Outpatient treatment with concomitant vaccine-boosted convalescent plasma for patients with immunosuppression and COVID-19

Juan G. Ripoll1*, MD, Sidna M. Tulledge-Scheitel2*, MD, MPH, Shane Ford1, BS, Marsha L. Pike3, APRN, CNS, DNP, Ellen K. Gorman1, BS, Sara N. Hanson4, DO, MPH, Justin E. Juskewitch5, MD, PhD, Raymund R. Razonable6, MD, Ravindra Ganesh7, MBBS, MD, Ryan T. Hurt7, MD, PhD, Erin N. Fischer3, MS, RN, Amber N. Derr8, MBA, Michele R. Eberle9, Jennifer J. Larsen8, MSN, RN, Christina M. Carney10, APRN, CNP, DNP, Elitza S. Theel5, PhD, Sameer A. Parikh11, MBBS, Neil E. Kay11,12, MD, Michael J. Joyner1,13†, MD, and Jonathon W. Senefeld1,13,14✉, PhD

AFFILIATIONS
1 | Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
2 | Division of Community Internal Medicine, Mayo Clinic, Rochester, Minnesota
3 | Department of Nursing, Mayo Clinic, Rochester, Minnesota
4 | Department of Family Medicine, Mayo Clinic Health Care System, Mankato, Minnesota
5 | Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
6 | Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, Minnesota
7 | Division of General Internal Medicine, Mayo Clinic, Rochester, Minnesota
8 | Division of Hematology and Infusion Therapy, Rochester, Minnesota, USA
9 | Mayo Clinic Health System Northwest Wisconsin, Eau Claire, Wisconsin, USA
10 | Mayo Clinic Health System, Red Wing, Minnesota,
11 | Division of Hematology, Mayo Clinic, Rochester, Minnesota
12 | Department of Immunology, Mayo Clinic, Rochester, Minnesota
13 | Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
14 | Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois

✉Correspondence:
Jonathon W. Senefeld, PhD, Department of Kinesiology and Community Health
University of Illinois Urbana-Champaign | 906 S Goodwin | Urbana, Illinois 61801
senefeld@illinois.edu | 217-300-7991

*Dr. Ripoll and Dr. Tulledge-Scheitel contributed equally as first authors to the work of the study and manuscript.

†Drs. Joyner and Senefeld contributed equally as senior authors to the work of the study and manuscript.
Abstract

Although severe coronavirus disease 19 (COVID-19) and hospitalization associated with COVID-19 are generally preventable among healthy vaccine recipients, patients with immunosuppression have poor immunogenic responses to COVID-19 vaccines and remain at high risk of infection with SARS-CoV-2 and hospitalization. Additionally, monoclonal antibody therapy is limited by the emergence of novel SARS-CoV-2 variants that have serially escaped neutralization. In this context, there is interest in understanding the clinical benefit associated with COVID-19 convalescent plasma collected from persons who have been both naturally infected with SARS-CoV-2 and vaccinated against SARS-CoV-2 (“vax-plasma”). Thus, we report the clinical outcome of 208 immunocompromised outpatients who were diagnosed with COVID-19 and who received contemporary COVID-19 specific therapeutics (standard of care group) and a subgroup who also received concomitant treatment with very high titer COVID-19 convalescent plasma (vax-plasma group) with a specific focus on hospitalization rates. The overall hospitalization rate was 1% (1 of 123 patients) in the vax-plasma group and 6% (5 of 85 patients) in the standard of care group, which corresponded to a relative risk reduction of 83%. Evidence of efficacy in nonvaccinated patients cannot be inferred from these data because 94% (196 of 208 patients) of patients were vaccinated. In vaccinated patients with immunosuppression and COVID-19, the addition of vax-plasma or very high titer COVID-19 convalescent plasma to COVID-19 specific therapies reduced the risk of disease progression leading to hospitalization.

Key Points

- Administration of high-titer COVID-19 convalescent plasma was associated with a decreased incidence of hospitalization among immunocompromised outpatients who were diagnosed with COVID-19.
- High-titer COVID-19 convalescent plasma represents a promising therapeutic approach for patients with immunosuppression.
Introduction

Although severe coronavirus disease 19 (COVID-19) and hospitalization associated with COVID-19 are generally preventable among healthy vaccine recipients, patients with immunosuppression have poor immunogenic responses to COVID-19 vaccines and remain at high risk of infection with SARS-CoV-2 and hospitalization.\(^1,2\) Passive antibody therapy, via monoclonal antibody therapy or COVID-19 convalescent plasma, has been widely used to treat COVID-19, particularly among patients with immunosuppression.\(^3-5\) For example, in the outpatient setting, therapeutic use of neutralizing antispik monoclonal antibody has been associated with decreases in the incidence of COVID-19-related disease progression and hospitalization.\(^6\) However, monoclonal antibody therapy is limited by the emergence of novel SARS-CoV-2 variants that have serially escaped neutralization.\(^7,8\) Thus, although monoclonal antibody therapy served as a cornerstone of COVID-19 treatment, at the time of this writing, there are no approved monoclonal antibodies for the treatment or prevention of SARS-CoV-2 infection.\(^6\) However, high-titer COVID-19 convalescent plasma continues to be effective against SARS-CoV-2 variants of concern (VOCs) because of its broad-spectrum immunomodulatory properties and ability to neutralize multiple SARS-CoV-2 variants.\(^9,10\) Although COVID-19 convalescent plasma is authorized for therapeutic use among patients with immunosuppression in the US and recommended by some organizations\(^11,12\), the use of COVID-19 convalescent plasma remains controversial.\(^4\)

COVID-19 convalescent plasma collected from persons who have been both naturally infected with SARS-CoV-2 and vaccinated against SARS-CoV-2 (herein referred to as “vax-plasma”) is particularly high titer and typically contains 10 to 100 times higher antibody titers than standard COVID-19 convalescent plasma.\(^13-17\) To further our understanding of the clinical impact associated with vax-plasma, we report the clinical outcome of 208 immunocompromised outpatients who were diagnosed with COVID-19 and treated with contemporary COVID-19 specific therapeutics (standard of care group) and a subgroup who also received treatment with vax-plasma or high-titer COVID-19 convalescent plasma and (vax-plasma group) with a specific focus on hospitalization rates.

Study design

This large, observational cohort study included data from a single health system (Mayo Clinic) and represented data from multiple care sites across Minnesota and Wisconsin from 1 December 2022 to 3 April 2023. Severely immunocompromised patients with active COVID-19 infection, confirmed by SARS-CoV-2-specific reverse transcription polymerase chain reaction, were eligible to receive vax-plasma. The Mayo Clinic Institutional Review Board determined that this study met the criteria for exemption. Informed consent was waived. Only Mayo Clinic patients with research authorization were included.
As previously described17, eligible vax-plasma donors included individuals who had a confirmed diagnosis of COVID-19 and had received at least one dose of a SARS-CoV-2 vaccine. All donors experienced mild to moderate symptoms and met the national blood donor selection criteria. Vax-plasma was collected at least 10 days and up to 6 months after the complete resolution of COVID-19 symptomatology. Antibody titers of vax-plasma units met the minimum threshold required by US FDA for high titer anti-SARS-CoV-2 antibodies, but precise antibody titers were not evaluated. However, numerous reports indicate that vax-plasma is uniformly extremely high titer with neutralizing activity against many SARS-CoV-2 variants10,13,18. The treatment schedule of vax-plasma transfusions was not standardized. Patients received the number of vax-plasma units deemed appropriate by their clinicians.

The primary outcome was COVID-19–related hospitalization within 28 days after transfusion, assessed as the cumulative incidence in the vax-plasma group as compared with the standard of care group who declined treatment vax-plasma. The decision to hospitalize patients was at the discretion of local providers. Continuous measures were compared between the treatment groups (vax-plasma group vs. standard of care group) using the two-sample t-test, whereas categorical measures were compared using the χ^2 test or Fisher exact test, as appropriate. Reported p-values are two-sided and adjusted for multiplicity, as appropriate; and the interpretation of findings was based on $p < 0.05$.

Results and discussion

Two-hundred and eight severely immunocompromised patients received standard of care treatments (e.g., remdesivir, nirmatrelvir or molnupiravir) and were also offered to be treated with vax-plasma. Of those patients, 59% agreed to treatment with vax-plasma (123 of 208 patients; vax-plasma group) and 41% (85 of 208 patients) received standard of care treatments alone without vax-plasma (standard of care group). Key demographic and clinical characteristics of the study population are provided in Table 1 and Supplemental Tables 1 to 3, stratified into the two treatment groups. Overall, the median age of all patients was 65.5 years (range: 2 to 96 years), 45% were female (93 of 208 patients), and 94% (196 of 208 patients) were vaccinated against SARS-CoV-2.

Compared to patients in the standard of care group, patients in the vax-plasma group were more likely to be female ($p = 0.005$), more likely to receive anti-CD20 monoclonal therapy ($p = 0.049$), more likely to be vaccinated against SARS-CoV-2 ($p = 0.059$), and more likely to have received previous COVID-19 antiviral treatments ($p = 0.002$). Other key differences between the groups are noted in Table 1.

Patients had COVID-19 symptoms for a median of 4 days (range, 1-46) before receiving vax-plasma, and the median number of units transfused per patient was 1 (range 1-7). Most patients
received concomitant therapies for COVID-19–specific treatments including remdesivir (62% of patients who accepted vax-plasma and 35% of those who declined it), nirmatrelvir and ritonavir (PAXLOVID™) (31% in the vax-plasma group versus 44% in the standard of care group), and/or molnupiravir.

No major adverse effects were recorded among patients transfused with vax-plasma. The overall 28 day-hospital admission rate was 1% (1 of 123 patients) in vax-plasma group and 6% (5 of 85 patients) in standard of care group (P=0.032). Among patients who declined vax-plasma, 2 needed intensive care unit (ICU) level of care and died due to COVID-19 related complications while the other 3 patients were admitted to general care and survived the COVID-19 infection. The single patient who received vax-plasma and required a 28-day inpatient admission post-treatment administration had a complex hematologic malignancy history (diffuse large B-cell lymphoma status post autologous stem cell transplantation with relapse requiring CAR-T cell therapy) and died in the intensive care unit (ICU) due to COVID-19 related complications.

In this large, non-randomized cohort study involving outpatients with recent SARS-CoV-2 infection, the concomitant administration of high-titer COVID-19 convalescent plasma in addition to standard of care therapeutics was associated with a decreased incidence of hospitalization. Our observations are consistent with those of previous trials of antibody-based therapies — administration of sufficient pathogen-specific antibodies via COVID-19 convalescent plasma leads to a reduced risk of disease progression and COVID-19-related death in immunocompromised patients in both outpatient and inpatient settings. Collectively, contemporary clinical data provide evidence to support the utility of high-titer convalescent plasma including vax-plasma as antibody replacement therapy in immunocompromised patients.

Because the neutralizing capacity of vax-plasma can evolve with emerging variants, issues related to escape by new variants that have time limited the efficacy of monoclonal antibodies can be avoided. Additionally, sero-surveys of blood donors show a high prevalence of hybrid immunity in the population suggesting that very high titer vax-plasma is potentially available at a scale sufficient to treat immunocompromised patients. Thus, there is an emerging picture of utility for vax-plasma therapy in immunocompromised patients with SARS-CoV-2 infection that could benefit from further evaluation via carefully matched, larger real world data sets. Importantly, any prospective studies will need to consider the experimental design and ethical issues associated with potentially limiting a safe antibody therapy in immunocompromised patients unable to generate an adequate endogenous antibody response to infection.

Our study faced several contextual challenges associated with clinical research during a pandemic and limitations associated with the design of the study. First, the interpretation of these results is limited by the open-label and non-randomized design. Second, the overall incidence of
hospitalization was very low (2.8%, 6 of 208 patients), likely due (in part) to the very high number of patients who were vaccinated against SARS-CoV-2 and because all observed participants received standard of care COVID-19-specific therapeutics. Third, SARS-CoV-2 serology was not performed. Fourth, this study cohort was not large enough for definitive subgroup analyses according to coexisting immunosuppressive conditions or other putative confounding variables.

Despite the enumerated limitations of this study, our data provides evidence that transfusion of vax-plasma effectively transfers COVID-19-neutralizing antibodies to patients with immunosuppression and reduces the risk of COVID-19-related hospitalization. Vax-plasma may be an effective therapeutic throughout the clinical course of COVID-19 among immunocompromised patients from outpatients to inpatients with protracted COVID-19. For use in future pandemics, the use of therapeutic plasma with antibody levels in the upper deciles should be considered, particularly among immunocompromised patients.
Acknowledgments
We thank the dedicated members of the Mayo Clinic Blood Donor Center for their rigorous efforts necessary to make this program possible. We also thank the donors who survived COVID-19 for providing vaccine-boosted COVID-19 convalescent plasma. Additionally, we thank Diana Zicklin Berrent and Chaim Lebovits for their progressive and passionate patient advocacy and support.
This work was supported by United Health Group and Mayo Clinic.

Authorship Contributions

Disclosure of Conflicts of interest
The authors declare no conflict of interest.

Data Availability
Datasets generated during this study may be available from corresponding authors on reasonable request. Requestors may be required to sign a data use agreement. Data sharing must be compliant with all applicable Mayo Clinic policies and those of the Mayo Clinic Institutional Review Board.
ORCID
Juan G. Ripoll https://orcid.org/0000-0003-4908-9774
Shane Ford https://orcid.org/0000-0003-2776-9023
Ellen K. Gorman https://orcid.org/0000-0003-2989-547X
Justin E. Juskewitch https://orcid.org/0000-0002-7868-2852
Raymund R. Razonable https://orcid.org/0000-0001-5248-0227
Ravindra Ganesh https://orcid.org/0000-0002-6877-1712
Elitza S. Theel https://orcid.org/0000-0002-6886-2294
Sameer A. Parikh https://orcid.org/0000-0002-3221-7314
Neil E. Kay https://orcid.org/0000-0002-5951-5055
Michael J. Joyner https://orcid.org/0000-0002-7135-7643
Jonathon W. Senefeld https://orcid.org/0000-0001-8116-3538
References
Table 1. Characteristics of 208 immunocompromised outpatients who were diagnosed with COVID-19 and received standard of care COVID-19 therapeutics with or without vax-plasma.

<table>
<thead>
<tr>
<th>Demographic information</th>
<th>Vax-plasma, N = 123</th>
<th>SOC, N = 85</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (range), years</td>
<td>66 (2-89)</td>
<td>64 (20-96)</td>
<td>0.813</td>
</tr>
<tr>
<td>Females/males, n</td>
<td>65/58</td>
<td>28/57</td>
<td>0.005</td>
</tr>
<tr>
<td>Height, median (range), cm</td>
<td>172.3 (85.3-191.9)</td>
<td>173.0 (147.3-197.4)</td>
<td>0.234</td>
</tr>
<tr>
<td>Weight, median (range), kg</td>
<td>83.7 (12.4-176.0)</td>
<td>82.0 (58.2-210.0)</td>
<td>0.922</td>
</tr>
<tr>
<td>Body Mass Index, median (range), kg·m²</td>
<td>28.8 (17.0-54.1)</td>
<td>28.0 (18.2-63.7)</td>
<td>0.631</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hematological malignancies, n (%)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple myeloma</td>
<td>18 (15)</td>
<td>23 (27)</td>
<td>0.033</td>
</tr>
<tr>
<td>Chronic lymphocytic leukemia</td>
<td>23 (19)</td>
<td>11 (13)</td>
<td>0.341</td>
</tr>
<tr>
<td>Diffuse large B-cell lymphoma</td>
<td>16 (13)</td>
<td>12 (14)</td>
<td>0.839</td>
</tr>
<tr>
<td>Follicular lymphoma</td>
<td>11 (9)</td>
<td>1 (1)</td>
<td>0.030</td>
</tr>
<tr>
<td>Other malignancya</td>
<td>28 (23)</td>
<td>27 (32)</td>
<td>0.154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other immunosuppressive conditions, n (%)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple sclerosis</td>
<td>14 (11)</td>
<td>3 (4)</td>
<td>0.042</td>
</tr>
<tr>
<td>Solid organ transplantb</td>
<td>7 (6)</td>
<td>3 (4)</td>
<td>0.532</td>
</tr>
<tr>
<td>Common variable immune deficiency</td>
<td>2 (2)</td>
<td>4 (5)</td>
<td>0.229</td>
</tr>
<tr>
<td>Granulomatosis with Polyangiitis</td>
<td>3 (2)</td>
<td>2 (2)</td>
<td>0.968</td>
</tr>
<tr>
<td>Other immunosuppressive conditions</td>
<td>5 (4)</td>
<td>1 (1)</td>
<td>0.404</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active immunosuppressive treatment, n (%)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-CD20 therapy</td>
<td>46 (37)</td>
<td>22 (26)</td>
<td>0.049</td>
</tr>
<tr>
<td>Anti-CD38 therapy</td>
<td>6 (5)</td>
<td>9 (11)</td>
<td>0.171</td>
</tr>
<tr>
<td>Bruton tyrosine kinase inhibitors</td>
<td>8 (7)</td>
<td>7 (8)</td>
<td>0.786</td>
</tr>
<tr>
<td>Proteasome inhibitors</td>
<td>8 (7)</td>
<td>7 (8)</td>
<td>0.786</td>
</tr>
<tr>
<td>CAR T-cell therapy</td>
<td>1 (1)</td>
<td>0 (0)</td>
<td>>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concomitant COVID-19-specific treatments, n (%)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiviral</td>
<td>119 (97)</td>
<td>71 (84)</td>
<td>0.002</td>
</tr>
<tr>
<td>Remdesivir</td>
<td>78 (62)</td>
<td>29 (35)</td>
<td><0.001</td>
</tr>
<tr>
<td>Paxlovid</td>
<td>39 (31)</td>
<td>37 (44)</td>
<td>0.107</td>
</tr>
<tr>
<td>Molnupiravir</td>
<td>3 (2)</td>
<td>6 (7)</td>
<td>0.164</td>
</tr>
</tbody>
</table>

| Vaccinated against SARS-CoV-2, n (%) | 119 (97%) | 77 (91%) | 0.059 |

| Number of SARS-CoV-2 Vaccines, mean (SD), n | 4.2 (1.2) | 3.9 (1.2) | 0.052 |

<table>
<thead>
<tr>
<th>Units of VaxPlasma, median (range), n</th>
<th>1 (1-7)</th>
<th>--</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to vax-plasma treatment, median (range), days</td>
<td>4 (1-46)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hospital admission, n (%)</td>
<td>1 (1)</td>
<td>5 (6)</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Footnotes
Note that hematological malignancies and other immunosuppressive conditions are not mutually exclusive.

a Other malignancies included acute lymphoblastic leukemia (ALL, n = 5); acute myeloid leukemia (AML, n = 3); amyloidosis (n = 4); chronic lymphoproliferative disorder of natural killer cells (CLPD-NK, n = 1); chronic myeloid leukemia (CML, n = 3); chronic myelomonocytic leukemia (CMML, n = 1); gastroesophageal junction adenocarcinoma (n = 1); hodgkin lymphoma (HL, n = 6); lung cancer (n = 2); mantel cell lymphoma (MCL, n = 3); marginal zone lymphoma (MZL, n = 7); monoclonal B-cell lymphocytosis (MBL, n = 1); monoclonal gammopathy of undetermined significance (MGUS, n = 1); myelodysplastic syndrome (MDS, n = 3); non-Hodgkin lymphoma (n = 6); T-cell lymphoma (n = 1); thrombotic thrombocytopenic purpura (TPP, n = 1); and Waldenstrom macroglobulinemia (WM, n = 6).

b Solid organ transplants included: kidney (n = 1); kidney and pancreas (n = 1); lung(s) (n = 4); kidney and liver (n = 2); kidney and heart (n = 1); and heart, liver, and kidney (n = 1).

c Other immunosuppressive conditions included: autoimmune lymphoproliferative syndrome (ALPS, n = 1); systemic lupus erythematosus (SLE, n = 2); autoimmune myositis (n = 1); membranous nephropathy (MN, n = 1); and a constellation of comorbidities (seizure disorder, previous stroke, ventricular septal defect, prolonged QT interval, right bundle-branch block, congestive heart failure, chronic obstructive pulmonary disease; n = 1).

d Active immunosuppressive treatment included immunosuppressive treatment received any time during the 6 months before COVID-19 diagnosis.

e The mean number of SARS-CoV-2 vaccines was calculated among people who have been vaccinated against SARS-CoV-2, including 119 patients in the vax-plasma group and 77 patients in the standard of care (SOC) group.