Research Article

Caries Lesion Assessment Using 3D Virtual Models By Examiners with Different Degrees of Clinical Experience

Ioana Porumb a,b, Daniel Corneliu Leucuta c, Marius Banut d, Bogdan Culic e, Ondine Patricia Lucaciu f, Carina Culic g*, Meda-Romana Simu h*, Iulia Clara Badea a, Alexa-Nicole Leghezeu i, Iulia Sandu d, Marion Nigoghossian l

a Department of Preventive Dentistry, Iuliu Hatieganu University of Medicine and Pharmacy, 31 A Iancu str, 400083 Cluj-Napoca, Romania; ioana.chifor@umfcluj.ro, iulia.badea@umfcluj.ro

b SC Chifor Meddent SRL, 9 Gh Doja str, 400 Cluj-Napoca, Romania, ioana_chi@yahoo.com

c Department of Medical Informatics and Biostatistics, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur str, 400349 Cluj-Napoca, Romania, dleucuta@umfcluj.ro

d Babes-Bolyai University, Faculty of Psychology and Educational Sciences, 7 Sindicatelor Street, Cluj-Napoca, Romania marius.banut@ubbcluj.ro, iulia.sandu@stud.ubbcluj.ro.

e Dental Prophodontics and Aesthetics Department, Iuliu Hatieganu University of Medicine and Pharmacy, 32 Clinicilor str, 400006 Cluj-Napoca, Romania, bculic@umfcluj.ro

f Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 15 Victor Babes str, 400012 Cluj-Napoca, Romania, patricia.lucaciu@umfcluj.ro

g * Department of Odontology, Iuliu Hatieganu University of Medicine and Pharmacy, 33 Motilor str, 400001 Cluj-Napoca, Romania, carina.culic@umfcluj.ro

h * Department of Pediatric Dentistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, romana.simu@elearn.umfcluj.ro

i Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, marion.audr.nigoghossian@elearn.umfcluj.ro, leghezeu.alexa.nicole@elearn.umfcluj.ro

Short Title: Caries Lesion Assessment Using 3D Virtual Models

Corresponding Authors:

Carina CULIC

Department of Odontology

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Motilor str, no 33
Cluj-Napoca, Cluj county, 400001, Romania
Tel: +40 740 211 230
E-mail: carina.culic@umfcluj.ro

Corresponding Author 2:
Meda-Romana SIMU
Department of Pediatric Dentistry
University of Medicine and Pharmacy "Iuliu Hatieganu"
Avram Iancu str, no 31
Cluj-Napoca, Cluj county, 400089, Romania
Tel: +40 742 991 898
E-mail: romana.simu@elearn.umfcluj.ro;

Corresponding Author 3:
Ioana PORUMB
Department of Preventive Dentistry
University of Medicine and Pharmacy "Iuliu Hatieganu"
Avram Iancu str, no 31
Cluj-Napoca, Cluj county, 400089, Romania
Tel: +40 744 117 409
E-mail: ioana.chifor@umfcluj.ro;

Number of Tables: 4.
Number of Figures: 1.
Word count: 3630.
Keywords: intraoral scanners; dental caries; diagnostic techniques; 3D virtual models.
Abstract

Nearly 2.3 billion people suffer from carious lesions on permanent teeth, and approximately 530 million children suffer from carious lesions on deciduous teeth, even though dental caries is a preventable, reversible disease in its early stages. This study aimed to increase precision in early, reversible stage caries diagnosis, regardless of the examiner’s experience level. The main objectives were to test the intra- and inter-rater agreements of International Caries Assessment and Detection System (ICDAS) scores assigned during clinical examination and on 3D virtual models acquired using three types of intraoral scanners (Medit i500, Virtuo Vivo® by Straumann, and Omnicam®), their corresponding ICDAS scores based on clinical examinations, as well as their corresponding DIAGNOdent® scores as they were recorded by examiners on three different levels of expertise (dental students, interns, and senior dentists). A total of 24 patients aged between 21 and 34 years, randomly selected from dental students and interns, underwent five examinations (three intraoral scannings, DIAGNOdent®, and clinical examination), and the corresponding ICDAS scores and DIAGNOdent® scores were recorded by a randomly selected rater out of the 31 available examiners. Inter-rater agreement and intra-rater agreement tests for ordinal data were chosen using Fleiss’ kappa coefficient. Cohen’s weighted kappa test was also used. Intra-rater and inter-rater agreement tests and inter-class correlations performed for all examination techniques showed statistically significant results (p<0.005). The highest positive interclass correlation was obtained for inter-rater agreement tests of 288 observations recorded by senior dentists (ICC=0.968; 95% CI =0.958–0.976).

There were no statistically significant differences between the five types of examinations. To the authors’ knowledge, this is the first published study to test inter- and intra-rater agreement for ICDAS codes assigned by examining 3D virtual models. Using any of the three types of intraoral scanners tested in the study, real-time correlations and corrections, if necessary, of intraoral scanning data, clinical examination, and DIAGNOdent® recording, are possible; thus, an accurate diagnosis can be achieved based on three different assessment methods for early stage caries.

Introduction

Caries lesions are common oral diseases. According to the Global Burden Disease study in 2017, nearly 2.3 billion people suffer from decays on permanent teeth, and approximately 530 million children suffer from decays on deciduous teeth [James et al., 2018]. One significant reason for this high prevalence is that early stage lesions are often undetected and later evolve into cavities [Foros et al., 2021]. Early diagnosis methods should be improved, especially since diagnosticated lesions can be treated with noninvasive therapy [AlJefri et al., 2022]. There are many ways to diagnose carious lesions [Srilatha et al., 2020]. Clinical visual examination is a widely used method for detecting carious lesions. Although this method has high specificity, it has a low sensitivity and
reproducibility. Low sensitivity is explained by the number of carious sites correctly identified, whereas low reproducibility is explained by the subjective nature of this method, which is highly dependent on operator experience. Thus, incipient lesions are often undiscovered during clinical examination [Sandhu et al., 2019]. Detailed visual indices can be used [Braga et al., 2010]. It has also been shown that the use of a probe during clinical examination can lead to pit and fissure damage, which can increase lesion progression [Kühnisch et al., 2007]. Furthermore, probing may promote cariogenic flora transport to other regions, resulting in contamination of healthy sites [Kühnisch et al., 2007].

In addition to visual examination, bitewing radiography is the gold standard for proximal caries lesions [Baltacioglu, and Orhan, 2017]. However, bitewing radiography, is not relevant in the diagnosis of early stage occlusal carious lesions. In addition, the emission of ionizing radiation restricts monitoring of carious lesions.

Other methods have also been developed, such as digital radiography and fiber-optic transillumination (FOTI). The DIAGNOdent® device (KaVo, Biberachl Riss, Germany) was introduced in 1998 and has since become one of the most studied and widely used devices [Shi et al., 2000], [Tranaeus et al., 2004].

Carious tooth structures display fluorescence proportional to the extent of decay present [Hung et al., 2021]. In the existing literature, values ≤ 10 indicate no caries [Rahardjo et al., 2015]. Most studies evaluating the specificity and sensitivity of DIAGNOdent have been conducted using extracted teeth. The category of diagnosis was classified according to the range of scores: a range from 0 to 10 corresponds to the healthy tooth structure category; a range from 11 to 20 corresponds to the outer half enamel caries category; a range from 21 to 30 corresponds to the inner half enamel caries category; and a range superior to 30 corresponds to the dentin caries category [Rahardjo et al., 2015]. Some authors have suggested that modifications to the manufacturer's recommended cutoff values could improve the diagnostic efficiency of the DIAGNOdent® pen [Luczaj-Cepowicz et al., 2019]. In vivo and in vitro studies have chosen different cutoff values for DIAGNOdent® than those recommended by the manufacturer. Optimal cutoff points for DIAGNOdent® and their corresponding histological threshold values were classified as follows: sound diagnosis corresponds to a D0 threshold and a DIAGNOdent® range value of 0-13; enamel caries lesion diagnosis corresponds to a D1-D2 threshold and a DIAGNOdent® range value of 14-29; dentin caries lesion diagnosis corresponds to a D3-D4 threshold and a DIAGNOdent® range value greater than 30 [Kockanat, and Unal, 2017]. Among these caries detection methods, intraoral scanners (IOS) that use optical impressions have evolved considerably in recent years and have shown some potential in the detection and monitoring of oral diseases and are becoming available for most dental clinics [Witecy et al., 2021; Steinmeier et al., 2020]. Combined with artificial intelligence, monitoring of incipient carious lesions could be greatly streamlined and used effectively in cariology. Thanks to the three-dimensional images provided by IOS, including approximate true colors, they could possibly represent a relevant tool for remote diagnosis as part of teledentistry, especially for patients whose access to preventive care services is very limited or during exceptional situations, such as the Covid-19 pandemic [Steinmeier et al., 2020; Mangano et al., 2017]. AI algorithms have been developed recently for this purpose and are
being assessed [Michou et al., 2021] [Duong et al., 2021]. Some have been validated, with an overall comparable in vivo diagnostic performance to that of visual examination [Michou et al., 2021]. A recent study found significant correlations between on-screen examinations, clinically recorded ICDAS scores, and histological scores [Ntovas et al., 2023].

The main objective of our study was to assess the agreement of (1) the ICDAS scores assigned by examining the IOS 3D images obtained using three types of intraoral scanners (Medit i500®, Virtuo Vivo® by Straumann, and Omnicam®) with (2) DIAGNOdent® scores, and (3) ICDAS clinical scores. The examinations were performed by raters with three different levels of expertise (dental students, interns, and senior dentists).

Materials and Methods

2.1. Study design and setting

We conducted a prospective cohort study in the Faculty of Dentistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania. This study was approved by the Ethics Committee of the “Iuliu Hațieganu” University of Medicine and Pharmacy (DEP125/20.04.2023). Participants received detailed information on the research. Signed informed consent was obtained from all the participants included in the study.

2.2. Participants

A total of 24 volunteers (selected among the 60 interns in general dentistry and 98 third-year dental students) were selected to participate in this study. According to the available devices, at the beginning of each examination meeting, the subjects were allocated for an examination type (out of the five tested types) and for an examiner among the 31 available ones grouped on three experience levels: (1) third-year dental students; (2) interns in general dentistry (1-3 years of clinical experience); (3) senior dentists (more than 5 years of clinical experience). The
examiner was randomly selected after excluding raters who had seen the same patient (or their 3D virtual models) in the last two months.

The inclusion criteria were adult volunteers, students, and interns in general dentistry at the Department of Preventive Dentistry of Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.

Children, patients with contraindications to professional cleaning, and patients with Covid-19 were not included in the study.

Patients were prepared for the study and then examined clinically according to the ICDAS file methodology and/or paraclinically (DIAGNOdent® and/or intraoral scans).

2.3. Cleaning of evaluated teeth

Before examination, the teeth were carefully cleaned. All teeth were cleaned using a water-powder jet cleaner, autoclavable 135° (Air flow→ Handy 2+, EMS, Nyon, Switzerland), containing sodium bicarbonate powder. Powder remnants were removed by rinsing the teeth with a water spray for 5 s each.

2.4. Diagnostic methods

2.4.1. Visual examination (ICDAS)

Examinations were performed in a dental office, with proper illumination, an air syringe, a plane buccal mirror, and, if necessary, a WHO periodontal probe. The clinical examiner assessed all teeth in vivo, on wet and then on surfaces that were air-dried for 5 seconds, and the lesions were classified according to the ICDAS II criteria [Dikmen, 2015] [International Caries Detection and Assessment System (ICDAS) Coordinating Committee, 2005a] [International Caries Detection and Assessment System (ICDAS) Coordinating Committee, 2005b], as a two-digit coding for detection criteria of primary coronal caries. The first is related to the restoration of teeth, and has a coding that ranges from 0 to 9. The second digit ranges from 0 to 6 and is used for coding the caries.

Training on the ICDAS clinical caries criteria and recording of caries clinical scores was conducted by a university lecturer. The caries assessment training encompassed both a preliminary ICDAS onsite course, which specified the diagnostic criteria, and subsequent didactic hands-on training. During the hands-on training, five examinations of
patients were performed, and participants evaluated teeth that presented lesions across all severity and cavitation levels.

2.4.2. DIAGNOdent®

After calibrating the device with a ceramic standard according to the manufacturer's instructions, the tooth surfaces were assessed using the DIAGNOdent Pen 2190 KaVo® light fluorescence system. DIAGNOdent® values were recorded for each tooth surface in all patients.

For statistical analysis, we recorded DIAGNOdent® scores in order to correspond to the ICDAS caries depth (Table 1), based on the literature and divided into equal intervals, with values from 31 to 99.

Table 1 - DIAGNOdent® scores recoded similarly to ICDAS caries depth

<table>
<thead>
<tr>
<th>DIAGNOdent® score</th>
<th>Recoding for statistics purposes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>0</td>
</tr>
<tr>
<td>11-20</td>
<td>1</td>
</tr>
<tr>
<td>21-25</td>
<td>2</td>
</tr>
<tr>
<td>26-30</td>
<td>3</td>
</tr>
<tr>
<td>31-53</td>
<td>4</td>
</tr>
<tr>
<td>54-76</td>
<td>5</td>
</tr>
<tr>
<td>77-99</td>
<td>6</td>
</tr>
</tbody>
</table>

2.4.3. Intra Oral Scanners

Three IOS systems were used to scan all teeth: Medit i500® (MEDIT Corp., Seoul, South Korea), Virtuo Vivo® by Straumann, and Omnicam® (Dentsply Sirona, Charlotte, NC, USA). The scan parameters were set as suggested by the manufacturer, with blue-light mode, a filtering level of 2, and a focal length of 17 mm, in a dark environment (dental unit light was turned off). Acquired three-dimensional image data were visualized using Exocad viewer software (version 1.6.2/2021) as shown in fig. S1. Similarly, for direct visual clinical examination, lesions were
assessed using three-dimensional models, classified according to the ICDAS II criteria, and recorded on an ICDAS chart.

The values assigned by each examiner (rater), displayed by DIAGNOdent®, on each of the ICDAS-defined surfaces during examinations, were collected in a structured database built in Microsoft® Excel® for Microsoft 365 MSO (Version 2306 Build 16.0.16529.20164) 64-bit.

2.5. Missing Data

Only complete cases were included in the analysis, where the values were recorded for each ICDAS surface, the examiner and the patient’s assigned identifier were clearly marked, as well as the examiner’s level of expertise and examination type. Volunteers with missing clinical outcomes were excluded from all the analyses.

2.6. Statistical analysis

Inter-rater agreement and intra-rater agreement tests for ordinal data were chosen using Fleiss’ kappa coefficient. Cohen’s weighted kappa test was also used.

The following agreement tests were performed:

- Between examination techniques with the same rater
- Between raters for the same examination technique
- Intra-rater (same examination technique, same rater) results were assessed
- Same examination technique, same rater for IOS O and IOS S

The agreement tests were performed separately for frontal (11-13,21-23,31-33,41-43) and lateral teeth (all the other teeth, except for the frontal teeth), due to differences in the visibility and difficulty level of the examination. For the same reason, comparisons were performed between pits and fissures on smooth surfaces.

To quantify the scores for the surfaces where carious lesions were identified, the following protocol was used: caries was considered if the ICDAS scores (clinical examinations and 3D model assessment) had the last figure ≥ 1 and ≤ 6; early stage, non-cavitary caries were considered if the ICDAS scores had their last figure ≥ 1 and ≤ 3.

For the DIAGNOdent® examination, the following classification was employed: caries were considered if the DIAGNOdent® score was ≥ 11; early stage, non-cavitary caries were considered if the DIAGNOdent® score was ≥ 11 and <29.

The reporting of the present study followed the Equator guidelines, more specifically the STROBE statement [Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement | EQUATOR Network].
Statistical analyses were performed using the R environment for statistical computing and graphics (R Foundation for Statistical Computing, Vienna, Austria) version 4.3.1, using the irr R package [R Core Team, 2023].

Results

The study group had a similar distribution to the male/female dental student ratio: six males (25%) out of the 24 volunteers. Intra-rater and inter-rater agreement tests and interclass correlations showed statistically significant results (p<0.001).

For the same rater (number 3, experience level c, senior dentist), the Medit i500® intraoral scanner acquired a 3D model that was in statistically significant agreement (p<0.001) with the clinically recorded ICDAS file for a total of 287 observations in 2 patients (Table 2).
Table 2 – Intra-rater agreement for Medit i500® with clinical examination

<table>
<thead>
<tr>
<th>Observations</th>
<th>Number observations</th>
<th>Cohen's Kappa weighted</th>
<th>p-value</th>
<th>Fleiss Kappa</th>
<th>p-value</th>
<th>ICC (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All teeth</td>
<td>287</td>
<td>0.608</td>
<td>< 0.001</td>
<td>0.58</td>
<td>< 0.001</td>
<td>0.614 (95% CI 0.536 - 0.681)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Frontal teeth</td>
<td>104</td>
<td>0.493</td>
<td>< 0.001</td>
<td>0.593</td>
<td>< 0.001</td>
<td>ICC = 0.368 (95% CI 0.191 - 0.522)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Lateral teeth</td>
<td>183</td>
<td>0.634</td>
<td>< 0.001</td>
<td>0.575</td>
<td>< 0.001</td>
<td>ICC = 0.663 (95% CI 0.573 - 0.737)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Pits and fissures</td>
<td>63</td>
<td>0.586</td>
<td>< 0.001</td>
<td>0.548</td>
<td>< 0.001</td>
<td>ICC = 0.592 (95% CI 0.405 - 0.732)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Smooth surface</td>
<td>224</td>
<td>0.568</td>
<td>< 0.001</td>
<td>0.597</td>
<td>< 0.001</td>
<td>ICC = 0.543 (95% CI 0.444 - 0.629)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

CI, confidence interval; ICC, interclass correlation coefficient.

When intra-rater agreement was tested separately for the visible (frontal area) and lateral areas, as shown in Table 2, for the Medit i500® intraoral scanner acquired 3D model in comparison to the clinically recorded ICDAS file, the results were statistically significantly comparable (p<0.001). For the frontal area, we obtained a low positive Cohen's Kappa weighted and ICC, and a moderately positive Fleiss kappa. There was also a statistically significant (p<0.001) intra-rater moderate positive agreement for the Medit i500® intraoral scanner acquired 3D model in comparison to the clinically recorded ICDAS file, both for pits and fissures, as well as for smooth surfaces.

For two different raters (numbers 3 and 31), with the same experience level c (senior dentist), the Omnicam® intraoral scanner acquired 3D models that were statistically significantly comparable (p<0.001) for a total of 288 observations in 2 patients (Table 3).
<table>
<thead>
<tr>
<th>Observations</th>
<th>Number observations</th>
<th>Cohen's Kappa weighted</th>
<th>p-value</th>
<th>Fleiss Kappa</th>
<th>p-value</th>
<th>ICC (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All teeth</td>
<td>288</td>
<td>0.801</td>
<td>< 0.001</td>
<td>0.722</td>
<td>< 0.001</td>
<td>0.847 (95% CI 0.811 - 0.877)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Frontal teeth</td>
<td>104</td>
<td>0.35</td>
<td>< 0.001</td>
<td>0.32</td>
<td>< 0.001</td>
<td>0.333 (95% CI 0.15 - 0.494)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Lateral teeth</td>
<td>184</td>
<td>0.924</td>
<td>< 0.001</td>
<td>0.844</td>
<td>< 0.001</td>
<td>0.968 (95% CI 0.958 - 0.976)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Pits and fissures</td>
<td>64</td>
<td>0.867</td>
<td>< 0.001</td>
<td>0.786</td>
<td>< 0.001</td>
<td>0.922 (95% CI 0.875 - 0.952)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Smooth surface</td>
<td>224</td>
<td>0.44</td>
<td>< 0.001</td>
<td>0.395</td>
<td>< 0.001</td>
<td>0.417 (95% CI 0.302 - 0.519)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

When inter-rater agreement was tested for Omnicam® by two different raters (no. 3 and no. 7) with different experience levels (senior dentist, respectively 3rd year dental student) for 144 observations, we obtained very high values (>0.9) for Cohen’s Kappa weighted and ICC for lateral teeth and pits-and-fissures areas. All agreement tests showed statistically significant agreement for all teeth, as well as for frontal and lateral areas with pits or fissures and smooth surfaces (Table 4).
Table 4 – Omnicam® inter-rater agreement - 2 different raters of different experience level (c - senior dentist versus a- 3rd year dental student: observers no 3 and no 7) for 144 observation

<table>
<thead>
<tr>
<th>Observations</th>
<th>Number observations</th>
<th>Cohen's Kappa weighted</th>
<th>p-value</th>
<th>Fleiss Kappa</th>
<th>p-value</th>
<th>ICC (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All teeth</td>
<td>144</td>
<td>0.683</td>
<td>< 0.001</td>
<td>0.654</td>
<td>< 0.001</td>
<td>0.67 (95% CI 0.569 - 0.751)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Frontal teeth</td>
<td>52</td>
<td>0.425</td>
<td>< 0.001</td>
<td>0.38</td>
<td>< 0.001</td>
<td>0.401 (95% CI 0.144 - 0.607)</td>
<td>0.002</td>
</tr>
<tr>
<td>Lateral teeth</td>
<td>92</td>
<td>0.851</td>
<td>< 0.001</td>
<td>0.791</td>
<td>< 0.001</td>
<td>0.906 (95% CI 0.861 - 0.936)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Pits and fissures</td>
<td>32</td>
<td>0.837</td>
<td>< 0.001</td>
<td>0.773</td>
<td>< 0.001</td>
<td>0.898 (95% CI 0.802 - 0.949)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Smooth surfaces</td>
<td>112</td>
<td>0.435</td>
<td>< 0.001</td>
<td>0.391</td>
<td>< 0.001</td>
<td>0.412 (95% CI 0.245 - 0.555)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

The highest inter-rater agreement result was an ICC of 0.968 for 184 observations recorded on the lateral teeth by senior dentists using Omnicam®.

All intra- and inter-rater agreement tests yielded statistically significant results (P <0.05).

Discussion

The present study has a similar methodology regarding ICDAS coding with that used in recent articles “Caries prevalence and caries index were established using ICDAS II 2-6/C-G and ICDAS II 4-6/E-G criteria for comparison with WHO indicators” and especially for the white spot lesions assessment and monitoring [Lucaciu et al., 2020].

When analyzing the limitations of the present study, a possible bias could be generated by the fact that the volunteers might have been students and interns with better theoretical and/or practical knowledge than their peers.
In a metanalysis published in 2021 for 51 articles, there was calculated the following detection bias for DIAGNOdent®: “For permanent teeth, when histologic examination was considered as the reference for occlusal surfaces, the sensitivity (Se) range appeared high for the DIAGNOdent Pen (DD Pen) at 0.81-0.89, followed by ICDAS-II at 0.62-1, DIAGNOdent (DD) at 0.48-1, and bitewing radiography (BW) at 0-0.29. The corresponding specificity (Sp) range was: DD Pen 0.71-0.8, ICDAS-II 0.5-0.84, DD 0.54-1, and BW 0.96-1. When operative intervention served as the reference for occlusal surfaces, again, the DD means valued the most promising results on Se: DD 0.7-0.96 and DD Pen 0.55-0.90, followed by ICDAS-II 0.25-0.93, and BW 0-0.83. The Sp range was: DD 0.54-1, DD Pen 0.71-1, ICDAS-II 0.44-1, and BW 0.6-1. For approximal surfaces, the Se was: BW 0.75-0.83, DD Pen 0.6, and ICDAS-II 0.54; the Sp was: BW 0.6-0.9, DD Pen 0.2, and ICDAS-II 1. For primary teeth, under the reference of histologic assessment, the Se range for occlusal surfaces was: DD 0.55-1, DD Pen 0.63-1, ICDAS-II 0.42-1, and BW 0.31-0.96; the respective Sp was: DD 0.5-1, DD Pen 0.44-1, ICDAS-II 0.61-1, and BW 0.79-0.98. For approximal surfaces, the Se range was: DD Pen 0.58-0.63, ICDAS-II 0.42-0.55, and BW 0.14-0.71. The corresponding Sp range was: DD Pen 0.85-0.87, ICDAS-II 0.73-0.93, and BW 0.79-0.98. Se and Sp values varied, due to the heterogeneity regarding the setting of individual studies. [Foros et al., 2021]

For results presentations and comparisons, both Cohen and Fleiss kappa coefficients and also inter-class correlations (ICC) were employed because repeated observations for recorded on the same subjects by different raters. In order to increase the statistical power, comparisons were made aiming for a reduced degree of freedom: same examination method + same rater experience level + different patients; same patient + same rater + different examination methods. Hence the number of observations for the comparison tests was slightly different (287, respectively 288), because there were 2 premolars extracted for orthodontic purposes, but the upper third molars were present.

To the best of our knowledge, this is the first study to compare the accuracy of IOS 3-D virtual models with ICDAS clinical examination and DIAGNOdent scores for caries detection. An increased number of clinical cases would help obtain better statistical power of the study and higher correlation coefficients. In our study, the highest correlation coefficient obtained was an ICC of 0.992 for pits and fissures when using the IOS Medit i500® and IOS Omnicam®. However, the scanning procedure requires well-cleaned, well-dried surfaces; otherwise, the IOS software might fill in the gaps in the 3D model, so that some information about caries might be difficult to retrieve when observing the 3D virtual models. Regarding DIAGNOdent®, a less cleaned and humid surface might have falsely increased the recorded scores. In addition, the difficulty level of the ICDAS scoring system during clinical examination might be a challenge for dentists with lower experience levels and dental students. It may be expected that using newer generations of IOS and DIAGNOdent devices, statistically significant correlations between different types of examinations can also be achieved by early career dentists and dental students. Hence, the present study could be extended by using newer generations of IOS and fluorescence measuring devices by early career dentists and dental students.
“An AI-based analytics solution leverages clustering and correlation algorithms to provide a root-cause analysis so that any issues can be remediated as soon as possible.” [What is AI Analytics?] Such an approach would allow real-time correlations and corrections, if necessary, of intraoral scanning data, clinical examination (ideally video-recorded while the dentist is wearing magnification and camera) and DIAGNOdent recording, hence to have an accurate diagnosis based on 3 different assessment methods for early-stage caries.

Conclusion

Using any of the three types of intraoral scanners tested in this study, real-time correlations and corrections, if necessary, of intraoral scanning data, ICDAS clinical examination, and DIAGNOdent recording, an accurate, personalized diagnosis based on three different assessment methods for early-stage caries can be achieved.

Acknowledgments

This study received important support from the students Aboutaib Sofiane and Siladi Teodora Lavinia, who spent many hours doing voluntary work to collect the study data, helping in article writing, planning, and performing intraoral scannings (IOS), DIAGNOdent®, and clinical examinations with fellow students Smuczer Cynthia Roberta, Chira Alexandra, and Costin Alexandra. We thank to students Rusu Mara-Cristina and Mlesnite Teodora who helped in designing and formatting the training presentation for the examiners and kindly organized the appointments. We would also like to thank the assistants who helped and supported all the stages of the examinations (Pascalau Bianca, Aldea Ildiko, Todericiu Anca, and Muresan Mihaela Adriana) and the representatives of Digiray and Straumann that kindly borrowed to the research team, their intraoral scanners and offered their technical support and expertise.

Statement of Ethics

This study complied with the guidelines for human studies and was conducted ethically in accordance with the World Medical Association Declaration of Helsinki. The subjects provided written informed consent, and the study protocol was approved by the Ethics Committee on Human Research of the University of Medicine and Pharmacy (DEP125/20.04.2023).

Study approval statement: This study protocol was reviewed and approved by the Ethics Committee of the “Iuliu Hațieganu” University of Medicine and Pharmacy (DEP125/20.04.2023)

Consent to participate statement: Written informed consent was obtained from all the patients participating in the study.
Conflict of Interest Statement

The authors declare no conflicts of interest. The funders and supporters had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish results.

Funding Sources

This research was funded by the University of Medicine and Pharmacy Iuliu Hatieganu internal grant no. 35196/17.12.2021.

Author Contributions

Conceptualization, Ioana Porumb and Bogdan Culic; methodology, Ioana Porumb and Daniel Corneliu Leucuta; software, Daniel Corneliu Leucuta, Marius Banut, Iulia Sandu, Ioana Porumb; validation, Ondine Patricia Lucaciuc, Carina Culic, Meda-Romana Simu.; formal analysis, Daniel Corneliu Leucuta, Marius Banut; investigation, Marion Nigoghossian, Iulia Clara Badea, Alexa-Nicole Leghezeu; resources, Marion Nigoghossian, Ioana Porumb; data curation, Marion Nigoghossian, Alexa-Nicole Leghezeu, Iulia Sandu, Ioana Porumb; writing—original draft preparation, Marion Nigoghossian, Ioana Porumb; writing—review and editing, Daniel Corneliu Leucuta, Marius Banut and Ondine Patricia Lucaciuc; supervision, Ioana Porumb; project administration, Ioana Porumb; funding acquisition, Marion Nigoghossian, Ioana Porumb. All the authors have read and agreed to the published version of the manuscript.

Data Availability Statement

The authors are happy to share their research data. For data supporting the reported results and generated during the study, please contact ioana.chifor@umfcluj.ro.

Supplementary Materials

fig. S1- Virtual 3D models opened in Exocad View
References

International Caries Detection and Assessment System (ICDAS) Coordinating Committee: Rationale and Evidence for the International Caries Detection and Assessment System (ICDAS II) [Internet], 2005a. Available from: https://www.iccms-web.com

R Core Team: R: A Language and Environment for Statistical Computing 2023;

Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement | EQUATOR Network [cited 2023 Jul 1];Available from: https://www.equator-network.org/reporting-guidelines/tripod-statement/
