Brain-Symptom Networks

Brain-Symptom Network Models of Depressive Symptoms: Understanding Heterogeneity and Clinical Implications

René Freichel1,2,
Agatha Lenartowicz3, Linda Dou4, Johann D. Kruschwitz5,
Tobias Banaschewski6, Gareth J. Barker7, Arun L.W. Bokde8, Sylvane Desrivières9,
Herta Flor10,11, Antoine Grigis12, Hugh Garavan13, Andreas Heinz5, Rüdiger Brühl14, Jean-Luc Martinot15, Marie-Laure Paillère Martinot15,16, Eric Artiges15,17, Frauke Nees18, Dimitri Papadopoulos Orfanos12, Tomáš Paus19, Luise Poustka20, Nathalie Holz6, Christian Baeuchl21,
Michael N. Smolka22, Nilakshi Vaidya23, Robert Whelan24, Vincent Frouin12, Gunter Schumann25,26, IMAGEN Consortium,
Henrik Walter5*, Tessa F. Blanken27*

Corresponding Author: René Freichel, Department of Psychology, University of Amsterdam, 1018 WV Amsterdam, Email: r.freichel@uva.nl

* shared senior authorship

Word count: 1,199

1 Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
2 Department of Psychology, Harvard University, Cambridge, United States
3 Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
4 Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
5 Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Brain-Symptom Networks

6 Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

7 Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom

8 Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland

9 Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology and Neuroscience, SGDP Centre, King’s College London, UK

10 Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

11 Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany

12 NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

13 Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA

14 Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany

15 Institut National de la Santé et de la Recherche Médicale, INSERM U A10 ‘Trajectoires développementales en psychiatrie’, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France

16 AP-HP, Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France

17 Psychiatry Department, EPS Barthélémy Durand, Etampes, France

18 Institute of Medical Psychology and Medical Sociology, Kiel University, Kiel, Germany

19 Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada.
20 Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany

21 Faculty of Psychology, Technische Universität Dresden, Dresden, Germany

22 Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany

23 Centre for Population Neuroscience and Precision Medicine, Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany.

24 School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland

25 Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany

26 Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China

27 Department of Psychological Methods, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
Abstract

Importance: Major depressive disorder (MDD) is highly heterogeneous and prevalent globally, with diverse neurobiological underpinnings. Understanding the interplay between psychopathological symptoms and biological factors is critical for elucidating its etiology and persistence.

Objective: We aimed to evaluate the utility of using symptom-brain networks to parse the heterogeneity of depressive symptomatology in a large adolescent sample.

Design, Setting, Participants: We used data from the third wave of the IMAGEN study, a multicenter panel cohort study involving 1,317 adolescents (52.49% female, mean±SD age=18.5±0.72).

Main outcomes and measures: Two network models were estimated: one including an overall depression severity sum score based on the Adolescent Depression Rating Scale (ADRS), and one incorporating individual ADRS symptom/item scores. Both networks included measures of cortical thickness in several regions (insula, cingulate, mOFC, fusiform gyrus) and hippocampal volume derived from neuroimaging.

Results: The network based on individual symptom scores revealed associations between cortical thickness measures and specific symptoms, obscured when using an aggregate depression severity score. Notably, the insula's cortical thickness showed negative associations with cognitive dysfunction (partial cor.=-0.15); the cingulate’s cortical thickness showed negative associations with feelings of worthlessness (partial cor. = -0.10), and mOFC was negatively associated with anhedonia (partial cor. = -0.05).

Conclusions and Relevance: This study showcases the utility of network models at parsing heterogeneity in depression, linking individual symptoms with specific neural substrates. We discuss the clinical relevance and implications of this approach and outline the next steps to
integrate neurobiological and cognitive markers to further unravel MDD's phenotypic heterogeneity.

Key points

Question: What is the utility of estimating brain-symptom network models of depression?

Finding: We found no brain-symptom associations when estimating a network with an overall depression severity score. A network estimated on the level of individual depression symptoms showed specific symptom – neural substrate connections (e.g., thinning of insula – cognitive dysfunction). Lower cortical thickness in several regions (insula, mOFC, cingulate) was associated with more specific depression symptoms.

Meaning: Network models integrating individual symptoms and specific neural markers may provide a promising avenue for understanding the phenotypic heterogeneity of depression.
Introduction

Depressive symptoms and major depressive disorder (MDD) continue to be highly prevalent across the globe, with increasing rates among adolescents and young people (Goodwin et al., 2022). Depression is a highly heterogeneous disorder (Goldberg, 2011) diagnosed based on the presence of five out of nine DSM-5 symptoms. These symptoms are however diverse, ranging from weight loss or gain to depressed mood, and contribute to disorder heterogeneity that poses challenges for treatment. Symptom network models have been used to capture this heterogeneous symptom expression as they conceptualize mental disorders as systems of interacting symptoms. The heterogeneity observed at the depression symptom level is intriguingly matched by the multifaceted neurobiological underpinnings of depression (Buch & Liston, 2021). Meta-analytical evidence points to neuroanatomical alterations in depression, namely lower hippocampal volume (Schmaal et al., 2016) and lower cortical thickness in several regions, including the insula, cingulate, orbitofrontal cortex, and the fusiform gyrus (Schmaal et al., 2017). Modeling this interplay between symptom expression and biology is crucial for understanding depression’s etiology, and ultimately treatment (Remes et al., 2021).

However, when both domains (i.e., psychological/biological) are combined, then typically at least one domain is simplified in the process (Blanken et al., 2021), often to a single aggregate dimension. Most studies examining associations between structural and functional neural alterations and depressive symptoms, either use depression sum scores, subscales or a latent variable or they use aggregate measures derived from neuroimaging, such as overall cortical thickness, structural or functional connectivity, or single brain regions. This abstraction potentially obscures more fine-grained associations, that could potentially account for the symptom heterogeneity.
One recent pilot study that included both brain and individual symptom measures into one network did reveal cross-construct (i.e., brain-symptom) relations even in a small sample of depressed and never-depressed adults (Hilland et al., 2020). This finding suggests that fine-grained associations could indeed be obscured when using aggregate measures, but this was not evaluated directly. In the present study we replicate the approach by Hilland et al. (2020) in a substantially larger sample to identify relations between depression symptoms and five a-priori selected brain markers (cortical thickness measures for insula, cingulate, mOFC, fusiform, and hippocampal volume). In addition, we will extend the previous study by directly evaluating whether parsing heterogeneity into individual symptom scores relative to an overall severity measure reveals cross-construct relations that otherwise would remain hidden.

Methods

Participants, procedure, and outcomes

We have used data from the third wave of IMAGEN study (Schumann et al., 2010), a multi-center panel cohort study of adolescents. Our final sample included 1,317 adolescents (52.49% female, M±SD = 18.5±0.7 years old) that completed the Adolescent Depression Rating Scale (ADRS) and 3D T1-weighted gradient-echo Magnetic Resonance Imaging (MRI) scans. The ADRS is a validated 10-item self-report scale to assess the presence (present/ not present) of adolescent depression symptoms (Revah-Levy et al., 2007).

The present sample showed substantial variability in the presence of all symptoms (see Table S1 in supplementary materials (SM) section 1), with 7% of individuals (n=89) meeting the criteria (score ≥ 6) for MDD. The magnetic resonance imaging (MRI) data was acquired using standard protocols to ensure homogeneity across scanners, including a 3D T1-weighted gradient echo volume (see SM1 and Schumann et al., 2010 for more details). Cortical thickness of insula,
cingulate, mOFC, fusiform and hippocampal volume were estimated using the FreeSurfer software. We selected the same five brain regions (see Figure 1) as Hilland et al. (2020) and followed their exact procedures: we averaged left/right hemispheres and used z-residuals for hippocampal volume (regressing out sex, intracranial volume).

Statistical analysis

To investigate whether the abstraction of symptoms as sum scores obscures more fine-grained relations between brain regions and depression symptoms, we estimated two network models. Both networks contained the same brain measures (i.e., cortical thickness measures, hippocampal volume), however, one included the ADRDS sum score, indicating overall depression severity, and one included all individual ADRS items, representing different depression symptoms. We estimated both networks using LASSO regularization with cross-validation to avoid false positives (see SM2). We included the depression severity score as continuous and the single depression items as binary nodes (present/not present) included in the mixed graphical models (MGM, Haslbeck & Waldorp, 2020). The resulting connections in both networks (‘edges’) represent pairwise conditional associations (similar to partial correlations) that control for all other nodes in the network. We assessed the edge weights’ accuracy using bootstrapping (n=1,000, see SM2).

Results

The network including depression severity is shown in Figure 1A. We found no cross-construct associations between any of the neural markers and overall depression severity. In contrast, we found many positive associations within the respective domains (i.e., among depressive symptoms and cortical thickness measures) in the network estimated on the separate
depression symptoms (Fig. 1B). The networks were sufficiently stable and all cross-modal links were retrieved in at least half of the bootstrapped samples (range 53-85%). Interestingly, we found cross-construct associations between cortical thickness measures and specific symptoms: cingulate was negatively associated with worthlessness (retrieved in 59%), insula was negatively associated with cognitive dysfunction (85% retrieved), and mOFC was negatively associated with anhedonia (53% retrieved). We found positive associations between insula and worthlessness (61% retrieved) and between hippocampal volume and sleep problems (60% retrieved).

Figure 1

Depressive Symptoms – Brain Network Model

Note. The thickness of the lines indicates the strength of association. Positive conditional associations are colored in blue, negative conditional associations are colored in red. Panel A includes the ADRS severity score (*Depr*). Panel B includes all ADRS depression symptoms. The nodes for the brain regions (i.e., insula, cingulate, mOFC, Fusiform) refer to cortical thickness. *Hippo* refers to hippocampal volume. *mOFC* = medial orbitofrontal cortex. All edge weights can be found tabulated in supplementary Tables S2-S3.
Discussion

The present study is one of the first to pinpoint associations between neural substrates of overall depressive symptomatology and specific depression symptoms. Crucially, we showed that these robust associations remain hidden when only including overall depression severity, concealing the heterogeneous symptoms. The negative associations shown (between regional cortical thickness and symptoms) align with prior work suggesting cortical thinning as a depression biomarker (Suh et al., 2019). Interestingly, our results also uncovered novel links, such as positive associations between insula and worthlessness.

We believe that our findings have dual implications; with respect to guiding future brain-behaviour research and bear relevance for clinical practice. First, our comparative analysis of networks estimated on an aggregate measure of depression severity (Fig. 1A) and specific depression symptoms (Fig. 1B) showed stark differences. The heterogeneity underlying the association between neural substrates and depressive symptoms was obscured when using an aggregate score. This suggests that networks estimated at the level of individual symptoms and neural makers have the potential to dissect these hidden associations and may allow us to better grasp the heterogeneity of depression. Second, in addition to a better understanding of heterogeneity in psychopathology, symptom-brain networks, as showcased in this report, provide a better basis for discerning the clinical implications of these connections. For instance, in line with recent efforts in the field of precision psychiatry, brain-symptom networks may form the basis for insights relevant for the targeting of individual symptom – neural substrate connections (e.g., thinning of insula – cognitive dysfunction). A limitation of our study is the self-reported assessment of depression symptoms that may naturally be biased. Lastly, our sample was relatively
healthy, and thus, the cross-modal links should be understood as associations describing how variability in depressive symptoms are linked to variability in the selected brain markers.

Conclusions

Altogether, this brief report showcases the utility of brain-symptoms in the case of depression. Moving forward, future research should adopt such approaches and integrate neurobiological and cognitive markers to parse the phenotypic heterogeneity of depression both at a cross-sectional and developmental level.
Brain-Symptom Networks

References

Connecting brain and behavior in clinical neuroscience: A network approach.
Neuroscience & Biobehavioral Reviews, 130, 81–90.
https://doi.org/10.1016/j.neubiorev.2021.07.027

https://doi.org/10.1038/s41386-020-00789-3

https://doi.org/10.1016/j.jad.2016.10.019

https://doi.org/10.1016/j.amepre.2022.05.014

http://arxiv.org/abs/1510.06871

