Diminished utility of fMRI subsequent memory models with increasing severity across the Alzheimer’s disease risk spectrum

Joram Soch1,2,3, Anni Richter4,5,6, Jasmin M. Kizilirmak1,7, Hartmut Schütze8,9, Slawek Altenstein10,11, Peter Dechent12, Klaus Fliessbach13,14, Wenzel Glanz8, Ana Lucia Herrera11, Stefan Hetzer15, Enise I. Incesoy8,9,16, Ingo Kilimann17,18, Okka Kimmich13, Dominik Lammerding11, Christoph Laske19,20, Andrea Lohse11, Falk Lüsebrink8, Matthias H. Munk19,21, Oliver Peters10,11, Lukas Preis11, Josef Priller10,11,22,23, Ayda Rostamzadeh24, Nina Roy-Kluth13, Klaus Scheffler25, Anja Schneider13,14, Annika Spottke13,26, Eike Jakob Spruth10,11, Stefan Teipel17,18, Jens Wiltfang1,27,28, Frank Jessen13,24,29, Emrah Düzel8,9, Björn H. Schott1,4,27,30,*

1. German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
2. Bernstein Center for Computational Neuroscience (BCCN), Berlin, Germany
3. Max Planck Institute for Human Cognitive and Brain Sciences (MPI CBS), Leipzig, Germany
4. Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
5. German Center for Mental Health (DZPG)
6. Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle
7. German Center for Higher Education Research and Science Studies (DZHW), Hannover, Germany
8. German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
9. Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University, Magdeburg, Germany
10. German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
11. Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
12. MR-Research in Neurosciences, Department of Cognitive Neurology, Georg August University Göttingen, Germany
13. German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
14. Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, 53127 Bonn, Germany
15. Berlin Center for Advanced Neuroimaging, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
16. Department of Psychiatry and Psychotherapy, University Clinic Magdeburg, Magdeburg, Germany
17. German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
18. Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock
19. German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
20. Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
21. Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
22. School of Medicine, Department of Psychiatry and Psychotherapy, Technical University of Munich, Germany
23. University of Edinburgh and UK DRI, Edinburgh, UK
24. Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany

*Corresponding author: frank.jessen@ukb.uni-bonn.de

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
25. Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
26. Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
27. Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
28. Neurosciences and Signaling Group, Institute of Biomedicine (iBIMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
29. Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany
30. Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany

* Address for correspondence:

PD Dr. Dr. Björn Hendrik Schott
Leibniz Institute for Neurobiology
Brennekestr. 6
39118 Magdeburg
bschott@lin-magdeburg.de / bjoern-hendrik.schott@dzne.de
Abstract

In functional magnetic resonance imaging (fMRI) studies, episodic memory is commonly investigated with the subsequent memory paradigm in which brain activity is recorded during encoding and analyzed as a function of subsequent remembering and forgetting. Impaired episodic memory is common in individuals with or at risk for Alzheimer’s disease (AD), but only few studies have reported subsequent memory effects in AD or its risk states like mild cognitive impairment (MCI). One reason for this might be that subsequent memory responses may be blunted in AD or MCI and thus less likely to manifest in fMRI signal differences. Here, we used Bayesian model selection of single-subject fMRI general linear models (GLMs) for a visual novelty and memory encoding experiment to compare the model performance of categorical and parametric subsequent memory models as well as memory-invariant models in a clinical cohort (N = 468) comprising healthy controls (HC) as well as individuals with subjective cognitive decline (SCD), MCI, and AD, plus healthy relatives of AD patients (AD-rel). We could replicate the previously reported superiority of parametric subsequent memory models over categorical models (Soch et al., 2021) in the HC and also in the SCD and AD-rel groups. However, memory-invariant models outperformed any model assuming subsequent memory effects in the MCI and AD groups. In the AD group, we additionally found substantially lower model preference for models assuming novelty compared to models not differentiating between novel and familiar stimuli. Our results suggest that voxel-wise memory-related fMRI activity patterns in AD and also MCI should be interpreted with caution and point to the need for additional or alternative approaches to investigate memory function.
Outline

1. Introduction
2. Methods
 2.1. Study cohort
 2.2. Comparison with original study
 2.3. Experimental paradigm
 2.4. MRI data acquisition
 2.5. MRI data processing
 2.6. Bayesian model selection
 2.7. Overview of the model space
3. Results
 3.1. Participant groups differ by their behavioral response pattern
 3.2. Variations of no interest are replicated in independent cohorts
 3.3. Subsequent memory effects decline across the AD risk spectrum
 3.4. Number of regressors effect increases across diagnostic groups
 3.5. Parametric outperform categorical models in memory-related areas
 3.6. Model preferences within model families are replicated
 3.7. Novelty and memory parameter estimates reflect model preferences
4. Discussion
 4.1. Utility of parametric subsequent memory models in healthy older adults
 4.2. Decline of subsequent memory and novelty responses across the AD risk spectrum
 4.3. Limitations and directions for future research
 4.4. Conclusions
5. Appendix
6. References
Tables

Table 1. Demographic information for participant groups.
Table 2. Reference for data acquisition and processing.
Table 3. Effects of novelty processing and subsequent memory.
Table 4. Model space for GLM-based fMRI analyses.

Figures

Figure 1. Parametric modulators for empirical parametric GLMs.
Figure 2. Effects of novelty processing and subsequent memory.
Figure 3. Influence of number of regressors.
Figure 4. Comparison of memory models.
Figure 5. Winning models within model families.
Figure 6. Novelty and memory effects from winning GLM.
1. Introduction

Episodic memory, the ability to store, maintain and recall past singular events (Tulving, 1985), is highly vulnerable to impairment in dementia, and particularly in Alzheimer’s disease (AD), the most prevalent cause of dementia in old age (Livingston et al., 2017, 2020). As AD-related neuropathological changes precede clinically manifest dementia by several years (Jack et al., 2000; Chételat et al., 2005; Ledig et al., 2018), it is important to define pre-clinical stages of AD and risk states, which describe intermediate stages between (age-adjusted) normal cognitive functioning ability and manifest disease. Mild cognitive impairment (MCI), a measurable decline of cognitive function, but with preserved ability to perform activities of daily living (Petersen, 2016), is a widely recognized risk state for dementia due to AD, and, more recently, subjective cognitive decline (SCD), has been identified as a pre-MCI risk state, particularly when associated with worries about one’s perceived cognitive deficit (Jessen et al., 2014, 2020). Both SCD and MCI do not per se constitute prodromal stages of AD, but they are associated with elevated risk to develop AD, particularly in individuals with the AD-typical findings in cerebrospinal fluid (CSF), that is, reduced levels of amyloid beta (Aβ1-42), and increased levels of total tau (tTau) and especially phosphorylated tau (pTau181) (Blennow et al. 2010; Olsson et al. 2016; Mattson-Carlsgren et al., 2023).

In cognitive and clinical neuroscience, episodic memory is typically operationalized by various memory encoding and retrieval paradigms (Richardson-Klavehn & Bjork, 1988; Yonelinas, 2002), where both encoding (e.g., incidental vs. intentional) and retrieval task (e.g., recognition or free recall) can vary. An encoding task followed by a later memory test is frequently employed in neuroimaging studies of episodic memory, to infer on neural correlates of successful encoding (i.e., later memory) by comparing neural responses to remembered versus forgotten items (Brewer et al., 1998; Wagner et al., 1998; Kim, 2011; Maillet & Rajah, 2014). Neural differences related to encoding success are often referred to as subsequent memory effect (SME; also DM effect, for “difference due to memory”, see Düzel et al., 2011). Including both novel and previously familiarized stimuli in the encoding task allows to additionally infer on neurocognitive underpinnings of novelty processing (novel vs. familiar items; Henson et al., 2002), which show substantial, but not complete, overlap with the SME (Maass et al., 2014; Soch et al., 2021b).
Given the pronounced episodic memory deficits in Alzheimer’s disease and, to a lesser extent, also in MCI, applying the subsequent memory paradigm to people with Alzheimer’s risk states appears as a plausible approach to investigate the functional neuroanatomical correlates of AD-related memory impairment. Indeed, numerous functional magnetic resonance imaging (fMRI) studies of memory encoding and retrieval have been conducted in patients with early-stage AD or MCI (Gould et al., 2005; Kircher et al., 2007; Browndyke et al., 2013; Terry et al., 2015; Billette et al., 2022; Düzel et al., 2022) as well as in individuals with endogenous or exogenous risk factors for AD (Bookheimer et al., 2000; McDonough et al., 2020). Converging meta-analytic evidence suggests that individuals with AD or MCI exhibit reduced memory-related hippocampal activation and increased activation of medial parietal structures like the precuneus during encoding (Browndyke et al., 2013; Terry et al., 2015), and a similar pattern has been found to covary with increased risk for AD in clinically unaffected individuals (McDonough et al., 2020). It must be cautioned, though, that only few studies included in the aforementioned meta-analyses actually reported SMEs (Gould et al., 2005; Kircher et al., 2007; Trivedi et al., 2008), whereas others compared encoding to a low-level baseline or reported novelty effects (Browndyke et al., 2013; Billette et al., 2022).

While the reasons for not conducting a subsequent memory comparison between patients with AD or MCI and healthy controls were not typically reported, it seems plausible to assume that low memory performance and disintegration of memory networks might have resulted in a signal-to-noise ratio that is too low to compute meaningful subsequent memory contrasts in the clinical groups. Therefore, we aimed to employ an unbiased approach to assess the utility of subsequent memory models in comparison to memory-invariant novelty/familiarity models across the spectrum of AD risk. We have previously applied Bayesian model selection (BMS) to fMRI data acquired during an incidental visual episodic memory encoding task followed by a recognition memory task with a 5-point recognition-confidence rating scale (ranging from “item sure new” over “don’t know” to “item sure old”). We found that, in healthy young and older adults, SME models (taking encoding success into account) outperformed memory-invariant novelty models and, among SME models, (particularly non-linear) parametric models performed better than categorical models of the fMRI subsequent memory effect (Soch et al., 2021a).
To assess whether this pattern replicates for individuals with AD or at increased risk for AD, we applied the exact same approach to a large clinical cohort from the DZNE Longitudinal Cognitive Impairment and Dementia Study (DELCODE; Jessen et al., 2018), a memory-clinic-based multi-center study that focuses on individuals with SCD. Our sample consisted of healthy older control participants (HC, N = 128) and individuals with SCD (N = 199), MCI (N = 74), or early-stage Alzheimer’s disease (AD, N = 21), as well as first-degree relatives of patients with AD (AD-rel, N = 46). Importantly, all participants performed the exact same experimental paradigm as in the original study, were scanned with the same MRI protocol, and their data were analyzed using the same space of fMRI models as in the original study.

The goal of the present study was two-fold: First, we aimed to assess the replicability of the model preferences found in the original study in the sub-sample of healthy older adults (HCs). Second, we sought to identify differences in the preferences for fMRI episodic memory encoding models across the spectrum of AD risk states (HC → SCD → MCI → AD). We hypothesized that more severely affected individuals (AD and, to some extent, MCI) would exhibit less pronounced model preferences for novelty and particularly subsequent memory models, up to the point that, in AD patients, no model including an SME would outperform a memory-invariant model. Such a result would suggest that encoding-related fMRI signals in AD patients differentiate poorly, if at all, between subsequently remembered and forgotten items, and it would help to explain the previously described variability of between-group differences (McDonough et al., 2020) and the low proportion of studies reporting actual SMEs among the sizable number of fMRI studies on memory encoding in AD and also MCI (Terry et al., 2015; Nellessen et al., 2015).
2. Methods

2.1. Study cohort

In the present study, we applied a previously described methodology, validated in a cohort of healthy young and older adults (Soch et al., 2021a), to a sample of individuals with SCD, MCI, and early-stage AD as well as healthy controls and first-degree relatives of AD patients from the DZNE Longitudinal Cognitive Impairment and Dementia Study1 (DELCODE; Jessen et al., 2018), a multi-center study based in memory clinics collaborating with the German Center for Neurodegenerative Diseases (DZNE).

Complete baseline data (i.e., data from the first study visit) was available for 844 subjects at the time of data analysis. From these subjects, we had to exclude (i) subjects without available diagnosis, (ii) subjects who did not perform the fMRI task, (iii) subjects whose logfiles from the fMRI experiment were missing, and (iv) subjects lacking one or more MRI data files necessary for our pre-processing pipeline (see below). This resulted in a final sample size of N = 468 subjects (HC: 128; SCD: 199; MCI: 74; AD: 21; AD-rel: 46) used for the analyses reported here. Demographic information for the different groups is given in Table 1.

2.2. Comparison with original study

Apart from using a different study cohort, comprising five (HC, SCD, MCI, AD and AD relatives) rather than two (healthy young and older adults) groups of participants, the present study uses the exact same workflow and protocols for data acquisition and data analysis as the original study. While data acquisition mostly took place before completion of this original study used as the reference here (Soch et al., 2021a), the complete data analysis was performed after its publication, following the approval of a detailed analysis protocol by the DELCODE steering committee, such that the present work can be considered effectively preregistered2.

1 https://www.dzne.de/en/research/studies/clinical-studies/delcode/

2 The DELCODE proposal for this data analysis (DELCODE 243) is available from the authors upon request.
<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>SCD</th>
<th>MCI</th>
<th>AD</th>
<th>AD-rel</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample size</td>
<td>N = 128</td>
<td>N = 199</td>
<td>N = 74</td>
<td>N = 21</td>
<td>N = 46</td>
<td></td>
</tr>
<tr>
<td>age range</td>
<td>60-87 yrs</td>
<td>59-85 yrs</td>
<td>62-86 yrs</td>
<td>60-80 yrs</td>
<td>59-77 yrs</td>
<td></td>
</tr>
<tr>
<td>mean age</td>
<td>69.27 ± 5.48 yrs</td>
<td>70.36 ± 5.88 yrs</td>
<td>72.98 ± 5.13 yrs</td>
<td>72.56 ± 5.41 yrs</td>
<td>65.91 ± 4.69 yrs</td>
<td></td>
</tr>
<tr>
<td>test vs. HC</td>
<td>–</td>
<td>t_{325} = 0.89, p = 0.372</td>
<td>t_{200} = 4.19, p < 0.001**</td>
<td>t_{147} = 2.19, p = 0.030*</td>
<td>t_{172} = -4.31, p < 0.001**</td>
<td></td>
</tr>
<tr>
<td>gender ratio</td>
<td>48/80 m/f</td>
<td>109/90 m/f</td>
<td>35/39 m/f</td>
<td>8/13 m/f</td>
<td>18/28 m/f</td>
<td>χ² = 11.26, p = 0.024</td>
</tr>
<tr>
<td>test vs. HC</td>
<td>–</td>
<td>χ² = 9.31, p = 0.002**</td>
<td>χ² = 1.86, p = 0.173</td>
<td>χ² = 0.00, p = 0.958</td>
<td>χ² = 0.04, p = 0.845</td>
<td></td>
</tr>
<tr>
<td>acquisition site</td>
<td>37/16/2/35/9/3/18/8</td>
<td>42/20/17/29/24/9/53/5</td>
<td>12/9/8/11/3/2/28/1</td>
<td>5/0/1/8/3/0/2/2</td>
<td>7/6/7/6/7/1/11/1</td>
<td>χ² = 60.19, p < 0.001</td>
</tr>
<tr>
<td>test vs. HC</td>
<td>–</td>
<td>χ² = 26.78, p < 0.001**</td>
<td>χ² = 29.31, p < 0.001**</td>
<td>χ² = 6.67, p = 0.464</td>
<td>χ² = 23.18, p = 0.002**</td>
<td></td>
</tr>
<tr>
<td>MMSE total</td>
<td>29.43 ± 0.87</td>
<td>29.17 ± 1.10</td>
<td>28.05 ± 1.56</td>
<td>24.52 ± 3.75</td>
<td>29.48 ± 0.89</td>
<td>χ² = 107.43, p < 0.001</td>
</tr>
<tr>
<td>test vs. HC</td>
<td>–</td>
<td>z = -2.20, p = 0.028*</td>
<td>z = -7.24, p < 0.001**</td>
<td>z = -7.20, p < 0.001**</td>
<td>z = 0.46, p = 0.645</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Demographic information for participant groups, along with multi-group comparisons (column “Statistics”) as well as pair-wise tests against healthy controls (rows “test vs. HC”). Statistical inference was based on one-way ANOVAs and two-sample t-tests (age), Kruskal-Wallis H-tests and Mann-Whitney U-tests (MMSE) as well as chi-square tests for independence (gender, site). Please note that neuropsychological testing results for the same cohort are reported in the accompanying second part of this paper (Soch et al., 2023b). Abbreviations: HC = healthy controls, SCD = subjective cognitive decline, MCI = mild cognitive impairment, AD = Alzheimer’s disease, AD-rel = AD relatives; N = sample size, yrs = years, m = male, f = female, MMSE = mini-mental state examination (Folstein et al., 1975; Jessen et al., 2018. Significance: * p < 0.05, ** Bonferroni-corrected for number of comparisons per variable (4).
Table 2. Reference for data acquisition and processing. Steps of data acquisition and processing are summarized in Sections 2.3 to 2.6 of this paper. Details can be found in the referenced sections of the original publication (right column).

<table>
<thead>
<tr>
<th>Step of data acquisition/processing</th>
<th>Description in Soch et al., 2021a</th>
</tr>
</thead>
<tbody>
<tr>
<td>experimental paradigm</td>
<td>see Section 2.2 and Figure 1</td>
</tr>
<tr>
<td>fMRI data acquisition</td>
<td>see Section 2.3</td>
</tr>
<tr>
<td>fMRI data preprocessing</td>
<td>see Section 2.4</td>
</tr>
<tr>
<td>general linear modelling</td>
<td>see Section 3 and Figure 2</td>
</tr>
<tr>
<td>model space of GLMs</td>
<td>see Section 3 and Table 1</td>
</tr>
<tr>
<td>Bayesian model selection</td>
<td>see Section 2.5</td>
</tr>
</tbody>
</table>

2.3. Experimental paradigm

Participants performed an incidental memory task introduced by Düzel and colleagues (Düzel et al., 2011), which was slightly adapted as part of the DELCODE protocol (Düzel et al., 2018; Bainbridge et al., 2019), with the adapted version also used in the “Autonomy in Old Age” study (Soch et al., 2021a; Soch et al., 2021b; Richter et al., 2023). Subjects were presented with photographs of indoor and outdoor scenes, which were either novel to the participant at the time of presentation (44 indoor and 44 outdoor scenes) or were repetitions of two pre-familiarized “master” images (22 indoor and 22 outdoor trials). In a later retrieval session, participants were presented with all novel images from the encoding session, now considered “old” stimuli (88 images), as well images not previously seen by the participant, i.e. “new” stimuli (44 images). Subjects were asked to provide a recognition-confidence rating for each image, using a five-point Likert scale ranging from “sure new” (1) over “don’t know” (3) up to “sure old” (5). For further details, see previous descriptions of the paradigm (Assmann et al., 2020; Soch et al., 2021a; Soch et al., 2021b; Richter et al., 2023).

2.4. MRI data acquisition

MRI data were acquired at eight different sites of the DZNE across Germany (see Table 1), using Siemens 3T MR tomographs. All sites followed the exact same MRI protocol implemented in the DELCODE study (Jessen et al., 2018; Düzel et al., 2018). Structural MRI included a T1-weighted MPRAGE image (voxel size = 1 x 1 x 1 mm) as well as phase and magnitude fieldmaps for later spatial artifact correction. Functional MRI consisted of 206 T2*-weighted echo-planar images (TR = 2.58 s, voxel size = 3.5
x 3.5 x 3.5 mm) measured during the encoding session of the memory task (09:01 min) as well as a resting-state session comprising 180 scans (same parameters) not used for the present study. For detailed scanning parameters, see previous descriptions of data acquisition (Soch et al., 2021a, 2021b).

2.5. MRI data processing

MRI data were analyzed with Statistical Parametric Mapping\(^3\), version 12, revision 7771 (SPM12 R7771; Wellcome Trust Center for Neuroimaging, University College London, London, UK). Preprocessing of the fMRI data included acquisition time correction (slice timing), head motion correction (realign ment), correction of magnetic field inhomogeneities using the fieldmaps (unwarping), coregistration of the T1-weighted MPRAGE image to the mean functional image, segmentation of the coregistered MPRAGE image and subsequent normalization of unwarped EPIs into the MNI standard space (voxel size = 3 x 3 x 3 mm) using the transformation parameters obtained from segmentation, and finally, spatial smoothing of the functional images (FWHM = 6 mm). Statistical analysis of the fMRI data was based on voxel-wise general linear models (GLMs) that included two onset regressors, one for novel images (novelty regressor) and one for the master images (master regressor), six head movement regressors obtained from realignment and a constant regressor representing the implicit baseline. This setup is referred to as the “baseline model” and was later varied (see Sections 2.6 and 2.7) in order to test specific hypothesis using Bayesian model inference.

2.6. Bayesian model selection

Bayesian model inference was performed via cross-validated Bayesian model selection (cvBMS; Soch et al., 2016), as implemented in the SPM toolbox for model assessment, comparison and selection (MACS; Soch & Allefeld, 2018). This technique proceeds by calculating the voxel-wise cross-validated log model evidence (cvLME) for each GLM, applied to each participant’s data. Then, the cvLME maps from all subjects and models are submitted to voxel-wise random-effects Bayesian model selection (RFX BMS; Stephan et al., 2008; Penny et al., 2009; Rosa et al., 2010). Whenever a particular analysis addresses a comparison of model families rather than individual models (see below), a cross-validated log family evidence (cvLFE) is

\(^3\) https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
calculated from the cvLMEs of all models belonging to a family, before entering cvLFEs into RFX BMS. Group-level analysis results in selected-model maps which indicate, for each voxel, the most frequently selected optimal model for describing the measured group fMRI data. For more details about cvBMS and the interpretation of LF maps, see the original study (Soch et al., 2021a, Section 2.5).

2.7. Overview of the model space
There are two groups of variations that were applied to the baseline model (see Appendix, Table 4): First, there were variations of no interest, testing different ways of describing the encoding event as such, without regard for actual encoding success. Second, the baseline model was modified to include different variants of the subsequent memory effect.

Variations of no interest included (i) replacing event duration of 2.5 s (the actual trial duration; model family “GLMs_TD”) with an event duration of 0 s (assuming point events; model family “GLMs_PE”); (ii) collapsing novel and master images (model family “GLMs_00”) rather than modeling them as separate regressors (model family “GLMs_0”); and (iii) separating indoor and outdoor images (model family “GLMs_x2”) rather than collapsing them into a single regressor (model family “GLMs_x1”). For details regarding variations of no interest, see Soch et al. (2021a), Section 3.1.

Model modifications introducing a subsequent memory effect included (i) splitting novel images into 2, 3, or 5 categories based on the corresponding later memory responses (model family “GLMs_2” and models “GLM_3” and “GLM_5”); (ii) parametrically modulating the novelty regressor with theoretical (i.e. a priori defined) functions of the subsequent memory response (model family “GLMs_1t”); and (iii) parametrically modulating the novelty regressor with empirical (i.e. single-subject-data-derived) functions of the subsequent memory response (model family “GLMs_1e”). For details about modelling the subsequent memory effect, see Soch et al., (2021a), Sections 3.2-3.3.

In total, these variations resulted in 19 first-level GLMs describing the fMRI data scanned during memory encoding (see Appendix, Table 4). This model space is successively explored using model family and individual model comparisons (see Supplementary Table S1).
3. Results

3.1. Participant groups differ by their behavioral response pattern

Behavioral response frequencies that were used as parametric modulators in the empirical parametric GLMs are shown in Figure 1. They included the conditional probability (i.e. the likelihood of a stimulus being old, given the subsequent memory response) and the inverse probability (i.e. the likelihood of a subsequent memory response, given the stimulus being old). Two patterns of variability across participant groups could be observed: First, “old” responses to old items (i.e. hits) became less frequent and “new” response to old items (i.e. misses) became more frequent when moving from HC towards AD (see Figure 1A). Second, the degree to which the subsequent memory response informs about an item being old diminished when moving from healthy controls towards AD patients (see Figure 1B). In both instances, healthy relatives of AD patients were qualitatively indistinguishable from healthy controls.4

Figure 1. Parametric modulators for empirical parametric GLMs. Empirically observed probabilities of (A) subsequent memory responses, given stimulus being old (“inverse probability”), and (B) stimulus being old, given a subsequent memory response (“conditional probability”). These probabilities were used as parametric modulators in

4 Note that a thorough statistical analysis of the between-group differences in behavioural response frequencies and subsequent memory reports will be the focus of a later publication (Soch et al., in prep.).
the empirical parametric GLMs (see Table 4, model family “GLM_1e”). Error bars depict standard deviations (SD) across subjects. This figure corresponds to Figure 2B from the original publication.

3.2. Variations of no interest are replicated in independent cohorts

Regarding modelling variations of no interest, i.e., modifications of the GLM unrelated to the subsequent memory effect, we could replicate all observations from the original study, albeit to a somewhat lesser degree in AD patients:

- First, the model family “GLMs_TD” was preferred throughout the gray matter in all subject groups (see Supplementary Figure S1), indicating that the actual trial duration of 2.5 s represents a better description of the measured neural signals than point events.
- Second, the model family “GLMs_0” was preferred in large clusters spanning temporal, occipital, and parietal cortical structures (see Figure 2A), indicating differential neural responses to novel vs. non-novel stimuli in these regions. Notably, this novelty effect was already diminished in AD patients (see Figure 2A, 4th column).
- Finally, we observed that the model family “GLMs_x2” was preferred in selected portions of occipital cortex only (see Supplementary Figure S3), suggesting that the indoor-outdoor distinction was only important in a small subset of visual association cortices likely involved in scene processing. Since those regions were not the focus of our study, we omitted the indoor/outdoor distinction from the model, as in the original study with young and healthy HC (Soch et al., 2021a, p. 6).

3.3. Subsequent memory effects decline across the AD risk spectrum

Based on the outcomes described in Section 3.2., all following analyses were based on modifying a baseline model (i) using the actual trial length as event duration, (ii) modelling novel and master images separately, and (iii) collapsing indoor and outdoor images. First, we compared the family of models with either one parametric memory modulator or two categorical memory regressors (model family “GLMs_12”; i.e. models assuming a subsequent memory effect described using either one or two regressors) against the baseline GLM (model “GLM_TD_0x1”; i.e. a memory-invariant model).

While including an SME in the model improved the model fit in bilateral middle occipital gyrus (MOG), right temporo-parietal junction (TPJ) and the precuneus (PreCun) in the HC, SCD, and AD-rel groups (see Figure 2B; HC & AD-rel: no PreCun effect), memory-
invariant models outperformed models considering subsequent memory performance in the MCI and AD groups (see Figure 2B, 3rd & 4th column).

To further substantiate the decline of memory – and, to some extent, novelty – effects across the AD risk spectrum, we performed a one-way ANOVA on the number of voxels with the respective model preferences, using diagnostic group as the between-subject factor. To this end, single subjects’ log Bayes factor (LBF) maps from model comparisons testing for effects of novelty processing (“GLMs_0” vs. “GLMs_00”; see Figure 2A) and subsequent memory (“GLMs_12” vs. “GLM_TD_0x1”; see Figure 2B), respectively, were generated, and the number of voxels exceeding LBF > 3 (corresponding to a Bayes factor threshold of \(\exp(3) \approx 20 \)) was extracted as the dependent variable. For both contrasts, there was a main effect of diagnostic groups (novelty: \(F_{4,463} = 6.63, p < 0.001 \); memory: \(F_{4,459} = 4.59, p = 0.001 \)), supported by significant differences of the MCI and AD, but not the SCD and AD-rel groups, from healthy controls (see Table 3).

<table>
<thead>
<tr>
<th></th>
<th>HC</th>
<th>SCD</th>
<th>MCI</th>
<th>AD</th>
<th>AD-rel</th>
</tr>
</thead>
<tbody>
<tr>
<td>novelty processing (“GLMs_0” vs. “GLMs_00”)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of voxels with LBF > 3</td>
<td>5531.1 ± 3156.2</td>
<td>5127.6 ± 3103.0</td>
<td>4325.3 ± 3525.8</td>
<td>2391.1 ± 1560.5</td>
<td>6080.8 ± 3417.0</td>
</tr>
<tr>
<td>test vs. HC</td>
<td>(t_{325} = 1.14, p = 0.255)</td>
<td>(t_{200} = 2.51, p = 0.013^*)</td>
<td>(t_{147} = 4.46, p < 0.001^{**})</td>
<td>(t_{172} = -0.99, p = 0.323)</td>
<td></td>
</tr>
<tr>
<td>subsequent memory (“GLMs_12” vs. “GLM_TD_0x1”)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of voxels with LBF >3</td>
<td>1605.1 ± 1454.6</td>
<td>1694.7 ± 1404.5</td>
<td>1045.1 ± 1001.5</td>
<td>800.1 ± 951.4</td>
<td>1636.8 ± 1656.0</td>
</tr>
<tr>
<td>test vs. HC</td>
<td>(t_{322} = -0.55, p = 0.582)</td>
<td>(t_{197} = 2.93, p = 0.004^{**})</td>
<td>(t_{143} = 2.39, p = 0.018^*)</td>
<td>(t_{169} = -0.12, p = 0.903)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Effects of novelty processing and subsequent memory. Mean and standard deviations for number of voxels exceeding a log Bayes factor of 3 (approximately, a Bayes factor of 20) in Bayesian model comparisons testing for novelty and memory effects, along with two-sample t-tests against healthy controls (rows “test vs. HC”).
Figure 2. Effects of novelty processing and subsequent memory. Selected-model maps, showing (A) voxels with group-level preference in favor of the family of models separating novel and pre-familiarized images, against the family of models not considering novelty, and (B) voxels with group-level preference in favor of memory models, against the baseline GLM. Three sagittal slices (x-coordinates given at the left), roughly equal to those used in results display in the original study, are shown for each subject group (sample size given on top) Colored voxels indicate a higher estimated frequency (A) of the model family “GLMs_0” (novelty and master regressor), rather than the model family “GLMs_00” (both regressors collapsed), and (B) of the model family “GLMs_12” (one or two memory regressors), rather than the model “GLM_TD_0x1” (no memory effect). This figure corresponds to Figure S3B and Figure 3A from the original publication.
3.4. Number of regressors effect increases across diagnostic groups

Among the GLMs modeling subsequent memory, we additionally tested for the influence of the number of regressors used to model the SME, which increases from the parametric memory models (1 parametric modulator per model) to the categorical memory models (2, 3 or 5 regressors; see Table 4). To this end, we calculated the LFE for each of these model families and subtracted the LME of the baseline GLM (0 memory regressors) to compute LBF maps in favor of memory models against a no-memory model. The rationale behind this was that some models assuming a memory effect might be too complex, thus performing even worse than memory-invariant models (see Soch et al., 2021a, Fig. 3B).

Note that the categorical model with five memory regressors (“GLM_5”) could only be estimated when each of the five behavioral response options occurred at least once. Therefore, these analyses were based on a subset of the participants (total N = 248; for N by group, see Figure 3). This procedure led to a very small N for the AD group, making the results for this group potentially less generalizable.

The LBF maps were subjected to a one-way ANOVA model with the four-level within-subject factor number of regressors (see Figure 3A). There was a main effect of number of regressors throughout the whole brain (p < 0.05, FWE-corrected; results not shown). By performing a conjunction analysis between (i) a contrast of “GLMs_1” and “GLMs_2” against baseline and (ii) a t-contrast linearly decreasing with number of regressors (see Figure 3B), a global maximum was identified in the original study (see Soch et al., 2021a, Fig. 3B). From the coordinates of that global maximum ([x, y, z] = [-30, -85, 26]; MNI coordinates in mm), LBFs were extracted to calculate parameter estimates, standard deviations and statistics for the linear contrast (see Figure 3B). These showed that GLMs with one or two memory regressors outperformed the memory-invariant model in the HC, SCD, and AD-rel groups, while they performed equally or even worse than the memory-invariant baseline GLM in the MCI and AD groups (see Figure 3B).
Figure 3. Influence of number of regressors. (A) Design matrix of a second-level GLM in which log Bayes factor (LBF) maps comparing models with 1, 2, 3 or 5 memory regressors against the baseline GLM were submitted to a one-way ANOVA with dependencies between levels (here: number of regressors). A conjunction contrast of a significant memory effect (contrast “9”) and a significant linear decrease of LBF with number of regressors (contrast “8”) was used to identify coordinates of a global maximum in the original study. (B) Average LBFs from these coordinates in each group, along with t-statistics from the contrast testing for linear decrease of LBF with number of regressors. Bar plots depict contrasts of parameter estimates of the group-level model; error bars denote 90% confidence intervals (computed using SPM12). Note that this analysis could only be run for a subset of the participants, namely all those subjects that used the full range of behavioral responses, such that “GLM_5” could be fitted, hence the lower sample sizes in comparison to the other analyses (cf. Table 1). This figure corresponds to Figure 3B from the original publication.
3.5. Parametric outperform categorical models in memory-related areas

When treating GLMs with one parametric modulator describing subsequent memory ("GLMs_1") and categorical GLMs using two regressors for remembered vs. forgotten items ("GLMs_2") as model families (i.e., calculating voxel-wise cvLFEs and comparing the two families via group-level cvBMS), we observed a preference for parametric GLMs throughout the memory network (see Figure 4A), especially in regions that also showed a novelty effect (cf. Figure 2A). The overall preference for parametric models was present in all diagnostic groups and extended to almost all voxels in the MCI and AD groups (see Figure 4A).

Within the family of parametric memory models, we additionally compared theoretical GLMs ("GLMs_1t") to empirical GLMs ("GLMs_1e"). Comparing these two sub-families via group-level cvBMS, we found an almost whole-brain preference for the empirical GLMs (see Figure 4B). This observation is in accordance with the original study with HC only (Soch et al., 2021a, Section 4.3) and was independent of disease status (see Figure 4B).
Figure 4. *Comparison of memory models.* Selected-model maps, showing (A) voxels with group-level preference in favor of parametric models of the subsequent memory effect, using parametric modulators, against categorical models, separating response options, and (B) voxels with group-level preference in favor of empirical parametric models, using data-driven transformations, against theoretical models, using *a priori* defined transformations. The layout of the figure follows that of Figure 2. Colored voxels indicate a higher estimated frequency (A) of the model family “GLMs_1” (one memory regressor), rather than the model family “GLMs_2” (two memory regressors), and (B) of the model family “GLMs_1e” (empirical modulators), rather than the model family “GLMs_1t” (theoretical modulators). This figure corresponds to Figure 4 from the original publication.
3.6. Model preferences within model families are replicated

Following the observation that models with one or two memory regressors outperform the memory-invariant model in large portions of the temporo-parieto-occipital memory network (see Figure 2), we aimed to identify the optimal models within these different families. Within all sub-families of the memory models, we observed clear model preferences, consistent with observations in the original study (Soch et al., 2021a, Section 4.4):

- Among the two-regressor categorical GLMs, there was a clear preference for the model categorizing images with later neutral responses (response “3”) as forgotten items (“GLM_2-nf”), rather than either categorizing them as remembered items or randomly sampling neutral images as remembered or forgotten (see Figure 5A).

- Among the GLMs with theoretically based parametric modulators calculated, there was a clear preference for the model using an arcsine transformation of subsequent memory reports (“GLM_1t-a”) – which puts a higher weight on definitely remembered and forgotten items (responses “5” and “1”) –, rather than either a linear or a sine-transformed subsequent memory report (see Figure 5B). However, this preference was weaker in the AD group, possibly due to a general deterioration of memory effects, in addition to a probably larger variance due to the relatively small size included individuals (N = 21).

- Within the GLMs with parametric modulators estimated from memory responses separately for each single subject, there was a clear preference for the model using the probability of “old” item given memory response as PM (“GLM_1e-ip”) over either employing the probability of memory response given “old” item as PM or estimating the conditional probability via a logistic regression model (see Figure 5C).
Figure 5. Winning models within model families. Selected-model maps in favor of (A) the GLM treating neutral images as forgotten items (“GLM_2-nf”), compared to the other two-regressor models (“GLM_2-nr”, “GLM_2-ns”), (B) the GLM using an arcsine-transformed parametric modulator (“GLM_1t-a”), compared to the other theoretical-parametric models (“GLM_1t-l”, “GLM_1t-s”), and (C) the GLM using an inverse probability parametric modulator (“GLM_1e-ip”), compared to the other empirical-parametric models (“GLM_1e-cp”, “GLM_1e-Ir”). The layout of the figure follows that of Figure 2. Due to clear model preferences, only one (the most medial) slice is shown for each comparison. This figure corresponds to Figure 5 from the original publication.
3.7. Novelty and memory parameter estimates reflect model preferences

Finally, in addition to the group-level Bayesian model selection – which informs us about the relative quality of different GLMs (e.g. parametric vs. categorical models) in explaining the measured BOLD signals –, we also performed group-level Frequentist statistical tests to probe statistically significant effects of task manipulations (novelty processing and subsequent memory) within each diagnostic group.

Specifically, we statistically tested for significantly positive or negative effects on (i) the novelty contrast from the GLM with arcsine-transformed PM ("GLM_1t-a")⁵, (ii) the memory regressor from the parametric GLM with arcsine-transformed PM and (iii) from the parametric GLM with inverse probability PM as well as (iv) the memory contrast from the categorical GLM categorizing neutral responses as forgotten. All analyses were performed using F-contrasts in SPM, and a stringent family-wise error (FWE) correction at voxel level was applied (FWE, p < 0.05, k = 10). We observed two general patterns:

- First, the voxels showing statistically significant effects in a particular fMRI contrast showed a large overlap with those exhibiting model preferences in the respective model comparison. This pattern was found for both, novelty processing (cf. Figure 6A vs. Figure 2A) and subsequent memory (cf. Figure 6B vs. Figure 2B), and statistical significances are generally a bit stronger than model preferences (cf. Figure 6 vs. Figure 2).

- Second, there was a decline of novelty and memory effects across the AD risk spectrum, with (i) prototypical memory network activations in the HC, SCD, and AD-rel groups, (ii) reduced novelty effects and largely absent memory effects in individuals with MCI, and (iii) almost non-identifiable effects of both novelty and subsequent memory in AD patients (see Figure 7 and Supplementary Figures S10-S13).

⁵ Note that novelty contrasts from other models give rise to very similar results, since memory models of interest did not differ in their description of the novelty effect.
Figure 6. Novelty and memory effects from winning GLM. On the second level, a one-sample t-test was run across parameter estimates obtained from (A) the novelty contrast (novel vs. master images) and (B) memory contrast (parametric modulator) of the GLM using the arcsine-transformed PM. In SPM, statistical inference was corrected for multiple comparisons (FWE, p < 0.05, k = 10). Colored voxels indicate (A) significant differences between novel and master images and (B) significant non-zero effects of the transformed memory response, on average across subjects from the respective participant group. This figure corresponds to Figure 7A and 7B from the original publication.
4. Discussion

In this study, we have applied cvBMS to fMRI data obtained during a visual novelty and memory encoding paradigm in older healthy controls (HC) and in individuals with AD or at an increased risk state (SCD, MCI, AD-rel). While we were able to replicate earlier findings regarding a superiority of parametric subsequent memory fMRI models (Soch et al., 2021a) in HC as well as in the SCD and AD-rel groups, we found that memory-invariant models largely outperformed subsequent memory models in individuals with MCI and AD and that manifest AD was associated with an additionally diminished novelty response.

4.1. Utility of parametric subsequent memory models in healthy older adults

We have previously demonstrated that subsequent memory models with one or two memory regressors are superior to memory-invariant models in healthy young and older adults and that, among the subsequent memory models, parametric models outperform categorical models (Soch et al., 2021a). In the present study, we were able to largely replicate this pattern of model preferences in the group of older healthy controls and also in individuals with SCD and in healthy relatives of AD patients. Assuming a novelty effect (i.e., a difference between novel and pre-familiarized master images) improves model quality in an extensive network including parietal, occipital and temporal cortices (hippocampus, parahippocampal and middle occipital gyri, MOG) as well as parts of the default mode network (precuneus, temporo-parietal junction, TPJ; see Figure 2A). Parts of this network further exhibited improved model quality when assuming a subsequent memory effect (see Figure 2B), particularly when employing a parametric subsequent memory model (see Figure 4A). As in our original study, BMS favored the model using an arcsine-transformed memory regressor among the theoretical parametric models (see Figure 5B), and the model using the inverse probability among the empirical models, (see Figure 5C).

As model family selection favored empirical over theoretical models, one might conclude that the model using the inverse probability would be the best-fitting model. However, it should be noted that a direct comparison of the two models in the original study yielded inconclusive results (Soch et al., 2021a). Furthermore, in all diagnostic groups, there were participants with a high number of (high-confidence) misses (see Figure 1). In such a situation, high-confidence hits and misses would both contribute...
to the “hits”, whereas items with low-confidence judgments would contribute to the “misses” of a regressor based on the inverse probability. This would rather reflect a participant’s response confidence than actual memory performance and thus constitute, at best, a questionable index of subsequent memory, despite providing a good model fit. Furthermore, different participants’ parametric modulators also operate at different scales which limits across-subject interpretability of their parameter estimates. High variability of response patterns among study participants would result in potentially large differences of the inverse probability regressor across subjects and possibly diagnostic groups, making group-level analyses difficult to interpret. We therefore recommend using the arcsine-transformed regressor that, like the inverse probability regressor, puts higher weight on high-confidence versus low-confidence hits which typically show more robust subsequent memory effects (Rugg et al., 2015; Hayes et al., 2017).

4.2. Decline of subsequent memory and novelty responses across the AD risk spectrum

Across the AD risk spectrum, we generally observed a progressive deterioration of memory model quality, with the effects of subsequent memory seen in HCs being largely preserved in the SCD and AD-rel groups, but practically absent in the MCI and AD groups (see Figures 2B/6B and Supplementary Figures S11-S13). Considering the rarity of studies reporting an actual subsequent memory effect rather than an encoding vs. baseline comparison (often a novelty effect) in patients with AD or MCI (Browndyke et al., 2013; Billette et al., 2022), our results point to the inherent difficulty of measuring a robust successful encoding response in these populations. In the group of AD patients, the absence of a robust fMRI effect (see Figure 6) was mirrored by a disrupted relationship between subsequent memory report (1-5) and item type (old vs. new) at the behavioral level (see Figure 1). This suggests that, with reduced behavioral accuracy, the predictive value of neural signals with respect to later remembering and forgetting also drops, such that fMRI responses do not covary with subsequent memory reports when the latter most likely reflect mere guessing, at least to a considerable proportion.

Despite showing a preserved, albeit diminished, relationship between subsequent memory report and item type (see Figure 1), individuals with MCI still exhibited, similarly to AD patients, a preference for memory-invariant models over subsequent
memory models (see e.g. Figures 2B and 3B). This may be best explained by the notion that individuals with MCI, by definition, show clinically measurable deficits in memory performance (Petersen et al., 1999), and are thus likely to also exhibit higher guessing rates and thereby a decreased signal-to-noise ratio in fMRI subsequent memory models. On the other hand, not all individuals diagnosed with MCI eventually convert to AD (Grundman, 2004) which might be of importance when deriving putative biomarkers from fMRI data (Soch et al., 2023b).

Effects of novelty processing, on the other hand, were preserved, albeit at a reduced level, in individuals with MCI, but largely absent in patients with manifest AD (see Figures 2A and 6A). As the expression of a novelty effect requires prior successful familiarization of the baseline images (here called “master” images), we suggest that, at the MCI stage, encoding can still take place to some degree, for example with repeated presentation as was done with the master images. In the AD patients, on the other hand, familiarization might have been less effective, resulting in a poorer ability to distinguish novel from pre-familiarized images.

Despite the largely absent subsequent memory effect in the MCI and AD groups, the preference for parametric over categorical models of the subsequent memory effect was also evident in the MCI and AD groups and possibly even more pronounced than in the HC and SCD groups (see Figure 4A). In our view, the most parsimonious explanation for this observation is that, due to a pronounced reduction or even absence of the memory effect in the MCI and AD groups, BMS will inherently favor the parametric models due to their lower complexity.

The same pattern as in healthy older controls was, at least qualitatively, also observed in individuals with SCD and in healthy older relatives of patients with AD (see Figures 2, 3, 4, 6). Compatibly, individuals with SCD and healthy relatives also showed behavioral memory performance and fMRI signals comparable to that of healthy controls (see e.g. Figure 1 and 6). This points out the need to stratify SCD into those with subjective complaints and normal performance vs. those with subjective complaints and sub-normal performance (Koppara et al., 2015), possibly based on amyloid pathology (Jessen et al., 2022; Soch et al., 2023b). Like the SCD group, healthy relatives often showed model preferences and activity patterns qualitatively identical to those of HCs (see e.g. Figures 2, 3 and 6), consistent with AD relatives in the DELCODE study not significantly differing from HCs in terms of MMSE total (see Table 1), NPT global score, the PACC5 neuropsychological composite score, or ApoE
genotype (see Soch et al., 2023b). Thus, the overall preserved patterns of model preference in the SCD and AD-rel groups suggest that moderately increased clinical (SCD) or genetic (AD-rel) risk for AD is not per se associated with a disruption of functional memory network integrity.

4.3. Limitations and directions for future research

The primary benefit of this investigation lies in the use of cvBMS as an objective and unbiased procedure for voxel-wise fMRI model selection which accounts for both, model accuracy and model complexity, and allows for non-nested model comparison (unlike statistical significance tests on additional regressors; see Soch et al., 2016). A key limitation in this approach, however, is that cvBMS only provides information about the model quality without allowing for direct inferences on the sign or magnitude of a given regressor or contrast. For example, the preference for novelty or subsequent memory models within the default mode network (DMN) in a memory-impaired older person might originate from the prototypical encoding-related deactivation observed in healthy young and also cognitively unimpaired older individuals (Kim, 2011; Maillet & Rajah, 2014; Kizilirmak et al., 2023), but also from atypical DMN activations, which are often found in individuals with memory impairment (Maillet & Rajah, 2014; Billette et al., 2022).

Another limitation, more specific to the present study, is that participant groups significantly differed regarding age range, gender distribution, acquisition site (see Table 1), ApoE genotype and cognitive measures (MMSE total, NPT global and PACC5 scores; see Soch et al., 2023b). While some of these differences are a direct consequence of the study design (e.g. AD patients show lower cognitive performance than HCs), other variables constitute confounds which cannot be as easily integrated into cvBMS as, for example, in a statistical design like a linear regression analysis.

We suggest that, to overcome at least some of the aforementioned limitations, future studies should assess the potential of reductionist or whole-brain multivariate data analysis approaches to both test for pathology-related deviations from more prototypical fMRI activations and assess the influence of potential risk factors (e.g. amyloid pathology) or confounding variables (e.g. study site). To this end, we have employed contrast maps obtained with the winning theoretical parametric GLM (i.e. the model using the arcsine-transformed memory regressor) to calculate single-value scores (Soch et al., 2021b; Richter et al., 2023). In a direct follow-up to the present
study, we describe the extent to which these scores can further differentiate between the diagnostic groups in the clinical sample described here (Soch et al., 2023b).

Furthermore, we are currently working on improved computational modeling of the subsequent memory reports, which could be used in the future to differentiate participant groups based on purely behavioral response patterns (Soch et al., 2022b).

4.4. Conclusions

Taken together, we could replicate the preference for parametric over categorical models of the fMRI subsequent memory effect in healthy older adults (Soch et al., 2021a) and demonstrate that this pattern also applies to cognitively unimpaired individuals at increased risk for Alzheimer’s disease (SCD, AD-rel). In individuals with MCI or manifest AD, on the other hand, memory-invariant models outperform any model considering the subsequent memory effect. Our results suggest that voxel-wise memory-related fMRI activity patterns in MCI or AD should be interpreted with caution and point to the need for additional or alternative analyses strategies, such as whole-brain approaches, in these populations.

5. Notes

5.1. Ethics Statement

All participants and informants gave written informed consent to participate in the study in accordance with the Declaration of Helsinki. The DELCODE study protocol was approved by the ethics committees of the medical faculties of all recruiting sites: Berlin (Charité, University Medicine), Bonn, Cologne, Göttingen, Magdeburg, Munich (Ludwig-Maximilians-University), Rostock, and Tübingen. The ethics approval process was coordinated by the ethics committee of the medical faculty of the University of Bonn (registration number 117/13). DELCODE was registered as a clinical trial with the German Clinical Trials Register (https://www.bfarm.de/EN/BfArM/Tasks/German-Clinical-Trials-Register/_node.html) under the study ID DRKS00007966.

5.2. Data and code availability

Data from the DELCODE study are available via individual data sharing agreements with the DELCODE study board (for more information, see https://www.dzne.de/en/research/studies/clinical-studies/delcode/). The code used for
the Bayesian model selection of first-level fMRI data from the FADE paradigm has been published previously (Soch et al., 2021b) and is available via GitHub (https://github.com/JoramSoch/FADE_BMS).

5.3. Acknowledgments
We would like to thank all the participants in the DELCODE study and all the technical, medical and psychological staff for making this study possible. Special thanks go to the Max Delbrück Center for Molecular Medicine (MDC) within the Helmholtz Association, the Center for Cognitive Neuroscience Berlin (CCNB) at the Free University of Berlin, the Bernstein Center for Computational Neuroscience (BCCN) Berlin, the MR research core facility of the University Medical Center Göttingen (UMG) and the MR research center of the University Hospital Tübingen (UKT).

5.4. Funding
This work was supported by the German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE; reference number BN012). The authors further received support from the Deutsche Forschungsgemeinschaft (CRC 1436, A05 and Z03) and from the European Union and the State of Saxony-Anhalt (Research Alliance “Autonomy in Old Age”).

5.5. Conflicts of Interest
F. Jessen has received consulting fees from Eli Lilly, Novartis, Roche, BioGene, MSD, Piramal, Janssen, and Lundbeck. E. Düzel is co-founder of neotiv GmbH. The remaining authors report no disclosures relevant to the manuscript.
6. Appendix

<table>
<thead>
<tr>
<th>model name</th>
<th>event duration</th>
<th>novel/ master images</th>
<th>indoor/ outdoor images</th>
<th>parametric modulator ((x = \text{response}))</th>
<th>categorical regressors ((1-5 = \text{responses}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLM_P0_00x1</td>
<td>0 s</td>
<td>collapsed</td>
<td>collapsed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLM_P0_00x2</td>
<td>0 s</td>
<td>collapsed</td>
<td>separate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLM_P0_0x1</td>
<td>0 s</td>
<td>separate</td>
<td>collapsed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLM_P0_0x2</td>
<td>0 s</td>
<td>separate</td>
<td>separate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLM_TD_00x1</td>
<td>2.5 s</td>
<td>collapsed</td>
<td>collapsed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLM_TD_00x2</td>
<td>2.5 s</td>
<td>collapsed</td>
<td>separate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLM_TD_0x1</td>
<td>2.5 s</td>
<td>separate</td>
<td>collapsed</td>
<td></td>
<td>“baseline model” w.r.t. memory</td>
</tr>
<tr>
<td>GLM_TD_0x2</td>
<td>2.5 s</td>
<td>separate</td>
<td>separate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GLMs with variations of no interest

GLMs with subsequent memory effect

<table>
<thead>
<tr>
<th>model name</th>
<th>event duration</th>
<th>novel/ master images</th>
<th>indoor/ outdoor images</th>
<th>parametric modulator ((x = \text{response}))</th>
<th>categorical regressors ((1-5 = \text{responses}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLM_1e-ip</td>
<td>2.5 s</td>
<td>separate</td>
<td>collapsed</td>
<td>(2 \cdot \Pr(x</td>
<td>"old") - 1)</td>
</tr>
<tr>
<td>GLM_1e-cp</td>
<td>2.5 s</td>
<td>separate</td>
<td>collapsed</td>
<td>(2 \cdot \Pr("old'</td>
<td>x) - 1)</td>
</tr>
<tr>
<td>GLM_1e-lr</td>
<td>2.5 s</td>
<td>separate</td>
<td>collapsed</td>
<td>(2 \cdot \hat{\rho}("old'</td>
<td>x) - 1)</td>
</tr>
<tr>
<td>GLM_1t-l</td>
<td>2.5 s</td>
<td>separate</td>
<td>collapsed</td>
<td>(\frac{x - 3}{2})</td>
<td></td>
</tr>
<tr>
<td>GLM_1t-a</td>
<td>2.5 s</td>
<td>separate</td>
<td>collapsed</td>
<td>(\arcsin\left(\frac{x - 3}{2}\right) \cdot \frac{2}{\pi})</td>
<td></td>
</tr>
<tr>
<td>GLM_1t-s</td>
<td>2.5 s</td>
<td>separate</td>
<td>collapsed</td>
<td>(\sin\left(\frac{x - 3}{2} \cdot \frac{\pi}{2}\right))</td>
<td></td>
</tr>
<tr>
<td>GLM_2-nf</td>
<td>2.5 s</td>
<td>separate</td>
<td>collapsed</td>
<td>(1+2+3-4+5)</td>
<td></td>
</tr>
<tr>
<td>GLM_2-nr</td>
<td>2.5 s</td>
<td>separate</td>
<td>collapsed</td>
<td>(1+2-3+4+5)</td>
<td></td>
</tr>
<tr>
<td>GLM_2-ns</td>
<td>2.5 s</td>
<td>separate</td>
<td>collapsed</td>
<td>(1+2+(3)-(3)+4+5)</td>
<td></td>
</tr>
<tr>
<td>GLM_3</td>
<td>2.5 s</td>
<td>separate</td>
<td>collapsed</td>
<td>(1+2-3+4+5)</td>
<td></td>
</tr>
<tr>
<td>GLM_5</td>
<td>2.5 s</td>
<td>separate</td>
<td>collapsed</td>
<td>(1-2-3-4-5)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Model space for GLM-based fMRI analyses. 8 models without memory effects varying model features of no interest (top) and 11 models varying by the way how memory effects are modelled (bottom). All parametric modulators are specified, such that the categorical responses \(\{1, 2, 3, 4, 5\}\) are mapped into the range \([-1, +1]\). This table reproduces Table 1 from the original publication which is available under the license [CC-BY-NC-ND 4.0](https://creativecommons.org/licenses/by-nc-nd/4.0/).
7. References

