Title (92/100 characters with spaces): Interim influenza vaccine effectiveness estimates during the 2023 Southern Hemisphere season

Subtitle (58/60 characters with spaces): Influenza vaccine effectiveness in Lima, Peru, 2023

Authors:

(1) J Gonzalo Acevedo-Rodriguez, MD
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú

(2) Carlos Zamudio, MD
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú

(3) Noah Kojima, MD
Centers for Disease Control and Prevention, Atlanta, Georgia, U.S.A

(4) Fiorella Krapp, MD, MSc
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú

(5) Pablo Tsukayama, PhD, MSc
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú

(6) C Stefany Neciosup-Vera, MSc
Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Perú

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
(7) Eduardo Gotuzzo, MD, FACP, FIDSA
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
(8) and the PISAAC working group authors (Elsa González, Giancarlo Sal y Rosas,
Ericka Meza, Paula Arribas, Francesca Ginocchio, Flavia Morán, Renato Cava, Roberto Freire-Esteves, Laura Castro, Ashley Fowlkes, and Eduardo Azziz-Baumgartner).

Keywords: Influenza; Incidence, Lineage, Vaccine effectiveness; Peru

Corresponding Author Contact Information: J Gonzalo Acevedo-Rodriguez, MD.
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martin de Porres, 15102, Lima-Peru
(juan.acevedo@upch.pe).

Abstract
Our findings suggest that a substantial number of people sought care for CLI during an early Southern Hemisphere season during which A/H1N1pdm09 clade 6B.1A.5a.2a viruses predominated. The minority vaccinated benefitted from the A/Victoria/2570/2019 (H1N1)pdm09-like antigen which afforded good protection against illness.

Main Text
Evaluations of vaccine effectiveness (VE) against influenza in the Southern Hemisphere (SH) can assist that region of the world and provide insights into the
anticipated performance of Northern Hemisphere (NH) vaccines. Using population-based surveillance data for COVID-19, we estimated VE against medically attended influenza in Lima, Peru.

From January 1 to July 31, 2023, our population-based surveillance identified patients seeking care at two primary health centers in San Juan de Lurigancho, Lima. Patients presenting with COVID-19-like illness (CLI, defined as onset ≤7 days of ≥2 signs or symptoms, e.g., documented or reported fever, chills, rigors, myalgia, headache, and sore throat) were asked for written consent to participate. Enrolled participants reported preexisting condition and influenza vaccine histories and provided nasopharyngeal swabs for influenza virus and SARS-CoV-2 testing through multiplex qPCR. Whole-genome sequencing was conducted for positive specimens with a cycle threshold value ≤25 using the Illumina Respiratory Virus Panel.

Incidence of medically attended influenza illness was estimated by dividing the number of patients with CLI that consented to participate by the population assigned to the health centers (i.e., 91,801) and adjusting for enrollment (supplement). Patients who self-reported influenza vaccination from May 2022 until >14 days before enrollment were classified as vaccinated. VE against medically attended influenza was calculated using a test-negative design. Cases were defined as patients with a test-positive for influenza by qPCR test and controls as patients test-negative for both influenza and SARS-CoV-2. The study was approved by the institutional review board of Universidad Peruana Cayetano (PRISA repository: EI0002439) Centers for Disease Control and Prevention non-research determination 0900f3eb81ecbe9f.
During study period, 923 (13.9%) of 6,660 persons who sought outpatient care met criteria for CLI, and 567 (61.4%) were enrolled and had testing for influenza viruses and SARS-COV-2 (Table 1). Influenza was detected in 106 (18.7%) as early as January, months before the historical May start of influenza seasons in Lima (Figure 1). Seventy-nine (75%) patients with CLI tested-positive for influenza A and 27 (25%) for B. We sequenced 32 influenza A specimens; 29 (90.6%) were A(H1N1)pdm09 clade 6B.1A.5a.2a (Table 1). The cumulative incidence of medically attended influenza per 1,000 population was 10.1 (95% confidence interval [95%CI]: 8.2–12.0) for influenza A and 3.5 (95%CI: 2.3–4.6) for influenza B. Only 112 (19.7%) patients were vaccinated against influenza. The age and month adjusted VE against medically attended influenza was 65.1% (95%CI: 26.5–83.4); 58.2% (95%CI: 5.1–81.6) for influenza A and 77.6% (95%CI: 0–95.5) for B.

During the 2023 SH season, a substantial number of people sought care for influenza, but incidence was lower than reported among persons seeking care for influenza-like illness from before COVID-19.5 2023 SH VE against influenza was similar to that of the 2022 SH season1,2 and the 2022-2023 U.S. season6 even though A(H1N1)pdm09 clade 6B.1A.5a.2a viruses predominated in 2023 whereas influenza A(H3N2) clade 2.a3 viruses predominated in 2022.7 The A/Victoria/2570/2019 (H1N1)pdm09-like virus in the SH vaccine conferred a 65% risk reduction in medically attended influenza, yet fewer than one in five persons in this evaluation reported receiving an influenza vaccine during 2023.

Our findings are subject to limitations. First, in the absence of healthcare utilization surveys, it is unclear if the population assigned to our clinics always sought
care there versus other clinics. Second, only half of specimens had cycle threshold
value ≤ 25; thus, it is possible that we missed clades. Finally, confounding might remain
in our analysis despite our statistical models.

In conclusion, our findings suggest that mostly unvaccinated people sought care
early during SH season for illnesses predominantly attributable to A/H1N1pdm09 clade
6B.1A.5a.2a viruses. Persons vaccinated benefitted from the A/Victoria/2570/2019
(H1N1)pdm09-like antigen, which afforded good protection against illness. If the same
viruses predominate in the NH, our estimates of 2023 SH influenza vaccine
effectiveness suggest that 2023-2024 NH influenza vaccines, which include a similar
strain composition, could provide similar protection during the upcoming influenza
season.

Declarations:

None.

Funding:

This study was supported by the Centers for Disease Control and Prevention
cooperative agreement award GH00266.

Disclaimer:

The findings and conclusions in this report are those of the authors and do not
necessarily represent the official position of the Centers for Disease Control and
Prevention.

Author Contribution:
CZ and EG had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Data will be shared by contacting the corresponding author upon request for research purposes. JGA-R, CZ, FK, FM, PT and EG conceived and designed the study, EM coordinated laboratory analysis, PT performed genomic sequencing, PA, FG and RC coordinated data collection and management, CSN-V and GSR performed the statistical analysis. All authors wrote and approved the final manuscript. NK and EGL helped draft, edit and review the manuscript. LC, AF and EAB helped interpret findings and edit the manuscript.

Acknowledgements:

None
References

7. GISAID. Real-time tracking of influenza A/H3N2 evolution. 7 Sep 2023,

https://gisaid.org/database-features/influenza-genomic-epidemiology/
Table 1. Influenza test results and seasonal vaccination status among patients presenting in two primary care centers with COVID-19-like illness in Lima, Peru, by selected characteristics (N = 567), January–May 2023

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Enrolled Patients</th>
<th>Influenza test result, no. (%)</th>
<th>p-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total no.</td>
<td>No. (row %) vaccinated*</td>
<td>p-value‡</td>
</tr>
<tr>
<td>Overall</td>
<td>567</td>
<td>112 (19.7)</td>
<td>—</td>
</tr>
<tr>
<td>Age in years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>100</td>
<td>29 (29.0)</td>
<td>0.007</td>
</tr>
<tr>
<td>5 – 59</td>
<td>407</td>
<td>67 (16.5)</td>
<td>0.007</td>
</tr>
<tr>
<td>≥60</td>
<td>60</td>
<td>16 (26.7)</td>
<td></td>
</tr>
<tr>
<td>Preexisting conditions§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One or more condition</td>
<td>116</td>
<td>22 (19.0)</td>
<td>0.91</td>
</tr>
<tr>
<td>No preexisting conditions</td>
<td>451</td>
<td>90 (20.0)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>207</td>
<td>41 (19.8)</td>
<td>1</td>
</tr>
<tr>
<td>Female</td>
<td>360</td>
<td>71 (19.7)</td>
<td></td>
</tr>
<tr>
<td>Influenza test result</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>461</td>
<td>102 (22.1)</td>
<td>—</td>
</tr>
<tr>
<td>Influenza (any)</td>
<td>106</td>
<td>10 (9.4)</td>
<td><0.005</td>
</tr>
<tr>
<td>Influenza A</td>
<td>79</td>
<td>8 (10.1)</td>
<td>0.03</td>
</tr>
<tr>
<td>Influenza B</td>
<td>27</td>
<td>2 (7.4)</td>
<td>0.13</td>
</tr>
<tr>
<td>Influenza sequence result</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tested</td>
<td>50</td>
<td>3 (6.0)</td>
<td>0.08</td>
</tr>
<tr>
<td>A(H1N1) clade 6B.1A.5a.2a</td>
<td>29</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>A(H3N2) clade 3C.2a1b.2a.2a.3</td>
<td>3</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>B/Victoria clade V1A.3a.2</td>
<td>9</td>
<td>2 (22.3)</td>
<td></td>
</tr>
</tbody>
</table>
*Vaccinated: defined as self-reported influenza vaccination from May 2022 until >14 days before enrolment. Self-reporting was used because seasonal influenza immunization is not routinely entered in the national electronic registry.

Nevertheless, we could verify the exact date of vaccination for 87/112 participants and 19 more recalled the month and year of vaccination. According to these data, 96/112 received the 2022 vaccine (May 2022/Apr2023) and 10/112 received the 2023 vaccine. For 6/112, it was unknown if they received the 2022 or the 2023 seasonal vaccine because timing of vaccination was not ascertained.

†Tested using chi square with a significance level of p<0.05. Fisher exact test was used when an expected value was less than 5.

§Preexisting conditions: pregnancy, diabetes mellitus, hypertension, asthma, chronic hepatopathy, chronic neurological, hematological, pulmonary or renal disease, immunodeficiency (including HIV), cardiovascular or cerebrovascular disease, cancer, Down syndrome and other relevant conditions.
Figure 1: Weekly laboratory-confirmed incident influenza cases and positivity rate at two primary care health centers from patients who presented with COVID-19-like illness in Lima, Peru, January–May 2023.