Polygenic scores of subcortical brain volumes as possible modulators of treatment response in depression

Vincenzo Olivaa,b,c,d, Alfonso Martonea, Giuseppe Fanellia,e, Katharina Domschkef, Alessandra Minellig,h, Massimo Gennarellii, Paolo Martinig, Marco BortolomasieEduard Maronj,k,l, Alessio Squassinam, Claudia Pisanum, Siegfried Kaspera,o, Joseph Zoharp,q, Daniel Soueryr, Stuart Montgomeryi, Diego Albania, Gianluigi Forloniu, Panagiotis Ferentinosv, Dan Rujescun, Julien Mendlewiczw, Diana De Ronchia, Bernhard T Baunea-x,y,z, European College of Neuropsychopharmacology (ECNP) Pharmacogenomics & Transcriptomics Network, Alessandro Serretti*, Chiara Fabbria,aa

aDepartment of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
bDepartment of Medicine, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
cBipolar and Depressive Disorders Unit, Hospital Clinic de Barcelona, c. Villarroel, 170, 08036 Barcelona, Spain
dInstitut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), c. Villarroel, 170, 08036 Barcelona, Spain
eDepartment of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
fDepartment of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
gDepartment of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
hGenetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
iPsychiatric Hospital “Villa Santa Chiara”, Verona, Italy
jDepartment of Psychiatry, University of Tartu, Tartu, Estonia
kDocuMentalCare Clinic, Tallinn, Estonia
lCentre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
mDepartment of Biomedical Sciences, University of Cagliari, Cagliari, Italy
nDepartment of Psychiatry and Psychotherapy, Medical University Vienna, Vienna, Austria
oDepartment Molecular Neuroscience, Center of Brain Research, Medical University Vienna, Vienna, Austria
pDepartment of Psychiatry, Sheba Medical Center, Tel Hashomer
qSackler School of Medicine, Tel Aviv University, Tel Hashomer, Israel
rLaboratoire de Psychologie Médicale, Free University of Brussels, Brussels, Belgium
sPsy Pluriel, European Centre of Psychological Medicine, Brussels, Belgium
tImperial College School of Medicine, London, UK
uLaboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
vDepartment of Psychiatry, Athens University Medical School, Athens, Greece
wUniversité Libre de Bruxelles, Brussels, Belgium
xDepartment of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
yDepartment of Psychiatry, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
zThe Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
aaSocial, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK

\textit{Corresponding author:}

Alessandro Serretti, MD, PhD,
Department of Biomedical and Neuromotor Sciences
University of Bologna
Viale Carlo Pepoli 5, 40123 Bologna, Italy
Tel. +39 051 6584233 Fax +39 051 521030

E-mail: alessandro.serretti@icloud.com

\textbf{NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.}
Abstract
A significant proportion of patients with major depressive disorder (MDD) do not experience remission after one or more pharmacological treatments. Research has explored brain structural measures, particularly the hippocampus, as potential predictors of treatment response in MDD, as well as genetic factors.

This study investigated the association of polygenic scores (PGSs) for seven subcortical brain volumes (including the hippocampus, nucleus accumbens, amygdala, and caudate nucleus) with treatment non-response and non-remission in MDD.

Patients with MDD were recruited in the context of five clinical studies, including a total of 3,637 individuals. PGSs were estimated using a Bayesian framework and continuous shrinkage priors (PRS-CS-auto) after standard genotype quality control and imputation. Logistic regressions were performed between PGSs and non-response or non-remission in each sample, adjusting for age, sex, baseline symptom severity, recruitment sites, and population stratification. Results were meta-analysed across samples, using a random-effect model.

Caudate volume PGS was nominally associated with non-remission (OR=1.09, 95% CI=1.01–1.19, p=0.036). Leave-one-out sensitivity analyses suggested a possible association with the amygdala and thalamus PGSs. However, no association was significant after multiple testing correction.

These results, although preliminary, suggest a possible link between caudate volume PGS and lack of symptom remission. Methodological improvements in PGSs estimation and statistical power may enhance their predictive performance and provide a contribution to precision psychiatry.

Keywords: major depression, subcortical brain volumes, polygenic scores, treatment response, basal ganglia, striatum.
1. Introduction

Major depressive disorder (MDD) is a prevalent psychiatric condition and one of the leading causes of disability worldwide, with a 61.1% increase in the number of disability-adjusted life years (DALYs) over the past two decades [1].

The first prescribed medication for depression may fail to produce symptom remission in up to 60% of patients, leading to therapy changes that follow a trial and error approach (e.g., switch to another drug, or augmentation with a different pharmacological agent) [2, 3]. Patients without adequate medication response have higher relapse rates [4]. Identifying the most suitable treatment for each patient early on, according to precision psychiatry [5, 6], may reduce the burden of the disease and the related costs to society [7].

Several socio-demographic and clinical factors have been recognized as important predictors of response and remission to psychopharmacological treatment in MDD, such as longer duration of depressive episodes, greater baseline severity, older age, and the presence of anxiety symptoms [8-10].

Common genetic variants were demonstrated to explain about 13% of the variability in remission [11], therefore polygenic scores (PGSs) represent a promising opportunity for investigating the genetic factors involved in treatment efficacy in MDD [12]. PGSs, alternatively called polygenic risk scores (PRSs) when they estimate the risk of a disease attributable to common variants [13], have also been used to understand disease pathogenesis [14], to identify the genetic overlap between different traits [15, 16], and they are promising potential predictors of treatment outcome [17]. Higher PRSs for MDD, schizophrenia (SCZ) and attention-deficit hyperactivity disorder were associated with a worse response to medications for depression [18, 19]. Interestingly, a low PRS for SCZ may decrease the benefits of augmentation with medications commonly employed as first-line treatments for SCZ [20]. PGSs for conscientiousness and neuroticism were other factors associated with response, while the PGSs of openness was inversely associated with remission and response [21].

PRSs for non-psychiatric phenotypes, including PRSs for coronary artery disease, obesity, and cardioembolic stroke, were also inversely associated with response to treatment [22, 23].

The prediction of treatment response may be improved by considering PGSs of brain-related traits other than those expressing disease risk. Brain structural measures have been investigated as predictors of response to treatments in MDD. Alterations in the volumes of subcortical brain structures, particularly the hippocampus, have been among the most replicated findings [24]. Patients with MDD showed a volumetric reduction of the hippocampus vs healthy controls [25], and the hippocampal volume may distinguish treatment responders from non-responders [26]. The integrity of white matter tracts in the cortico-striatal-limbic systems was also implicated in predicting response.
to treatment [24]; these tracts connect the orbitofrontal cortex with subcortical structures, such as the nucleus accumbens, amygdala, caudate nucleus, globus pallidus, putamen, and thalamus [27]. The importance of subcortical structures in the modulation of response to medications for depression was also highlighted by functional studies showing that the activity of the amygdala may predict response to psychedelic drugs [28].

Genetic studies in family cohorts and twin studies have revealed varying levels of heritability for each subcortical structure, ranging from moderate to high. Heritability estimates based on single nucleotide polymorphisms (SNPs) were slightly lower, as expected, ranging from 17% to 47% for the thalamus and from 9% to 33% for the amygdala and brainstem, depending on the specific estimation method used [29-31]. However, the possible association between the polygenic component of brain subcortical structures and response to medications in MDD has not been investigated to the best of our knowledge. To contribute to fill this gap, we investigated the relationship between the PGSs for seven subcortical brain structure volumes (i.e., nucleus accumbens, amygdala, caudate nucleus, globus pallidus, putamen, thalamus, and hippocampus) and non-response and non-remission, across five clinical cohorts of patients with MDD. Our hypothesis was that the PGSs of these traits could be associated with medication treatment efficacy and could contribute to the future development of models able to aid the early identification of non-responders and non-remitters.

2. Material and methods

2.1 Target samples

2.1.1 Brescia

This sample included 501 subjects with MDD (DSM-IV criteria) who were referred to the “Villa Santa Chiara” Psychiatric Hospital in Verona, Italy. The diagnosis was confirmed using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I). Participants who had other primary neuropsychiatric disorders, including intellectual disabilities, substance/alcohol abuse or dependence, dementias, or comorbid eating disorders, were excluded. The severity of symptoms was evaluated using the Montgomery-Asberg Depression Rating Scale (MADRS). Response was defined as ≥ 50% improvement in symptom severity during the current pharmacological treatment. Non-responders were patients who did not respond to at least one pharmacological treatment and were categorised as Stage I-III according to the Thase and Rush staging method [32]. Genome-wide genotyping was conducted using either the Infinium PsychArray-24 BeadChip or the Infinium Multi-Ethnic Genotyping Array (N = 215 and 286, respectively, denominated Brescia sample 1 and Brescia sample 2 in the supplementary materials). Further details are available elsewhere [33].
2.1.2 European Group for the Study of Resistant Depression

A total of 1410 participants were recruited by the European Group for the Study of Resistant Depression (GSRD) as part of a multicentric cross-sectional study. Patients had a diagnosis of MDD (DSM-IV-TR criteria), according to the Mini International Neuropsychiatric Interview (MINI), and they were treated with a medication for depression for ≥4 weeks. The main exclusion criterion was another primary psychiatric disorder in the six months before enrolment. Depression severity was assessed using the MADRS at study entry and at the beginning of current episode (retrospectively, from anamnestic information and medical records). Treatment response was defined as a ≥50% reduction in the MADRS total score compared to the beginning of the current episode, after treatment with a medication for depression for ≥4 weeks. Non-responders were patients who did not respond to one or more pharmacological treatments during the current depressive episode. Remission was determined based on a current MADRS ≤10 after treatment with a medication for depression for ≥4 weeks. Genome-wide genotyping was performed with Infinium PsychArray-24 BeadChip. Additional information on this study is available elsewhere [34].

2.1.3 Münster

This naturalistic study involved 621 individuals with MDD (DSM-IV criteria), confirmed using the SCID-I [35], recruited at the Department of Psychiatry, University of Münster, Germany. Patients with current alcohol/drug dependence or other primary neuropsychiatric disorders were excluded. Treatment response and remission were evaluated after six weeks of treatment, using the 21-item Hamilton Depression Rating Scale (HAMD21) (≥50% improvement from baseline and HAMD21 ≤7, respectively). Genome-wide genotyping was conducted using the Infinium PsychArray-24 BeadChip.

2.1.4 Sequenced treatment alternatives to relieve depression

The Sequenced treatment alternatives to relieve depression (STAR*D) study evaluated the effectiveness and tolerability of different medications in treating moderate-severe MDD in primary care or psychiatric outpatient clinics. Patients with any other primary psychiatric diagnosis were excluded. The study initially involved treatment with citalopram for 12 weeks, and only this phase of the study was considered for the present analyses. Symptom severity was assessed using the Quick Inventory of Depressive Symptomatology Clinician-rated scale (QIDS-C16). Response was defined as a ≥ 50% decrease in symptom severity after 12 weeks of treatment with citalopram, and remission as QIDS-C16 ≤5 at week 12. A total of 1,948 participants were genome-wide genotyped using the Affymetrix GeneChip Human Mapping 500 K Array Set or Affymetrix Genome-Wide Human SNP Array 5.0. Further details of the study are available elsewhere [36].
2.1.5 Tartu

This sample included 83 outpatients with MDD (DSM-IV criteria) recruited at the Psychiatric Clinic of the University Hospital of Tartu, Estonia. The diagnosis was verified using medical records and MINI 5.0.0. Patients with current suicide risk or another primary neuropsychiatric disorder were excluded. Treatment response was defined as a ≥50% decrease in MADRS scores from baseline, while remission as MADRS ≤10 at week six. The Illumina 370CNV array was used for genome-wide genotyping. Additional details are available elsewhere [37].

2.2 Quality control of genotypes in the target datasets

Each of the five target samples underwent quality control (QC) and population principal component analysis (PCA) through the Ricopili pipeline [38]. SNPs were filtered retaining those with call rate ≥0.95, missing difference between cases-controls ≤0.02, minor allele frequency (MAF) ≥0.01, and Hardy-Weinberg equilibrium p-value ≥1e-6. Individuals were retained if they had an autosomal heterozygosity deviation within ±0.2, call rate ≥0.98, and no genetic/phenotypic sex mismatch.

To assess between-subjects relatedness and population stratification, linkage disequilibrium-pruned data (R2<0.2) were used to identify all pairs of individuals with identity-by-descent proportion >0.2, and one individual from each pair was removed. Population stratification was determined using PCA (Eigenstrat); population outliers were removed according to the mean ±6 standard deviations of the first 20 principal components (PCs). Individuals of European ancestry were retained based on self-report/anamnestic information and inspection of PCA plots [38].

Genotype imputation was carried out on the Michigan Imputation Server [39] using Minimac4 and the Haplotype Reference Consortium (HRC) r1.1 2016 (GRCh37/hg19).

Post-imputation QC was performed by filtering out variants having a poor imputation quality score (R2<0.3) and MAF<0.05.

2.3 Statistical analyses

Summary statistics of the largest available GWASs on subcortical brain structure volumes were used as base datasets [30, 31]. We computed PGSs using PRS-CS-auto, a Bayesian method that places continuous shrinkage priors on SNP effect sizes and obviates the need to select any a priori GWAS P-threshold for SNP inclusion [40].

Logistic regressions between each scaled PGS (mean=0, SD=1) and each clinical outcome (non-response and non-remission) were conducted using R v4.0.2, adjusting for age, sex, baseline symptom severity (for non-remission), relevant population principal components, and recruitment sites,
similarly to a previous study [18]. The variance in the outcomes explained by each PGS was estimated as the difference between the Nagelkerke’s pseudo R^2 of the full models and those including the covariates only, in each cohort separately [15]. The results obtained in each sample were meta-analysed using the R metafor package [41], within a random-effects model, using the restricted maximum-likelihood estimator [42]. Analyses of heterogeneity were performed using the Cochran’s Q test [43], and I^2 statistic (0% indicates no observed heterogeneity, and higher values indicate increasing heterogeneity, with 25%, 50%, and 75% defining thresholds for low, moderate, and high) [44]. Leave-one-out sensitivity analyses were performed to investigate the influence of each individual study on the results, by omitting one study at a time [45]. The Bonferroni correction was applied considering the seven base phenotypes analysed ($\alpha=0.05/7=0.007$).

We estimated statistical power using the AVENGEME R package [46]. Assuming a covariance of 50% between the base and target phenotypes, all the analysed PGSSs showed adequate power (between 90% and 100%) for both target phenotypes. The power decreased to a range of 24%–48% when the covariance was set to 25%. Details on the power analysis are provided in the Supplementary materials.

3. Results

After QC, a total of 3,637 patients with MDD were included in the analyses (Brescia n=453; GSRD n=1149; Munster n=557; STAR*D n=1400; Tartu n=78). The description of the clinical-demographic characteristics of the target samples is provided elsewhere [18]. In the meta-analyses, no association survived after the Bonferroni correction (Table 1). The top result was found for the caudate nucleus PGS, which was nominally associated with non-remission (OR=1.09, 95% CI=1.01–1.19, $p=0.036$, range pseudo-$R^2=0.01$–0.6%), with no evidence of heterogeneity (Table 1, a forest plot is depicted in Figure 1). Leave-one-out sensitivity analyses conducted for this association identified a significant influence of GSRD and STAR*D samples on the overall result; removing each one of these samples from the meta-analysis showed indeed an impact on the results ($p=0.230$ and $p=0.351$, respectively). For the other PGSSs of interest, we also performed leave-one-out sensitivity analyses. After removing the Münster sample, there was a nominally significant association between the PGS of amygdala and both non-response (OR=1.09, 95% CI=1.01–1.19, $p=0.048$, range pseudo-$R^2=0.001$–1.6%) and non-remission (OR=1.10, 95% CI=1.01–1.22, $p=0.041$, range pseudo-$R^2=0.11$–1.4%). The association between thalamus PGS and non-remission became nominally significant when removing the STAR*D sample from the meta-
analysis (OR=0.85, 95% CI=0.76-0.96, p=0.009, range pseudo-R2=0.006-1.4%). The results of the other leave-one-out sensitivity analyses and of the regression analyses in each sample are provided in the Supplementary materials.

4. Discussion

In the present meta-analysis, we investigated whether the PGSs for seven brain subcortical volumes were associated with non-response or non-remission in a sample of 3,637 patients with MDD. A nominal association was found between caudate nucleus PGS and non-remission. Leave-one-out analyses showed nominal associations between a higher PGS for amygdala volume and both non-response and non-remission, and between a lower PGS for thalamus volume and non-remission. However, no association survived after Bonferroni correction. Previous evidence of associations between hippocampal volume, MDD and response to pharmacological treatment [25, 26] were not corroborated by our study, as no association between hippocampal volume PGS and response/remission was found.

Though it did not survive a strict multiple-testing correction, a higher PGS for caudate nucleus volume may be associated with non-remission, an effect that was independent of age, sex, and baseline symptom severity. The caudate nucleus is important for executive function, which includes the regulation of affective states, hence the interest in this structure in the study of MDD [47]. A previous meta-analysis of neuroimaging studies reported significant volume reductions in the caudate nucleus in patients with depression compared to healthy controls [48], which were attributed to decreases in both grey matter volume [49] and neuronal density [50]. Greater caudate reduction was associated with more severe depression [51]. Preliminary evidence from small samples indicated that caudate nuclei do not differ between non-responders and responders to pharmacological treatment, although possible sex effects were suggested [52]. However, fronto-striatal atrophy, characterized by a reduction in caudate volume, was observed in patients with treatment-resistant depression when compared to patients with depression in remission [53]. Additionally, reduced bilateral caudate volume was observed in patients with MDD and elevated anhedonic symptoms [54], which are also associated with treatment non-response [24]. The caudate nucleus has a key role in the reward system [55], and anhedonia is believed to result from the dysfunction of reward and motivational dopaminergic neural circuits [56]. A PET study investigated dopaminergic receptor availability in the striatum, including the caudate nucleus, in individuals with MDD. Patients, particularly non-remitters, demonstrated higher dopaminergic receptor availability compared to healthy controls, suggesting a significant role of dopaminergic dysfunction in response to first-line treatments for depression [57]. Although our findings are apparently not in line with some previous evidence from
brain imaging studies, a recent work showed positive genetic correlation between MDD and caudate volume [58], therefore genetic factors associated with higher volume of this structure may overlap with both MDD and lack of remission to treatment. Environmental factors interact with genetic variables in determining brain volumes, therefore future studies should also consider the modulating effects of the environment on genetic factors. Taken collectively, these findings suggest the potential relevance of augmentation therapy employing drugs that target the dopaminergic system for MDD [59]. However, we underline that our result did not survive multiple-testing correction, and it was influenced by the two largest samples in the meta-analysis (i.e., GSRD and STAR*D). Independent studies in samples of sufficient size and adequate power are important to verify our results.

The associations between the PGS for amygdala volume and both response and remission became nominally significant after removing the Münster sample from the main analysis. This sample is the only one among those included in the meta-analysis that used the HAMD21 for the assessment of response and remission. The validity of this scale in assessing treatment efficacy has been questioned, due to its low sensibility to change; its widespread use in clinical trials was suggested to have hampered the detection of significant placebo-medication differences [60]. Therefore, it is possible that the use of this scale in the Münster sample may have influenced the comparability with the other cohorts and affected our results. The amygdala has long been an interesting region in neurobiological studies of depressive-anxious disorders, owing to its relevant role in emotional processing and regulation [61]. A previous neuroimaging meta-analysis found no significant difference in amygdala volume between people with depression and healthy controls; however, the inclusion of only patients taking medications in the case group may have affected the results [62]. Neuroimaging functional studies showed a link between non-remission and lower fractional anisotropy in white matter pathways to the amygdala [26] and decreased amygdala function [63], whereas better response was associated with increased pre-treatment amygdala activity during the processing of emotional stimuli [64].

A nominally significant association between a lower PGS for thalamus volume and non-remission was observed only upon the exclusion of the STAR*D sample from the meta-analysis. As stated earlier, STAR*D was the largest sample in this analysis, and this could affect the results. Furthermore, the STAR*D sample differs from others in several ways. Firstly, it was the only study to use the QIDS16 for assessing efficacy outcomes. Secondly, the participants largely come from primary care settings, including individuals with long duration of illness, and significant medical and psychiatric comorbidities. Lastly, detailed assessments of medication adherence were not conducted, potentially leading to misclassification of outcomes when non-adherence to treatment contributes to a worse outcome [65]. The thalamus is a complex sensory information processing center that regulates...
emotion, memory, and arousal, and is composed of multiple anatomical subdivisions [66]. There is no consistent evidence supporting structural changes in the thalamus in MDD. An earlier meta-analysis of structural studies, including both treated and untreated patients with MDD with varying numbers of episodes, showed a significant reduction in gray matter volume in the thalamus in MDD patients [67]. However, a subsequent meta-analysis that focused only on untreated MDD patients revealed an increase in gray matter volume in the thalamus [68]. These findings suggest that medication use, number of depressive episodes, and/or underlying genetic factors may have an impact on the gray matter structure of the thalamus.

The strengths and limitations of this study should be considered. We used a standardised genetic quality control procedure on the target datasets in line with current standards, we applied a strict correction for multiple testing, performed a random-effect meta-analysis of our results across the five target samples, and included socio-demographic and clinical variables as potential confounders in the regression models. Potential limitations were the heterogeneity in the time points used for the assessment of efficacy outcomes in the target samples (i.e., six weeks, at least four weeks, or 12 weeks, depending on the cohort) and different medications across the samples (i.e., naturalistic treatment or citalopram in the case of STAR*D). Furthermore, distinguishing between non-response and non-remission outcomes may yield misleading results due to potential overlap with treatment-resistance. Future studies should aim to obtain a better harmonization of non-response, non-remission, and treatment-resistance phenotype definitions [69]. Additionally, the disparity in statistical power across different covariance estimates suggests a probable lack of sufficient power to detect significant results, emphasising the necessity of conducting studies with larger sample sizes to confirm and validate our findings. However, the proportion of phenotypic variance explained by PGSs was limited, and no association survived after multiple testing correction, suggesting that the PGSs of the examined brain subcortical volumes are unlikely to play a substantial role in response/remission.

In conclusion, our study found a nominally significant association between non-remission and the PGS for caudate nucleus volume. However, the examined PGSs were not able to predict treatment response or remission after multiple-testing correction. Future research could advance our knowledge in this field through methodological improvements in PGSs estimation, statistical power, and sample phenotyping.
Statement of Ethics

The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. All participants were included after obtaining their written informed consent. Brescia study protocol was approved by the Ethics Committee of the province of Verona, Italy; the European Group for the Study of Resistant Depression (GRSD) study protocol was approved by the Ethics Committee of the coordinating center at Hôpital Erasme, Cliniques universitaires de Bruxelles (Université Libre de Bruxelles), Belgium, and the local ethical committees of all the other nine participating centres; the Münster study protocol was approved by the ethical board of the University of Münster, Germany; the Tartu study protocol was approved by the Human Studies Ethics Committee of the University of Tartu and State Agency of Medicines; the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study protocol received ethics approval from 14 participating institutional review boards, a National Coordinating Center, a Data Coordinating Center, and the Data Safety and Monitoring Board at the National Institute of Mental Health (NIMH), Bethesda, Maryland, US.

Authors Statement Contributors

Vincenzo Oliva contributed to the conceptualisation of the study, performed the analyses, interpreted the results and wrote the first draft of the manuscript. Alfonso Martone contributed to data analyses. Giuseppe Fanelli conceptualised the study, performed quality control and imputation of individual genotype data in each target sample, and reviewed the first draft of the manuscript. Alessandro Serretti and Chiara Fabbri conceptualised the study, helped with the interpretation of the results, reviewed the first draft of the manuscript. Chiara Fabbri created the polygenic scores and supervised the whole process leading to the final publication. The other authors contributed to data collection, data preparation and/or the improvement of the final version of the paper. All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval for the version to be published.

Declaration of interest

B.T. Baune: Advisory Board - Lundbeck, Janssen-Cilag; Consultant - National Health and Medical Research Council, Australia; Grant/Research Support - AstraZeneca, Fay Fuller Foundation, James & Diana Ramsay Foundation, National Health and Medical Research Council, Australia, German Research Council (DFG), Sanofi, Lundbeck; Honoraria - AstraZeneca, Bristol-Myers Squibb,
Lundbeck, Pfizer, Servier Laboratories, Wyeth Pharmaceuticals, Takeda, Janssen, LivaNova PLC. K. Domschke has been a member of the Steering Committee Neurosciences, Janssen Pharmaceuticals, and has received speaker’s honoraria from Janssen Pharmaceuticals, Inc. P. Ferentinos received grants/research support, consulting fees and/or honoraria within the last three years from Angelini, Boehringer-Ingelheim, Janssen, Medochemie, Vianex, and Servier. S. In the past 3 years Dr Kasper served as a consultant or on advisory boards for Angelini, Biogen, Boehringer, Esai, Janssen, IQVIA, Mylan, Recordati, Rovi, Sage and Schwabe; and he has served on speakers bureaus for Angelini, Aspen Farmaceutica S.A., Biogen, Janssen, Recordati, Schwabe, Servier, Sothema, and Sun Pharma. E. Maron has received grant/research support from Lundbeck, Janssen, Sanofi and GlaxoSmithKline. S. Mendlewicz is a member of the board of the Lundbeck International Neuroscience Foundation and of the advisory board of Servier. S. Montgomery has been a consultant or served on advisory boards for Lundbeck. A. Serretti is or has been a consultant/speaker for Abbott, Abbvie, Angelini, AstraZeneca, Clinical Data, Boehringer, Bristol-Myers Squibb, Eli Lilly, GlaxoSmithKline, Innovapharma, Italfarmaco, Janssen, Lundbeck, Naurex, Pfizer, Polifarma, Sanofi, and Servier. D. Souery has received grant/research support from GlaxoSmithKline and Lundbeck, and he has served as a consultant or on advisory boards for AstraZeneca, Bristol- Myers Squibb, Eli Lilly, Janssen, and Lundbeck. J. Zohar has received grant/research support from Lundbeck, Servier, and Pfizer; he has served as a consultant on the advisory boards for Servier, Pfizer, Solvay, and Actelion; and he has served on speakers’ bureaus for Lundbeck, GSK, Jazz, and Solvay. C. Fabbri was a speaker for Janssen. The other authors declare no conflict of interest.

Acknowledgements

The European College of Neuropsychopharmacology (ECNP) Pharmacogenomics & Transcriptomics Network contributed to this manuscript, by sharing sample data, as well as providing comments and critical review to the manuscript.

We thank the US National Institute of Mental Health (NIMH) for providing access to data on the STAR*D sample. We also thank the authors of previous publications in this dataset, and foremost, we thank the patients and their families who agreed to be enrolled in the study. Data were obtained from the limited access dataset distributed from the NIH-supported STAR*D (NIMH Contract No. N01MH90003, ClinicalTrials.gov identifier is NCT00021528).

We thank the European Group for the Study of Resistant Depression (GRSD) for providing access to the dataset they collected, as well as the researchers of the consortia that provided the GWAS summary statistics used in our analyses and the participants of the cohorts to which they refer.
Role of the funding source

The European Group for the Study of Resistant Depression (GRSD) was supported by an unrestricted grant from Lundbeck that had no further role in the study design, data collection, analysis, and interpretation, as well as in writing and submitting of the manuscript for publication. Bernhard T Baune, Chiara Fabbri, Alessandro Serretti, Vincenzo Oliva, Alessio Squassina, Claudia Pisanu, Alessandra Minelli, and Massimo Gennarelli received support from Psych-STRATA, a project funded from the European Union’s Horizon Europe research and innovation programme under Grant Agreement No. 101057454.

Data Availability

Access to the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) data is granted to Principal Investigators after approval of a research proposal to the National Institute of Mental Health (NIMH) via the NIMH Repository & Genomics Resource (NRGR) (https://www.nimhgenetics.org).

Declaration of Generative AI and AI-assisted technologies in the writing process

None.

ECNP Network Transcriptomics & Pharmacogenomics, contributors:

Marie-Claude Potier (Pitié-Salpêtrière Hospital, Paris, France)
Roos van Westrhenen (Outpatient Clinic Pharmacogenetics, Parnassia Psychiatric Institute/PsyQ, Amsterdam, Netherlands; Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, United Kingdom; School for Mental Health and Neuroscience FHML Maastricht, Netherlands)
Filip Rybakowski (Poznan University of Medical Science, Poznan, Poland)
Divya Mehta (Queensland University of Technology, Brisbane, Australia)
Mara Dierssen (Centre for Genomic Regulation, Barcelona, Spain)
Joost G.E. Janzing (Radboud University Nijmegen, Nijmegen, The Netherlands)
Pietro Lio’ (University of Cambridge, Cambridge, United Kingdom)
References

Table 1. Results of the meta-analyses.

<table>
<thead>
<tr>
<th>PGS</th>
<th>Outcome</th>
<th>OR (95% CI)</th>
<th>Beta</th>
<th>SE</th>
<th>p</th>
<th>Qp</th>
<th>I² (%)</th>
<th>range pseudo-R² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleus accumbens</td>
<td>non-response</td>
<td>0.99 (0.92-1.07)</td>
<td>-0.004</td>
<td>0.039</td>
<td>0.911</td>
<td>0.44</td>
<td>0</td>
<td>0.004 – 2.3</td>
</tr>
<tr>
<td></td>
<td>non-remission</td>
<td>1.03 (0.95-1.12)</td>
<td>0.029</td>
<td>0.042</td>
<td>0.493</td>
<td>0.55</td>
<td>0.01</td>
<td>0.01 – 2.1</td>
</tr>
<tr>
<td>Amygdala</td>
<td>non-response</td>
<td>1.06 (0.98-1.14)</td>
<td>0.055</td>
<td>0.039</td>
<td>0.162</td>
<td>0.51</td>
<td>0</td>
<td>0.001 – 1.6</td>
</tr>
<tr>
<td></td>
<td>non-remission</td>
<td>1.05 (0.95-1.17)</td>
<td>0.052</td>
<td>0.054</td>
<td>0.34</td>
<td>0.26</td>
<td>26.26</td>
<td>0.001 – 1.4</td>
</tr>
<tr>
<td>Caudate nucleus</td>
<td>non-response</td>
<td>1.01 (0.93-1.11)</td>
<td>0.012</td>
<td>0.045</td>
<td>0.781</td>
<td>0.20</td>
<td>12.06</td>
<td>0.005 – 2.4</td>
</tr>
<tr>
<td></td>
<td>non-remission</td>
<td>1.09 (1.01-1.19)</td>
<td>0.09</td>
<td>0.043</td>
<td>0.036</td>
<td>0.45</td>
<td>0</td>
<td>0.01 - 0.6</td>
</tr>
<tr>
<td>Hippocampus</td>
<td>non-response</td>
<td>1.02 (0.95-1.11)</td>
<td>0.022</td>
<td>0.04</td>
<td>0.578</td>
<td>0.63</td>
<td>0</td>
<td>0.005 – 2.2</td>
</tr>
<tr>
<td></td>
<td>non-remission</td>
<td>1.01 (0.92-1.09)</td>
<td>0.005</td>
<td>0.043</td>
<td>0.901</td>
<td>0.85</td>
<td>0</td>
<td>0.009 - 0.6</td>
</tr>
<tr>
<td>Globus pallidus</td>
<td>non-response</td>
<td>1.06 (0.92-1.22)</td>
<td>0.057</td>
<td>0.071</td>
<td>0.427</td>
<td>0.05</td>
<td>55.33</td>
<td>0.01 – 5.7</td>
</tr>
<tr>
<td></td>
<td>non-remission</td>
<td>1.03 (0.89-1.18)</td>
<td>0.027</td>
<td>0.071</td>
<td>0.705</td>
<td>0.07</td>
<td>52.09</td>
<td>0.1 – 3.7</td>
</tr>
<tr>
<td>Putamen</td>
<td>non-response</td>
<td>0.99 (0.92-1.08)</td>
<td>-0.001</td>
<td>0.042</td>
<td>0.989</td>
<td>0.56</td>
<td>0</td>
<td>0.1 – 1.6</td>
</tr>
<tr>
<td></td>
<td>non-remission</td>
<td>1.01 (0.92-1.09)</td>
<td>0.003</td>
<td>0.046</td>
<td>0.955</td>
<td>0.46</td>
<td>0.01</td>
<td>9.64e-05 – 1.9</td>
</tr>
<tr>
<td>Thalamus</td>
<td>non-response</td>
<td>0.94 (0.86-1.02)</td>
<td>-0.064</td>
<td>0.043</td>
<td>0.138</td>
<td>0.21</td>
<td>9.36</td>
<td>0.005 – 3.6</td>
</tr>
<tr>
<td></td>
<td>non-remission</td>
<td>0.91 (0.81-1.04)</td>
<td>-0.092</td>
<td>0.066</td>
<td>0.165</td>
<td>0.18</td>
<td>46.45</td>
<td>0.001 – 1.4</td>
</tr>
</tbody>
</table>

Abbreviations: Beta, regression coefficient; SE, standard error; CI, confidence interval; I², Higgin and Thompson’s I² estimating how much of the total variability in the effect size estimates can be attributed to heterogeneity among the true effects; OR, odds ratio; Qp, p-value for the Cochran’s Q-test of (residual) heterogeneity; PGS, polygenic score; range pseudo-R², Nagelkerke’s R²s (range of values, as pseudo-R² was calculated in each cohort, expressed as percentage).

Results with p-value<0.05 (nominally significant) are in bold. Bonferroni corrected p-value was 0.007.
Figure 1. Forest plot showing the association between the polygenic score for major depressive disorder and non-remission.

<table>
<thead>
<tr>
<th>Sample</th>
<th>OR [95% C.I.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tartu</td>
<td>1.48% 1.11 [0.55, 2.22]</td>
</tr>
<tr>
<td>GSRD</td>
<td>24.27% 1.20 [1.01, 1.43]</td>
</tr>
<tr>
<td>Münster</td>
<td>22.62% 0.98 [0.82, 1.17]</td>
</tr>
<tr>
<td>STAR*D</td>
<td>51.62% 1.10 [0.98, 1.24]</td>
</tr>
<tr>
<td>RE Model for All Studies (Q = 2.62, df = 3, p = 0.45; $I^2 = 0.0%$, $\tau^2 = 0.00$)</td>
<td>100.00% 1.09 [1.01, 1.19]</td>
</tr>
</tbody>
</table>

Association between caudate volume-PRS and non-remission