of publications provided details regarding neuropsychiatric diagnoses and “behavioural issues”, or about the type/nature of feeding problems. Follow-up reports (n=95) rarely addressed the limitations of the original reports. Reporting guidelines were developed for each domain.

Conclusion: Phenotype information relevant to clinical management, genetic counseling, and the stated priorities of patients and families is lacking for many newly described genetic diseases. Use of the proposed guidelines could improve phenotype reporting in the genomic era.

KEYWORDS
Phenotype, Ultra-rare genetic conditions, Genome sequencing, Natural history, Mendelian genetic diseases
INTRODUCTION

Genome-wide sequencing and genetic matchmaker services have created a new paradigm for Mendelian disorder delineation. Compared to prior decades, when syndrome identification was predominantly phenotype driven, there is now an increasing focus on genotype-first ascertainment and on generating functional evidence or usage of non-human model systems to support the disease-variant/gene association. There are no well-defined nor broadly accepted minimum standards for phenotype descriptions of putative novel disorders with multisystem manifestations and/or a neurodevelopmental component. Variability in the consistency of phenotyping and describing of findings is problematic. This variability can be exacerbated by individual sites each contributing only a single patient to an international case-series study, or the extraction of phenotype data from laboratory test requisitions.

After a first description of a novel Mendelian disorder is published, patients soon thereafter begin to be diagnosed via clinical genome-wide sequencing. These individually ultra-rare conditions are collectively important contributors to the burden of genetic disease in the population. The typical benefits of a molecular genetic diagnosis are attenuated when there is limited information available to inform genotype-phenotype correlation, natural history, prognostication, and anticipatory care. A key consideration in the assessment of ultra-rare conditions for potential “precision therapy” development is the degree to which the patient’s clinical trajectory can be anticipated. Families who are amongst the first to receive a diagnosis of an ultra-rare genetic disorder have endorsed frustration with the perceived lack of information and support. Similarly, clinicians face the same informational barrier, which impacts their abilities to care for and counsel patients and their families.

Published expert opinions, survey data, reviews, and data from patient and family focus groups highlight key informational areas germane to the natural history of ultra-rare genetic diseases. We assessed the breadth and depth of phenotype reporting in contemporary descriptions of novel Mendelian genetic diseases across six priority domains: (I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy. We also assessed in a similar manner follow-up reports appearing in the years following an initial report. These findings provided the impetus for, and guided the development of, the proposed new PHEelix reporting guideline checklists.
MATERIALS AND METHODS

Systematic review
We utilized DistillerSR Version 2.35 for searching, screening, and data extraction (DistillerSR Inc, 2022; accessed January 2022 – January 2023). We identified all first reports of novel genetic conditions discovered through genotype-first ascertainment that result in multisystem and/or neurodevelopmental phenotypes, which were published in one of ten genetics journals (American Journal of Human Genetics, American Journal of Medical Genetics Part A, Clinical Genetics, European Journal of Human Genetics, Genetics in Medicine, Genome Medicine, Human Molecular Genetics, Journal of Medical Genetics, Nature Genetics, PLoS Genetics) during a 5-year period (1 January 2017 - 31 December 2021). The search executed on January 3, 2022, identified 3,243 articles (Supplementary Table 1; Supplementary Figure 1). Exclusion criteria were: (i) prenatal or neonatal lethal phenotype, (ii) case report or description of a single family, (iii) new gene for a known clinical syndrome (e.g., Joubert syndrome, Noonan syndrome), (iv) chromosome disorder with non-recurrent breakpoints that did not definitively implicate a specific gene, (v) potential genotype-phenotype expansion rather than a novel disorder. We also excluded large-scale gene discovery efforts in populations with common complex diseases and/or clinical testing laboratory cohort studies, where the a priori expectation for detailed phenotype descriptions was low. After both title and abstract screening and full-text review stages, n=200 reports describing 199 distinct monogenic conditions met the inclusion criteria (two reports of a novel condition were published at the same time; Supplementary Figure 1). For the subset of 25 genetic conditions first described in 2017, we performed an additional search using DistillerSR on June 1, 2022 (Supplementary Table 1) to identify subsequent published case descriptions (total n=95; Supplementary Figure 2). Reference review and additional internet searching did not identify any other “follow-up” reports.

Data extraction and analysis
For each published article (n=295), study team members (authors A.A., A.J., A.P., M.Y.F.) adjudicated the phenotype data pertaining to six priority domains [(I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy] using a custom designed data extraction form (Supplementary Tables 3, 5, 6). Domains I-VI were included based on the study team’s clinical experience and review of the aforementioned published expert opinions, survey data, reviews, and data from patient and family focus groups. Data for Domains V-VI were extracted separately from Domains I-IV. The total 46-item form was developed by members of the study team (authors A.A., A.J., C.D., N.J., D.B., G.C.) with clinical expertise in medical genetics, psychiatry, development, general paediatrics, paediatric palliative care, paediatric complex care, and paediatric hospitalist medicine. Each domain was associated with multiple issue-specific items. A separate overall qualitative assessment of reporting quality (“strong”, “adequate”, “superficial/deficient”, “absent”, or “not applicable”) was also assigned for Domains I-IV. Descriptive statistics were calculated using Microsoft Excel.

Development of phenotype reporting guidelines through a modified Delphi process
Medical experts from member institutions of the International Precision Child Health Partnership (IPCHiP) participated in a modified Delphi process. IPCHiP institutions included: Murdoch Children’s Research Institute/Royal Children’s Hospital (Melbourne, Australia), The Hospital for Sick Children (SickKids®; Toronto, Ontario, Canada), University College London/Greater
Ormond Street Hospital (London, United Kingdom), and Boston Children’s Hospital (Massachusetts, USA). At the suggestion of the original study team members, additional expertise was sought in: (i) neuropsychological assessment and cognitive phenotyping (via Seaver Autism Center for Research and Treatment; New York, USA), and (ii) adult phenotyping (via University Health Network; Toronto, Ontario, Canada). Authors J.C., L.D., P.G., T.L., P.S., Z.S., J.A.S.V., C.D., N.J., D.B. contributed to the initial refinement of guidelines for Domains I-V. We sent out three electronic surveys to the above authors (minimum engagement rate >50%) over a five-month period to define and prioritize the reporting criteria. We then hosted an online meeting that incorporated independent voting on inclusion/exclusion of each draft item. The meeting was recorded, to allow for asynchronous viewing by those expert volunteers who were unable to attend in real-time. Authors V.C., A.D., K.H., N.S.Y.L., A.T., A.P., K.W. contributed to the initial refinement of guidelines for Domain VI (Epilepsy). Similarly, we used a series of two electronic surveys to define and prioritize the reporting criteria. All authors reviewed, revised, and ultimately approved the reporting guideline checklists for Domains I-VI reported herein. The guideline checklists will be uploaded to the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network website (https://www.equator-network.org/) as the PHELIX_General (Table 1) and the PHELIX_Epilepsy checklists (Table 2).
RESULTS

Contemporary descriptions of new syndromes are often lacking in phenotype details

The 200 reports of 199 newly discovered genetic disorders included phenotype descriptions for a total of 1,856 study participants (median: 7/report, range 2-42). Features of the reports (year and journal of publication) and of the participants (age) are summarized in Supplementary Tables 2-3. The overall qualitative assessment of reporting was deemed “superficial/deficient” or “absent” in 87% (Domain I: Development, cognition, and mental health) to 98% (Domain IV: Pain, sleep, and quality of life) of papers (Figure 1). Five (2.5% of 200) reports were deemed “strong” in any single domain (pertaining to the genetic conditions associated with variants in the genes ADARB133, GNAI134, NCAPG235, PCDHGC436, and SPTBN137). No reports were deemed “strong” in their reporting across each of Domains I-IV. The year and journal of publication were not associated with overall quality assessment of phenotype reporting (data not shown).

Item-specific data supported the overall qualitative assessments of reporting quality (Figure 2, Supplementary Table 3, Supplementary Figures 3-4). While 97% of papers mentioned developmental concerns in study participants, 21% provided details about cognitive abilities for all the participants and a sole paper38 reported results from formal cognitive assessments for all participants (Figure 2a, Supplementary Table 4). A common issue was that individuals were identified as having “developmental delay” without further elaboration. Similarly, of the papers that reported neuropsychiatric and behavioural issues in study participants, less than 5% of papers provided details for all participants regarding type/diagnosis, symptom severity, and/or nature of the assessments (Figure 2a, Supplementary Table 3). Of the papers that reported on the presence of feeding difficulties (Figure 2b), 8% consistently reported on the type/nature of feeding issues and current means of feeding (Figure 2b, Supplementary Table 3). Growth parameters at birth were often reported, but 6% of papers reported on two or more growth measurements post-birth to allow for assessment of growth trajectories (Figure 2b, Supplementary Table 4). Nearly half of all papers made no mention of participants’ medications or treatment trials, or of the absence thereof (Figure 2c). The presence or absence of adverse effects of treatments were explicitly mentioned in just 21% of reports (Figure 2c).

Domain V (Adulthood) was assessed in the subset of reports that included at least one adult individual (n=63; adult defined as age >=18 years) (Supplementary Figure 1; Supplementary Table 6). Domain VI (Epilepsy) was assessed in the subset of reports that included at least one study participant with seizures/epilepsy (n=85) (Supplementary Figure 1; Supplementary Table 7). Consistent with the findings regarding Domains I-IV, most items were inconsistently or never reported (Supplementary Figures 3-4). For example, papers rarely described proxies for adult functioning such as educational achievement or employment, nor the anti-seizure treatments for individuals with epilepsy.

Follow-up reports do not consistently address initial gaps in phenotype descriptions

Regarding the 25 genetic conditions first described in 2017, the 95 “follow-up” reports included phenotype descriptions for an additional 334 study participants (median: 1 per report, range 1-25). The overall qualitative assessment of reporting was similarly classified as “absent” or “superficial/deficient” in 81% (Domain III: Medication use and treatment history) to 99% (Domain IV: Pain, sleep, and quality of life) of papers (Figure 1, Supplementary Table 4), with no significant differences between the original and the follow-up reports. Eleven reports were deemed “strong”...
in any single domain (pertaining to the genetic conditions associated with variants in the eight genes CAMK2A39, CAMK2B39,40, DHX3041, OTUD6B42, PPP3CA43, UBTF44,45, WDR246,47, and YY148). No reports were deemed “strong” in their reporting across each of domains I-IV. Item-specific data are summarized in Supplementary Table 4.

Consensus phenotype reporting guidelines

Guideline checklists to enhance the reporting of phenotype data for ultra-rare genetic conditions were developed through a modified Delphi process25 and informed by the findings above (Supplementary Table 8). Specifically, items were included based on their superficial/deficient reporting in the literature to date, and on the recommendations of expert collaborators as being data that are both important to capture and feasible to obtain by researchers. The finalized checklist of 33 items across 9 categories is presented in Table 1 (PHELIX_General). To showcase how these guidelines could be expanded over time, additional items specific to epilepsy phenotype reporting are listed in Table 2 (PHELIX_Epilepsy). Extended versions with examples are provided in Supplementary Tables 9-10.
DISCUSSION

Our results reveal that phenotype information relevant to clinical management, genetic counseling, and the stated priorities of patients and families, is lacking for many newly described genetic diseases. Although most published reports acknowledged the key phenotype domains assessed, few original or follow-up reports included clinically relevant details. To address this issue, we propose reporting guideline checklists for use by researchers and journals. Use of these guidelines could improve phenotype reporting in the era of genotype-first and matchmaker service-driven reports of novel syndromes. Decision making about precision genetic or other therapy development, including the potential for n=1 trials, may be contingent on our understanding (or lack thereof) of the natural history of a given ultra-rare genetic disease.10,11,49

Reasons for under-reporting phenotype data are likely multiple and complex. First, these data may not be readily available to the referring clinician or laboratory collaborators, and “phenotyping is hard,”56 especially for older individuals with extensive past histories. Review of lifetime medical records, and/or a brief, targeted interview with patients and/or their caregiver(s), should be sufficient to gather most of the information outlined in Tables 1-2. Second, these data may not be requested by the coordinating research team that is leading the publication effort. In our experience, many groups design their own data collection forms that ask for no or only general details regarding issues outside of that group’s specific phenotype(s) of interest. Third, unlike for example DNA sequencing methods, there are no defined minimum reporting standards for phenotyping to guide peer reviewers and journal editors. Finally, there may be a belief that phenotype reporting in initial descriptions of novel genetic diseases is less important than establishing an association between variation in the gene and (any) disease phenotype. Although the hope may be that future reports will then describe many more individuals and include detailed phenotype data, we did not find evidence that this is consistently happening in practice in a timely manner.

We recognize several limitations of our review and guideline development methods. We selected only ten top-tier genetics journals for our systematic review. The generalizability of our findings to reports published in other specialty-specific or organ system-specific journals is unclear. Out of necessity given the lack of validated tools, we created a new data collection questionnaire to assess the reporting of phenotype data and relied on subjective assessments from raters for some items. We selected broad phenotype domains based on our combined clinical experiences and the published literature. Ours was a paediatrics-focused effort, reflecting the phenotypes that are currently driving most Mendelian gene discovery efforts. Other groups may develop and add-on reporting criteria for additional specific phenotype elements, as we did for epilepsy, and continue to refine the general adult phenotype elements (Table 2). We also restricted our initial focus to cross-sectional reporting, and additional guidance will be needed for evaluating within-individual natural history. Finally, our reporting guidelines have not yet been applied prospectively to assess feasibility and utility.

We propose minimum standards for phenotype descriptions of putative novel disorders with multisystem manifestations and/or a neurodevelopmental component in children. Further refinement of our proposed reporting guidelines is an important consideration. Collecting additional input from key stakeholders (e.g., rare disease organizations, journal editors) should be coupled with attempts to better integrate technologies for systematic phenotype collection and data...
sharing. Improved reporting of phenotype aspects like craniofacial morphology (“dysmorphic features”) could help with interpreting variants of uncertain significance and assessing phenotypic “fit”. The aim of the PHELI guideline checklists is to decrease the variability in the consistency of phenotyping and description of findings, and thereby enhance the ongoing clinical care of individuals with genetic conditions.
Table 1. Phenotype reporting checklist (PHELIX_General version 1.0).

<table>
<thead>
<tr>
<th>Phenotype Category</th>
<th>Recommendation Category</th>
<th>Specific Recommendation For Inclusion In Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Development and Cognition</td>
<td>Strongly recommended</td>
<td>i. Standard and specific diagnostic term(s) for cognitive or developmental issue(s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Level of cognitive functioning or degree of developmental delay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Age of attaining major milestones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Quantitative results from psychometric testing OR explicit acknowledgement that these results were not available</td>
</tr>
<tr>
<td></td>
<td>Optional, but encouraged</td>
<td>v. Narrative summary describing progression / change in cognitive or development issue(s) over time.</td>
</tr>
<tr>
<td>2. Behaviour and Neuropsychiatric Conditions</td>
<td>Strongly recommended</td>
<td>i. Standard and specific diagnostic term(s) for behavioural issues</td>
</tr>
<tr>
<td></td>
<td>Optional, but encouraged</td>
<td>ii. Reported functional impact of behavioural/psychiatric condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Age at diagnosis and/or age at first concern for behavioural issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Impact of treatments / interventions, as reported by individuals, families, and/or clinicians</td>
</tr>
<tr>
<td>3. Other Medical Conditions</td>
<td>Strongly recommended</td>
<td>i. Major medical conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Presence or absence of issues in the following areas (if potentially associated with the condition under study):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Visual acuity and field of vision</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hearing ability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Speech/communication styles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Continence/toileting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ambulation</td>
</tr>
<tr>
<td>4. Feeding Issues</td>
<td>Strongly recommended</td>
<td>i. Functional impact of feeding issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Current feeding method (e.g., oral, gastrostomy tube)</td>
</tr>
<tr>
<td></td>
<td>Optional, but encouraged</td>
<td>iii. Age at first concern for feeding issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Interventions and supports for feeding issues (e.g., feeding tube support)</td>
</tr>
<tr>
<td>5. Growth</td>
<td>Strongly recommended</td>
<td>i. Birth growth measurements AND gestational age-corrected centiles</td>
</tr>
</tbody>
</table>
| 6. Medication and Treatment History | Optional, but encouraged | i. Details of efficacious treatment(s)
ii. Severe adverse events / reactions |
|------------------------------------|-------------------------|--|
| 7. Pain, Sleep, and Quality of Life | Optional, but encouraged | i. Presence or absence of pain / neuroirritability
ii. Presence or absence of abnormal sleep patterns / sleep disturbance
iii. Qualitative description of proxies for quality of life, via patient and/or caregiver report
iv. Direct assessment of quality of life using established measure(s), via patient and/or caregiver report |
| 8. Indicators of adult functional outcome | Strongly recommended | i. Age at which the adult was last seen/phenotyped
ii. Description of educational achievement
iii. Nature of any employment (past and/or present)
iv. Relationship status (past and/or present)
v. Reproductive history |
| 9. Other | Strongly recommended | i. Confirmation of informed consent to participate in the research study and to include the above phenotype information, for each participant
ii. Distinguish between “not assessed” and “assessed and not present,” for every aspect of a phenotype described in the report and for each participant
iii. Description of how phenotyping was performed (e.g., direct assessment by study team member(s), review of medical records, information provided on testing requisition), for each participant
iv. Use of standard phenotype labels (e.g., HPO, ICD-11) to standardize reporting, for each participant.
v. [For deceased participants] Cause of death |

Abbreviations: HPO, Human Phenotype Ontology; ICD-11, International Classification of Diseases 11th Revision
Table 2. Phenotype reporting recommendations for unprovoked seizures/epilepsy in individuals with newly described multisystem and/or neurodevelopmental Mendelian disorders (PHELIX_Epilepsy version 1.0).

<table>
<thead>
<tr>
<th>Phenotype Subcategory</th>
<th>Recommendation Category</th>
<th>Specific Recommendation For Inclusion In Report</th>
</tr>
</thead>
</table>
| 1. Epilepsy syndrome and severity | Strongly recommended | i. Seizure type(s) (per ILAE)
ii. Epilepsy syndrome(s) (per ILAE)
iii. Findings that support the diagnosis of the epilepsy syndrome(s) (e.g., specific EEG findings)
iv. Seizure frequency at last clinical assessment
vi. Number of seizures requiring hospitalization in specific timeframe (e.g., last year) |
| 2. Pharmacological interventions | Strongly recommended | i. Current and past medication name(s)
ii. Perceived impact on seizure control |
| 3. Non-pharmacological interventions | Strongly recommended | i. Intervention / procedure details (e.g., ketogenic diet, neurosurgery)
ii. Perceived impact on seizure control |
| 4. Brain imaging and EEG findings | Strongly recommended | i. Brain imaging findings (including age(s) at time of study)
ii. EEG findings (including age(s) at time of study) |
| 5. Other | Optional, but encouraged | i. Narrative summary of the progression of the individual’s seizure(s)/epilepsy phenotype over time
ii. Narrative summary of the progression of the individual’s non-epilepsy phenotype over time (e.g., see PHELIX_General guidelines) |

Abbreviations: EEG, electroencephalogram; ILAE, International League Against Epilepsy
ACKNOWLEDGMENTS

Funding was provided by the SickKids Research Institute, the Canadian Institutes of Health Research (Funding Reference Number: PJT186240), and the University of Toronto McLauglin Centre. IPCHip is supported in part by SickKids Foundation donors including Jamie and Patsy Anderson and the Feiga Bresver Academic Foundation. D.B. also acknowledges the support of her research time at Holland Bloorview by the Arthur Family Foundation. J.A.S.V. holds the SickKids Psychiatry Associates Chair in Developmental Psychopathology at The Hospital for Sick Children. Research conducted at the Murdoch Children’s Research Institute was supported by the Victorian Government’s Operational Infrastructure Support Program. The Chair in Genomic Medicine awarded to J.C. is generously supported by The Royal Children’s Hospital Foundation. These funders played no role in study design, data collection, analysis and interpretation of data, or the writing of this manuscript.

CRediT AUTHOR STATEMENT

Conceptualization: D.B., G.C.
Software: N/A
Formal analysis: A.A.
Resources: G.C.
Data curation: N/A
Writing – original draft: A.A., A.J., D.B., G.C.
Visualization: A.A., A.J.
Supervision: L.D., P.G., G.C.
Funding acquisition: G.C.

DECLARATION OF INTERESTS

D.B. has received research funds from MapLight Therapeutics. K.W. has consulted for Stoke Therapeutics. J.A.S.V. has served as a consultant for NoBias Therapeutics Inc. and has received speaker fees for Henry Stewart Talks Ltd. These relationships did not influence content of this manuscript but are disclosed for potential future considerations. The remaining authors declare no financial or non-financial competing interests.

DATA AVAILABILITY STATEMENT

The datasets analysed during the current study are available from the corresponding authors on reasonable request.
REFERENCES

FIGURES

Figure 1. Global assessments of the quality of reporting of phenotype details germane to Domains I-IV. Dark blue = initial reports (n=200 papers), and light blue = follow-up reports regarding the 25 genetic conditions initially described in 2017 (n=95 papers). There were no significant differences in the distribution of overall quality ratings between the initial and follow-up reports, for any of the domains (Fisher’s exact tests, p>0.05). See text for details.

<table>
<thead>
<tr>
<th>Domain</th>
<th>% absent or superficial/deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development, cognition, and mental health (n=200 papers)</td>
<td>87%</td>
</tr>
<tr>
<td>Feeding and growth</td>
<td>90%</td>
</tr>
<tr>
<td>Medication use and treatment history</td>
<td>88%</td>
</tr>
<tr>
<td>Pain, sleep, and quality of life</td>
<td>98%</td>
</tr>
</tbody>
</table>
Figure 2. Selected item-level findings from a systematic review of phenotype reporting in n=200 descriptions of novel genetic syndromes. Domain I, (b) Domain II, (c), Domain III. See Supplementary Table 3 for details.