Dietary burden of phosphorus and aluminum concentrations of ready-to-eat wheat flour tortillas exceed that of corn tortillas: Implications for patients with renal or cardiovascular disease

Kate C. Chianga, Robert A. Yokelb*, Jason M. Unrinec,d, Kamyar Kalantar-Zadehe, Ajay Guptae*

aUniversity College Dublin School of Medicine, Dublin, Ireland

bPharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, 40536-0596

cPlant and Soil Sciences, University of Kentucky, Lexington, Kentucky, 40546-0091

dKentucky Water Research Institute, University of Kentucky, Lexington, Kentucky, 40506-0107

eDivision of Nephrology, Hypertension and Kidney Transplantation and Department of Medicine, University of California Irvine (UCI) School of Medicine, USA

* Corresponding author

Ajay Gupta, M.B.B.S., M.D.
Division of Nephrology, Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI) School of Medicine
Orange, CA 92868
Emails: ajayg1@hs.uci.edu
Phone: (562) 412-6259

Robert A. Yokel, Ph.D.
Department of Pharmaceutical Sciences
University of Kentucky Academic Medical Center
335 Todd (College of Pharmacy) Building
789 S. Limestone
Lexington, KY, 40536-0596, US
e-mail: ryokel@uky.edu
ORCiD: 0000-0001-5188-3972

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Ready-to-eat, shelf-stable tortillas contain several phosphorus- and aluminum-containing additives that may increase risk of adverse events in patients with chronic kidney disease (CKD). **Aim:** The present study analyzes and compares the elemental content of wheat flour and corn tortillas with special reference to dietary aluminum and phosphorus burden.

Methods: Twenty-one elements were quantified by ICP-MS and ICP-OES in 14 corn and 13 wheat flour tortilla brands purchased from local supermarkets in Southern California. **Results:** The aluminum and phosphorous concentrations of many ready-to-eat tortilla brands can present a daily dietary load of up to approximately 100 mg aluminum and 700 mg phosphorus based on an average daily intake of 330 grams. Ready-to-eat wheat flour tortillas generally had more phosphorus than corn tortillas. Tortillas with aluminum listed as a food additive contained a higher aluminum content than those without such listing, exceeding the tolerable weekly dietary intake. **Conclusions:** Despite conventional wisdom that CKD patients should avoid phosphorus-rich corn tortillas, ready-to-eat wheat flour tortillas consistently had a higher aluminum and phosphorus content due to additives. CKD patients and health care providers should pay attention to food labels, and regulatory authorities should monitor the use of approved food additives and mandate food label warnings for patients at risk.

Keywords: aluminum; chronic kidney disease; food additives; phosphorus, dietary; tortilla

Abbreviations: P, Phosphorus; Al, aluminum; CKD, chronic kidney disease; TWI, tolerable weekly intake; ICP-MS, inductively coupled plasma mass spectrometry; ICP-OES, inductively coupled plasma optical emission spectroscopy
Introduction

Phosphorus is the second most abundant mineral in the body and plays a key role in essential biological processes including cell metabolism, energy generation, acid-based balance and bone calcification. Grains are the top source of dietary phosphorous followed by meat and milk products in the US diet. Excess phosphorus intake common to westernized diets is well-known to be associated with cardiovascular disease and mortality in the general population as demonstrated in the NHANES III study. With a decrease in urinary phosphorus excretion, renal phosphorus retention is of great concern in patients with chronic kidney disease (CKD). High serum phosphorus levels and secondary hyperparathyroidism are key contributors to hyperparathyroidism associated bone disease, vascular calcification, and cardiovascular morbidity and mortality in CKD. Therefore, dietary phosphorus restriction has been recommended for patients with cardiovascular disease or CKD.

High prevalence of diabetes and CKD among the Hispanic population have underlined the importance of dietary phosphate restriction in the Latin American diet. The tortilla, originally developed by early Mesoamerican civilizations, is a flat, round, unfermented bread produced from wheat flour or lime (CaO)-cooked maize (corn). Tortillas are a staple food in Mexico and Central America and have gained widespread popularity around the world including the US. In 2001, per capita intake of tortillas was 230-330 grams per day in Mexico, and 16.4 grams per day in the US. Tortillas are traditionally made fresh at home from flour derived from either corn or maize (Spanish maíz) or wheat (Spanish harina; Latin farina). However, like other bread products in the last century, tortillas have become commercially available and contain food additives to prolong shelf life and leavening agents to rise and soften the bread. These may provide additional sources of phosphorus and aluminum. Single 6-inch corn and wheat tortillas lacking preservatives contain between 75 to 95 mg and 45 to 65 mg phosphorus respectively per 30 grams serving. Therefore, dietary guidelines for CKD or dialysis patients conventionally recommend wheat tortillas rather than corn tortillas. However, the phosphorus content of commercially-available corn and wheat tortillas with phosphorous-containing food additives has not been reported in the literature to our knowledge.
Our study aimed to demonstrate whether additives consistent with food labels result in a significant amount of phosphorus in ready-to-eat flour tortillas such that their total phosphorus content would exceed that in ready-to-eat corn tortillas. Additionally, leavening agents comprising aluminum are commonly used to make ready-to-eat wheat but not ready-to-eat corn tortillas. Consistent with the ingredients on the label, aluminum additives are associated with high aluminum content in ready-to-eat flour tortillas. This is of concern in the general population and in CKD patients given the potential role of aluminum in neurological and neurodegenerative diseases including dialysis dementia.20-22

Methods

A total of 25 different brands of tortillas, including 13 flour and 12 corn, were purchased in October 2019 and March 2020 from local supermarkets in Southern California including Target, food4less, Walmart and Ralph’s, as well as fast food chains including Del Taco and Taco Bell. Each tortilla was assigned a code indicating whether it was corn- or flour-based and hard or soft. Each tortilla was weighed. The weights (mean ±S.D.) of the soft corn, soft flour, and hard corn tortillas were 27.7 ±7.7, 42.3 ±12.9, and 16.5 ±2.3 grams, respectively.

A ~ 1 gram sample was removed from each tortilla and weighed, (1.14 ± 0.09 g, mean ± S.D.). A ~250 mg subsample was removed, dried to a constant mass, accurately weighed, and digested using trace-metal grade HNO₃ in sealed Teflon vessels in a CEM MARS Express microwave digestion system (U.S. EPA method 6020), and analyzed by ICP-MS to quantify aluminum (Agilent 7900, Agilent Technologies, Inc., Santa Clarita, CA; U.S. EPA method 6020b) with germanium added as an internal standard and analyzed compared to NIST-traceable standards. The samples were also analyzed by ICP-OES (Agilent 5110 SVDV; U.S. EPA Method 6010d) to quantify phosphorus with yttrium added as an internal standard and analyzed compared to NIST-traceable standards. NIST standard reference material 1515, Apple Leaves, was used to verify the accuracy of the method. The method detection limits (MDL) are shown in Table S1.

Each tortilla was tested for 21 elements (Ag, Al, As, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Se, Sr, U, V, and Zn) (Figure S1 and Table S1). Food labels, either on the packaging or
from online searches, were compiled to identify the ingredients, focusing on phosphorus- and aluminum-containing food additives. Multiple group comparisons were analyzed by running one-way ANOVA with Tukey’s post hoc test.

Results

The phosphorus and aluminum concentrations of store-bought, ready-to-eat, wheat and corn tortillas were quantified. Wheat flour tortillas generally contained approximately 50% more phosphorus (per 30 grams serving) than corn tortillas when a source of phosphorus was listed on the ingredients label (Figure 1). Notably, wheat flour tortillas from the brands Old El Paso, La Banderita, Great Value and Calidad contained approximately double the average phosphorus content of corn tortillas even when the latter listed phosphorus containing additives on the label (Table S2).

![Phosphorus (P) Content of Commercially Available Tortillas](image)

Figure 1. Total elemental phosphorus (P) content (mg P/30 grams serving) of commercially available, ready-to-eat tortillas, with or without P-containing food additives as per the label, including soft wheat, soft corn and hard corn tortillas. *P<0.05
The tested brands of corn tortillas had low aluminum content consistent with lack of aluminum-containing food additives reported on the label (Figure 2). On the other hand, wheat flour tortillas with reported aluminum additives had markedly elevated amounts of aluminum per 30 gram serving (Figure 2). Surprisingly, many brands of wheat flour tortillas that did not list aluminum additives on the label also had an aluminum content comparable to Calidad brand tortillas that listed aluminum on the label (Table S3). In general, wheat tortillas contain more aluminum than corn tortillas even in the absence of aluminum additives listed on the label (0.46 ±0.18 and 0.14 ±0.11, respectively; mean ±SD) (Table S4).

Figure 2. Aluminum (Al) content (mg Al/30 g serving) of commercially available, ready-to-eat tortillas, with or without Al-containing food additives as listed on the label, including soft wheat, soft corn and hard corn tortillas. *P<0.05 **P<0.01
Four brands of hard corn tortillas were studied; Del Taco, La Pericos, Old El Paso, and Taco Bell. The label on all four did not list any phosphorus- or aluminum-containing food additives. The phosphorus content ranged from 53 to 69 mg per 30 gram serving. This was comparable to soft wheat tortillas with phosphorus additives (63 ± 22 mg per 30 gram serving; mean ± S.D.) (Table S2). The aluminum content ranged from 0.15 to 0.31 mg per 30 gram serving, less than soft wheat tortillas with aluminum additives (8.86 ± 8.91 mg per 30 gram serving; mean ±S.D.) (Table S3) and comparable to soft corn tortillas (Table S4).

One homemade wheat flour tortilla was tested, and the phosphorus and aluminum concentrations were comparable to wheat flour tortillas that had added phosphorus but not aluminum salts (Table S2 and Table S4).

Discussion

This study describes the aluminum and phosphorus content of homemade, and ready-to-eat wheat and corn flour tortillas obtained from supermarkets and food franchises in Southern California. The conventional wisdom has been that corn tortillas should be avoided in patients with chronic kidney disease because of the intrinsically high phosphorous content of corn.23 The website for Davita Kidney Care reports that the phosphorous content per 30 grams portion for a six-inch corn tortillas is 75 mg while the flour tortilla made without baking powder is 20-37 mg.24 However, our findings show that wheat flour tortillas with approved food additives can have a phosphorous and aluminum content of up to about 90 mg and 20 mg per 30 gram serving, respectively. These findings are of great public health importance especially in countries with Hispanic and Latin American populations.

Homemade tortillas have a shelf-life of approximately 2-3 days while packaged flour and corn tortillas have a shelf-life of approximately 7 days after the expiration date.25 Unopened flour tortillas with preservatives have a shelf-life that is 3 times longer than corn tortillas.26 To prolong the shelf life, the following preservatives are commonly added to tortillas: calcium propionate, propionic acid, sorbic acid, potassium sorbate, fumaric acid, citric acid, benzoic acid, phosphoric
acid, lime, and sodium hydroxide. The addition of numerous preservatives, including phosphoric acid, sodium aluminum phosphate, sodium acid pyrophosphate and calcium propionate, to flour tortillas may have contributed to higher levels of phosphorus in flour tortillas than in corn tortillas.

Most adults consume 1-10 mg aluminum daily from natural sources and up to 95 mg from food additives.27 One 30 gram serving of wheat tortilla with aluminum reported on the label contains approximately 8.9 mg of aluminum. Given the per capita tortilla consumption of 230-330 grams per day as reported from Mexico,13 the daily aluminum exposure would be about 68-98 mg of aluminum. With a projected annual growth rate of 3.4%, the global commercial tortilla market will grow from 26 billion in 2022 to approximately 37 billion in 2032,28 thereby increasing aluminum exposure and posing a serious health risk to patients with chronic kidney disease.

In making bread, it is common practice to use a leavening agent such as baking powder. These are variably comprised of the following compounds: sodium bicarbonate (baking soda), monocalcium phosphate and either sodium acid pyrophosphate or sodium aluminum sulfate.29 Even though not all brands tested listed aluminum on the label, we found that at least two brands had aluminum content in the range listed for the brands containing aluminum additives. Therefore, it is possible that the baking powder used in the preparation of these brands with high aluminum content contained an aluminum salt. Moreover, water used to prepare tortillas may contain aluminum concentrations as high as 200 µg/L,30 and may be an additional source of aluminum. We also found a higher average aluminum content in wheat flour tortillas than in corn tortillas. Wheat flour contains about 30-330 µg aluminum per 30 gram serving depending on its source.31-33 Wheat flour has been reported to have a higher aluminum concentration compared to corn flour.31, 34, 35

The cereal and tuber food group mainly comprising corn and flour tortillas makes up approximately 40% of the total energy intake of low-income Mexican agricultural workers.36 The average weight of the tortillas in this study was 35 grams. Given that Mexicans eat an average of 6 tortillas in a day and the tolerable weekly intake (TWI) of aluminum is 1.0 mg Al/kg body weight,37-39 consumption of some soft flour tortillas, e.g., Del Taco, Old El Paso, Romero’s, could easily exceed the TWI. High rates of chronic kidney disease of unknown origin
have been frequently reported in agricultural workers known as mesoamerican nephropathy. Interestingly, toe nail aluminum concentration was almost twice as high in those with acute mesoamerican nephropathy than controls. Therefore, in Central American workers with mesoamerican nephropathy, increased consumption of corn and flour tortillas, especially store-bought ready-to-eat tortillas raises the specter of aluminum toxicity and phosphorus-associated cardiovascular disease.

Conclusion

Contrary to the conventional teaching, ready-to-eat flour tortillas have a higher elemental phosphorous concentration compared to corn (maize) tortillas due to added preservatives and leavening agents. Use of aluminum based leavening agents to make ready-to-eat wheat tortillas confers a higher aluminum concentration compared to corn tortillas. The aluminum and phosphorous concentrations of many ready-to-eat tortilla brands can present a daily dietary load of up to approximately 100 mg aluminum and 700 mg phosphorus based on an average daily intake of 330 grams. Despite conventional wisdom that CKD patients should avoid phosphorus-rich corn tortillas, ready-to-eat wheat flour tortillas consistently had a higher aluminum and phosphorus content due to additives. Patients with CKD should favor homemade over ready-to-eat tortillas and pay close attention to additives listed on the label.

Acknowledgements: The authors gratefully acknowledge Marsha L. Ensor and Shristi Shrestha for their contributions to this research.

This publication was supported by UK-CARES through Grant P30ES026529. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS.

Declaration of interest: The authors report no conflict of interest.

References:

15. Ricci DBM et al. Milling overrides cultivar, leavening agent and baking mode on chemical and rheological traits and sensory perception of durum wheat breads. Scientific Reports. 2017;7(1). http://dx.doi.org/10.1038/s41598-017-14113-5.
17. Yokel RA et al. Aluminum bioavailability from the approved food additive leavening agent acid phosphates, incorporated into a baked good, is lower than from water. Toxicology. 2006;227(1-2):86-93. http://dx.doi.org/10.1016/j.tox.2006.07.014.

38. Food and Agriculture Organization of the United Nations et al. Summary report of the seventy-fourth meeting of JECFA JOINT FAO/WHO EXPERT COMMITTEE ON FOOD ADDITIVES; June 14-23 Rome, Italy2011.

