Markers of systemic iron status show sex-specific differences in peripheral artery disease: a cross-sectional analysis of HEIST-DiC and NHANES participants

Anand Ruban Agarvas1, Stefan Kopf2,3, Paul Thalmann4, José Manuel Fernández-Real5, Peter Nawroth2,3, *Martina U. Muckenthaler1,6,7,8

Affiliations

1Center For Translational Biomedical Iron Research, Department of Pediatric Hematology, Oncology Immunology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany.
2Clinic for Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany.
3German Center of Diabetes Research (DZD), Neuherberg, Germany.
4Institute of Medical Biometry, University Hospital Heidelberg, Heidelberg, Germany.
5Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona 17007, Spain.
6Molecular Medicine Partnership Unit, Heidelberg, Germany.
7Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
8German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany.

*Corresponding author

Address for correspondence

Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.
Tel.: +496221566923; Fax: +496221564580. E-mail: martina.muckenthaler@med.uni-heidelberg.de (M.U. Muckenthaler).

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background
Iron has been proposed as a risk factor for atherosclerosis but the data are controversial. We previously showed that non-transferrin-bound iron (a fraction of iron appearing in iron overload) contributes to atherosclerosis. Here, we investigated whether iron within physiological limits influenced atherosclerosis by studying its association with vascular dysfunction and peripheral arterial disease (PAD). Further, we evaluated if this relationship was influenced by comorbidities.

Methods
We studied the association between iron biomarkers in blood and markers for vascular adhesion and PAD in 368 individuals registered in the Heidelberg Study on Diabetes and Complications (HEIST-DiC). Our observations were validated by analyzing the association between iron biomarkers and PAD in the National Health and Nutrition Examination Survey (NHANES 1999-2004) data.

Results
In both HEIST-DiC and NHANES cohorts, plasma ferritin levels are positively associated with PAD in females and not in males. We further identified negative associations between TIBC and plasma iron levels with PAD among females. These relationships were independent of the presence of other comorbidities including hypertension, insulin resistance, prediabetes, and diabetes.

Conclusion
We demonstrate a sex-specific alteration of markers of systemic iron availability in individuals with clinically apparent PAD implying that mechanisms of disease development may differ between males and females. Elevated ferritin levels and hypoferremia in females are indicative of an underlying inflammation that may affect the pathogenesis of PAD. The observed lack of a positive association of PAD with serum iron levels suggest that “physiological” iron concentrations are safe for vascular health.

Keywords
Iron, Vascular Diseases, Arterial Occlusive Diseases, Atherosclerosis, Peripheral Arterial Disease
Introduction

Peripheral arterial disease (PAD) is a common atherosclerotic vascular disorder of the arteries of the lower limbs and affects millions of individuals worldwide\(^1,2\). Unrecognized and untreated PAD reduces blood flow to the lower extremities resulting in leg pain, impaired mobility, and amputation. Moreover, it is associated with an increased risk of cardiovascular morbidity and mortality\(^3\). Compared to cardiovascular and cerebrovascular disease, PAD is less well studied, and our understanding of the disease process is still poor. Among the known risk factors of PAD include old age, smoking, and comorbidities such as diabetes and hypertension\(^1\). A recent genome-wide association study\(^4\) identified genetic loci that are unique to PAD, in addition to those shared between the different atherosclerotic disorders (coronary, cerebral, and peripheral) suggesting that additional mechanisms may contribute to the pathophysiology of PAD.

Iron is an essential micronutrient and its homeostasis is controlled by regulatory systems that maintain its absorption, transport, and storage\(^5\). If iron accumulates in excess, it contributes to the generation of reactive oxygen species. Iron is, therefore, discussed as a risk factor for the development of atherosclerosis and cardiovascular disease\(^6\). We previously analysed mouse models and humans with iron overload disorder, hemochromatosis, and found that excess iron played a multifaceted role in atherosclerosis depending on the compartment where it is localized\(^7\). Under physiological conditions, iron is bound to transferrin in the plasma, and is transported to those cells that require iron. Iron occupies only one-third of transferrin’s binding sites, therefore, free iron can be sequestered in the circulation. However, in pathological states associated with iron overload, most binding sites on transferrin are saturated resulting in the appearance of ‘non-transferrin-bound iron (NTBI)’. We found that NTBI in circulation contributes to atherosclerosis by oxidising low-density lipoproteins (LDL) and inducing vascular dysfunction\(^7\). In addition, iron deposition in the vasculature of hemochromatotic mice was associated with enhanced atherosclerosis\(^7\). An interesting open question is whether iron levels within physiological limits influence atherogenesis. The available data is controversial.

The relationship between iron and atherosclerosis has been commonly studied by analyzing the association of one or more iron biomarkers [e.g. plasma iron, ferritin, transferrin, transferrin saturation (TSAT)] with atherosclerosis markers (e.g. coronary artery calcium or carotid intima-media thickness)\(^8–14\). On the other hand, studies have also been performed that consider blood donation as an iron-depletion strategy and evaluated atherosclerosis risk in blood donors\(^15–19\). More recently, Gill et al. used a Mendelian randomization approach to
evaluate the risk of venous thromboembolism and carotid atherosclerosis with the genetically determined iron status. The relationship between iron and PAD is less well-studied. Menke et al. showed that ferritin and TSAT are positively associated with PAD in the National Health and Nutrition Examination Survey 1999-2002 (NHANES), especially among participants with elevated cholesterol. Among individuals on hemodialysis, one study found that PAD was associated with anemia and low iron levels while the other found a positive association with ferritin levels. Results of a randomized controlled trial suggested that among participants with established PAD, the iron reduction did not improve the clinical outcomes or mortality. Several open questions remain: Are there differences in how iron parameters influence atherosclerosis at different sites? Do iron biomarkers correlate with the severity of PAD? If so, how? How are these relationships influenced by sex or the presence of prediabetes or diabetes?

Here we analyzed iron biomarkers within physiological limits for association with markers for vascular function and PAD in a cohort of individuals with diabetes and prediabetes enrolled in the Heidelberg Study on Diabetes and Complications (HEIST-DiC). We validated our observations by analyzing the NHANES 1999-2004 data.

Methods
Participants
HEIST-DiC study
We retrospectively analysed the data from 368 individuals enrolled in the HEIST-DiC study (Clinical trials.gov NCT03022721). The selection criteria for participants have been described previously; in addition, we excluded those with values of serum iron biomarkers suggestive of likely hemochromatosis. For all participants, a detailed medical history was obtained. The ankle-brachial index (ABI) was measured using noninvasive blood pressure measurements of arms and ankles (ABI System 1000; Boso d.o.o.). Blood samples were obtained in the fasting state and all baseline parameters were analyzed under standardized conditions in the central laboratory of the University Hospital of Heidelberg. Serum samples were stored at -80°C until further analysis. We used iron, ferritin, and TSAT were used as biomarkers of systemic iron status and serum intercellular adhesion molecule-1 (ICAM1) and vascular-cell adhesion molecule-1 (VCAM1) were used as markers of vascular dysfunction. We measured ICAM1 (#171B6009M) and VCAM1 (#171B6022M) using multiplex magnetic bead-array-based technology on a BioPlex200 system (Bio-Rad) according to the manufacturer's instructions. All participants provided written informed consent and the ethics
committees of the University of Heidelberg approved this study (Decision No. 204/2004, 400/2010, and S-383/2016) according to the Declaration of Helsinki.

NHANES

NHANES is designed to assess the health and nutritional status of adults and children in the United States. The survey includes both an interview component, in which participants are asked questions about their health and lifestyle, and a physical examination component, in which various measurements and samples are collected. We obtained data from 15,969 participants over 40 years in 3 consecutive cycles of NHANES (1999-2004) for whom ABI was measured. We applied the following exclusion criteria: not even one ABI measurement available, likely hemochromatosis, anemia (hemoglobin <10g/L), on current hormonal medications or iron supplements, cancer, donated blood in the last 1 month, with features of kidney disease (on dialysis or severe albuminuria), pregnant or breastfeeding in the last year, high risk of liver fibrosis, concurrent inflammation [C-Reactive Protein (CRP) >3μg/L] and with a feature of familial hyperlipidemia [LDL-Cholesterol (LDLc) >4.9mM]. This resulted in a final sample number of 9,336 participants. We obtained data from the following iron biomarkers from NHANES: iron, ferritin, total iron binding capacity (TIBC), and TSAT.

Among the demographic variables, age (in years) and body mass index (BMI) were obtained and used as is from NHANES. Smoking and alcohol were categorized according to a previous study. We categorized diabetes based on self-reported history, current use of insulin or oral hypoglycemic agents, fasting plasma glucose (FPG) ≥7.0 mM, or glycated hemoglobin (HbA1c) ≥6.5%. Prediabetes was defined among those with an absent self-reported history of diabetes and one of the following: FPG 5.6-6.9 mM or HbA1c 5.7-6.4%. We categorized hypertension based on self-reported history or current use of antihypertensive agents or systolic blood pressure >130 mmHg or diastolic blood pressure >80 mmHg. The presence of nonalcoholic fatty liver disease (NAFLD) was categorized by calculating FIB-4 score. Assays for the analytes in NHANES were performed under strict laboratory protocols (for more details on data fields and procedure manuals, see Supplementary Table 2). As an index of insulin resistance, we calculated HOMA2-IR using C-peptide values instead of insulin.

Categorization as PAD

In both cohorts, ABI values were measured on both the right and left limbs. We categorized PAD when the ABI value on one of the sides was <0.9 or >1.4 as per recommendations.

Statistical analysis
For the analysis of participants in both cohorts, the following aspects were similar: we modelled the probability of PAD’s presence with one of the iron biomarkers (iron, ferritin, or TSAT) by logistic regression using a nested approach. Since iron metabolism shows sex-specific differences, we conducted a sex-stratified analysis. In general, we included variables that are known to affect iron homeostasis or the risk of PAD as covariates. Further, all continuous variables were mean-centered for the analysis, and variables were included in the models only when their missing data was <10%.

Some study-specific aspects of the analysis are described below. For the HEIST-DiC study, we built 3 different regression models that analysed the association between iron biomarkers and PAD or markers of vascular dysfunction (ICAM1, VCAM1). Model 1 was univariate. Model 2 was built on model 1 by adjusting for demographic variables: sex (males as reference), presence of diabetes, and hypertension (absence of disease as reference). Model 3 was built on Model 2 by including additional covariates [high sensitivity CRP (hsCRP), LDLc, HbA1c, and urine albumin creatinine ratio (ACR); all continuous]. As subgroup analysis in the HEIST-DiC cohort, we conducted univariate regression for iron parameters only in individuals with diabetes; we did not conduct a subgroup analysis for prediabetes since the number of patients with PAD in this group was small (2/23).

For the NHANES data, only the association between iron biomarkers and PAD was analyzed. Model 1 represents the univariate analysis, while models 2-4 are multivariate. Model 2 was built on model 1 by adjusting for demographic variables (age, BMI, smoking (non-smokers as reference), and ethnicity (non-Hispanic whites as the reference). Model 3 was built on model 2 by incorporating the following covariates (as categorical: the presence of diabetes, and hypertension (absence of disease as reference), FIB4 score [<1.2 as reference]; as continuous: CRP, ACR. Model 4 was built on model 3 by including HOMA2-IR, LDLc, use of antihyperlipidemic and antiplatelet agents (the former two variables as continuous and the latter two as categorical). For the NHANES dataset, we also conducted a sensitivity analysis by conducting the analyses on the whole cohort without the exclusion of data. In addition, sample weights were included all the analyses.

A p-value<0.05 was considered statistically significant. All statistical analyses and visualizations were performed using R Statistical Software (v4.2.2). Reporting of the study is as per The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines. We have also developed a data exploration tool for readers to explore the datasets and interactively create their visualizations from the paper (https://anandr.shinyapps.io/NHANES_HEISTDiC/) using Quarto and Shiny.
Results

HEIST-DiC study

The HEIST-DiC is a prospective, observational study designed to analyze the development of complications in individuals with diabetes and prediabetes. We investigated the relationship between systemic iron biomarkers and PAD in the baseline data and the participant characteristics are shown in Table 1. The overall prevalence of PAD was 6.6% with a higher proportion among males (17/192) than females (6/165). Among both sexes, the participants with PAD were older and a majority of them also had associated diabetes and hypertension; the proportion of individuals with prediabetes and PAD was small (Table 1). Vascular adhesion markers such as ICAM1 and VCAM1 were significantly higher only among the males with PAD (Table 1). Among the iron biomarkers, ferritin was elevated among females with PAD while iron, transferrin, and TSAT were not significantly different. Of note, significant differences between iron parameters and PAD were not noted in males.

In the regression analyses, ferritin was associated with an increased probability of PAD in females but not males (Figure 1). This positive association was significant in models 1 and 2 (Model 1: OR 3.23, 95% CI 1.23-8.7, P=0.013, Model 2: OR 2.87, 95% CI 0.96-9.18, P=0.06) however, an increased risk was also evident in the Model 3 (OR 1.86, 95% CI 0.38-8.1, P=0.4). The positive association of ferritin with PAD persisted in models adjusted for the comorbidities diabetes and hypertension (Model 2 and Model 3); further, ferritin also showed a tendency for a positive association in the diabetes subgroup (OR 2.44, 95% CI 0.8-7.14, P=0.09). On the other hand, iron and TSAT did not show a significant association with PAD in either sex (Figure 1). In contrast to our previous observations in individuals with hemochromatosis, markers of vascular dysfunction such as ICAM1 and VCAM1 were not significantly associated with iron parameters within physiological ranges (iron, ferritin, or TSAT) in both sexes (Figures 2-3).

NHANES

This part of the study builds upon a previous analysis of the NHANES 1999-2002 cycles by Menke et al. by including data from the NHANES 2003-2004 cycle. The baseline characteristics of the NHANES 1999-2004 participants included in the study are shown in Table 2. Overall, the prevalence of PAD in the population was 6.25% with a significantly higher prevalence among females (males: 4.96%, females: 7.9%; p=0.001). Among individuals with PAD, we observed differences in ethnicity, sex, presence of diabetes, smoking, alcohol status, physical activity, and use of antihyperlipidemic and antiplatelet medications (Table 2). The prevalence of PAD increased with older age (median: 69 for
males, P<0.001; 71 for females, P<0.001) with a higher percentage from the non-Hispanic white ethnicity (84% for males, P=0.003; 78% for females, P=0.005). BMI was significantly higher among females with PAD while it was not different for males (median: 28 for males, P =0.8; 29 for females, P=0.014). The proportion of alcohol drinkers was comparable for both sexes and was not statistically different (5.2% for males, P=0.6; 6% for females, P>0.9).

Among both sexes, the proportion of PAD participants with prediabetes (2.4% for males; 2.7% for females) or diabetes (2.3% for males; 3.0% for females) were comparable. The overall prevalence of hypertension was higher among those with PAD (9.9% of males, p=0.003; and 11.8% of females, p=0.6). Smoking status was different among the sexes in the PAD group: among males, the proportion of former and current smokers was significantly higher (Non-smokers 1.7%, Former smokers 4.2%, Current smokers 2.3%; P<0.001) while the distribution was not different among females (Non-smokers 5.4%, Former smokers 3.1%, Current smokers 1.8%; P=0.2). As expected, lower physical activity was also associated with PAD in both sexes (50% of males and 57% of females). Among both sexes, the PAD subgroup also had a higher FIB4 score indicating a greater degree of liver fibrosis (Males: 1.35, P<0.001; Females: 1.14 P<0.001).

Among the iron biomarkers, serum iron (Median 80, IQR 64-108 μg/dL; P<0.001) and transferrin saturation (Median 24, IQR 17-30; P=0.021) were lower in males with PAD while females with PAD showed higher ferritin (Median 87, IQR 56-252 ng/mL; P<0.001) and lower TIBC (Median 60, IQR 54-68; P<0.001). Marginal differences were also observed in some laboratory parameters within both sexes with PAD (e.g. albumin, AST, urea, creatinine, C-reactive protein, and albumin-creatinine ratio; Table 2).

Consistent with our observations in the HEIST-DiC cohort, serum ferritin levels showed a positive association with PAD only in females (Figure 4). This positive association was strongest in Model 4, the most complex regression model we built (OR 3.6, 95% CI 1.25-10.6, P=0.018). Interestingly, TIBC analysis showed a significant negative association with PAD only among females (OR 0.71, 95% CI 0.58-0.88, P=0.002; Model 2: OR 0.63, 95% CI 0.5-0.79, P<0.001; Model 3: OR 0.56, 95% CI 0.41-0.75, P<0.001; Model 4: OR 0.29, 95% CI 0.12-0.7, P=0.006; Figure 4). By contrast, none of the associations for ferritin and TIBC were significant for males. On the other hand, serum iron levels (Figure 4), were negatively associated with PAD in both females (Model 1: OR 0.75, 95% CI 0.61-0.92, P=0.005; Model 2: OR 0.77, 95% CI 0.61-0.98, P=0.034; Figure 4) and males (Model 1: OR 0.79, 95% CI 0.62-1, P=0.046). For TSAT, a positive association for females was observed in Model 4 (OR 2.87, 95% CI 1.15-6.92, P=0.023) while a negative association was noted for males.
We next analyzed associations of other covariates with PAD from Model 4 (Supplementary Table 1). Of note, BMI had no association with PAD, while smoking showed a positive association among both sexes that was more pronounced in males; interestingly, male former smokers showed a negative association with PAD although, a positive association still remained among females (Supplementary Table 1). Furthermore, the presence of prediabetes was positively associated with PAD among males and negatively among females; on the other hand, the presence of diabetes was negatively associated with PAD in both sexes. HOMA2-IR showed positive associations among both males and females while CRP showed a positive association mainly among females (Supplementary Table 1).

Sensitivity analysis
To test the robustness of the relationships, we conducted a sensitivity analysis on the whole NHANES 1999-2004 cohort without applying any exclusion criteria. Here, we found that ferritin (in Model 1) and TIBC’s observations in females (Models 1-3) were robust enough to retain their significant relationships (Supplementary Figure 1).

Discussion
While the majority of studies undertaken so far have focused on the relationship between iron and cardiovascular disease, only a few studies have investigated the role of iron in the development of atherosclerosis: furthermore, the topic of how iron biomarkers correlate with PAD, specifically, is rarely addressed. We, therefore, analyzed the data from two patient cohorts: HEIST-DiC and NHANES. Since iron parameters show important sex-specific differences, we conducted stratified analyses for males and females and additionally analyzed if prediabetes or diabetes affected the observed relationships.

There were no significant associations between iron parameters within the physiological range and markers of vascular dysfunction (ICAM1 or VCAM1), despite their elevated levels in males with PAD. However, we observed sex-specific associations of iron biomarkers with PAD, a relationship that was independent of the presence of other comorbidities including hypertension, insulin resistance, prediabetes, and diabetes (Supplementary Table 1). In both, the HEIST-DiC and NHANES patient cohorts, plasma ferritin levels are positively associated with PAD in females and not in males. The positive association for higher serum ferritin among females with PAD reported here strengthens the previous observations on the NHANES 1999-2001 cohort and agrees with a previous study on carotid atherosclerosis.
These findings are also, at least, partially consistent with studies that report ferritin’s positive association with carotid/coronary atherosclerosis. These studies do not observe major sex-specific differences\(^8\,\text{12,13}\). On the contrary, the lack of a predictive role for ferritin in males is in contrast to a previous study which reports a “U-shaped” relationship with cardiovascular disease among males\(^35\). The sex-specific associations of ferritin identified in the patient cohorts described here also contrast findings in two other large cohort studies: i) a Danish cohort that observed an increased risk of all-cause mortality for ferritin among both males and females\(^36\) and ii) a British cohort that observed an increased risk of cardiovascular mortality among males with high ferritin and increased all-cause mortality among females with low ferritin\(^37\).

Interestingly, in the NHANES cohort, we further identified negative associations between TIBC with PAD in females but not in males. This relationship between TIBC and PAD was strong and robust, as evident from the sensitivity analysis (Figure 4; Supplementary Figure 1). Our findings thus support two previous studies that have analyzed the relationship between TIBC and atherosclerosis\(^12\,\text{38}\). Further, among both sexes, plasma iron showed a negative association with PAD. The following studies on plasma iron and PAD do show similar negative associations but have not investigated sex-specific differences. For example, serum iron levels were reduced in hemodialysis patients with PAD (9.9±3.0 μM) compared to those without PAD (11.5±3.3 μM; \(p=0.004\))\(^21\). The study by Vega De Céniga \(\text{et al.}\) also observed a higher prevalence of iron deficiency (31.9% with iron <58 mcg/dL) and anemia (49.5%) among PAD participants\(^39\).

In our analyses, the association for TSAT with PAD showed contrasting observations in males and females. While the HEIST-DiC cohort had insignificant associations for TSAT (Figure 3), the NHANES cohort showed a positive association among females in Model 4 while the association was negative among males (Figure 4). Otaki \(\text{et al.}\) reported reduced TSAT levels in PAD in a Japanese patient cohort and also found a correlation between TSAT with the severity of PAD\(^40\). Similar negative associations with TSAT have also been made in the context of cardiovascular disease in both sexes\(^11\,\text{12,14,41}\). For the interpretation of TSAT, it is also important to consider that it is a calculated measure\(^42\). While the HEIST-DiC study applied a formula including measured transferrin levels, the NHANES cohort used a formula applying TIBC. Therefore, we are cautious in interpreting the associations of TSAT in our study.
Our data extend on our previous findings, where we observed a striking correlation of NTBI and vascular dysfunction and atherosclerosis.\(^\text{7,43}\) From this current study we conclude that serum iron levels within physiological limits are safe for vascular health. These findings agree with our previous proposed model\(^\text{7}\) that only the labile iron fractions in the circulation (e.g., NTBI) in iron-loaded states plays a pathological role. Nevertheless, the associations between iron biomarkers with PAD in females have several important implications. If ferritin were interpreted as an indicator of body iron stores, our study suggests that there is an increased risk of PAD at the upper end of, what is clinically accepted as a “physiological” iron status. This finding would directly contrast our observation on the negative relationship between PAD and iron/TIBC which implies an increased PAD risk in iron-deficient states. This could be interpreted as an “U-shaped” relationship between iron status and cardiovascular disease as noted in two previous studies investigating the NHANES cohort\(^\text{41,44,45}\). However, ferritin is also an acute phase reactant with increased expression in conditions of inflammation\(^\text{46}\). In inflammatory conditions, hypoferrremia (low iron levels in the plasma) arises from a reduced iron export via ferroportin from macrophages and duodenal enterocytes by hepcidin-controlled\(^\text{47}\) and transcriptional mechanisms\(^\text{48,49}\). Consequently, iron-exporting cells such as macrophages become iron loaded contributing to elevated ferritin levels\(^\text{50}\). Overall, our findings may also suggest an iron redistribution in response to an underlying inflammation that may render individuals more susceptible to PAD. Although we excluded samples with CRP<3 mg/dL and used CRP as a covariate, the presence of microinflammation in tissues cannot be completely excluded from the available data.

We further need to interpret our findings in the context of The Iron and Atherosclerosis Study (FeAST; www.clinicaltrials.gov, Identifier NCT00032357), a major trial that investigated the benefits of iron reduction on the clinical outcomes in a cohort of individuals with PAD\(^\text{23}\). While the initial analysis of the FeAST trial results did not report a favorable outcome following phlebotomy\(^\text{29}\), the reanalysis of the results adjusting for the effects of age\(^\text{51}\) and smoking\(^\text{52}\) have suggested that iron reduction (with ferritin and TSAT as endpoints) could be of significant benefit for younger individuals and smokers. However, an overwhelming majority of the FeAST trial participants are males (~98%)\(^\text{23}\), therefore, sex-specific differences could not be analyzed.

Taken together, our data suggest that iron redistribution to macrophages and reduced systemic iron availability may play a role in PAD. Some of the parameters analyzed are altered in a sex-specific manner implying that mechanisms of PAD development may differ between males and females. The strength of our study lies in the analyses of two independent cohorts, allowing for a generalization of the findings, an increased robustness
of the data, and a reduction of cohort-specific biases. In both cohorts, we observed a similar prevalence of PAD (~6%) associated with well-known risk factors (old age, diabetes, and hypertension). The examination of multiple iron biomarkers, including serum iron, ferritin, TSAT, and TIBC provides a comprehensive analysis of the relationship between iron and clinically apparent PAD. This is also the first study to evaluate the relationship between iron biomarkers and PAD in prediabetes and diabetes.

Limitations include the cross-sectional nature of the study which limits causal inferences and precludes the assessment of temporal relationships. The HEIST-DiC cohort consisted of mainly European individuals with diabetes and prediabetes from a hospital-based study, while NHANES is a survey cohort, representative of the US population, and therefore contains a mix of ethnicities. Further, we were unable to control for all possible confounding factors, such as genetic predisposition, lifestyle, medications, or other comorbidities. The study described here also did not investigate potential mechanisms underlying the observed associations.

Conclusion
Overall, our findings suggest that “physiological” iron concentrations are safe for vascular health. We also find evidence of an association between systemic iron biomarkers and PAD specifically among females. Further studies are necessary to confirm whether the observed associations are indeed causal and to explore the potential mechanisms underlying this relationship. Understanding the role of iron in the development of PAD could lead to the development of new preventive and therapeutic strategies for this condition. Our findings need to be considered explorative to encourage the investigation of potential biological pathways underlying the sex-specific differences in iron’s influence on atherosclerosis.

Ethics statement
The ethics committees of the University of Heidelberg approved this study (Decision No. 204/2004, 400/2010, and S-383/2016) according to the Declaration of Helsinki. All patients entered the study according to the guidelines of the local ethics committees following written informed consent to participate.

Funding
The HEIST-DiC study was funded by the Deutsche Forschungsgemeinschaft (SFB1118). MUM received funding from the DFG (SFB1118) and Translational Lung Research Center
Heidelberg (TLRC), German Center for Lung Research (DZL; Project No. FKZ 82DZL004A1).

Author contributions

- Anand Ruban Agarvas: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data curation, Writing- Original draft, Visualization
- Stefan Kopf: Investigation, Resources, Writing - Review & Editing
- Paul Thalmann: Validation, Writing - Review & Editing
- José Manuel Fernández-Real: Methodology, Writing - Review & Editing, Supervision
- Peter Nawroth: Project administration, Funding acquisition, Supervision, Writing - Review & Editing
- Martina U. Muckenthaler: Conceptualization, Methodology, Supervision, Writing - Review & Editing, Project administration, Funding acquisition

Conflict of interest

None to declare

Data and Code Availability Statement

The data from this study can be explored here: https://anandr.shinyapps.io/NHANES_HEISTDiC/. The HEIST-DiC dataset analyzed in the current study is available from the corresponding authors on reasonable request. The NHANES dataset is publicly available. Codes used for data analysis and visualization are accessible here (https://github.com/griffindoc/pad)

References

Legends

Table 1. Demographics of HEIST-DiC participants
The demographics of the HEIST-DiC participants classified by sex and the presence of PAD are shown in Table 1. For continuous variables, the summary data are shown as Mean±Standard Deviation and for categorical variables as N (%). P-values as calculated by the Wilcoxon rank sum test or Fisher’s exact test and significant P-values are boldfaced.

Table 2. Demographics of NHANES 1999-2004 participants
The demographics of the NHANES 1999-2004 participants classified by sex and the presence of PAD are shown in Table 2. The N of participants shown are unweighted numbers. For continuous variables, the summary data are shown as Median (Interquartile Range), and for categorical variables as N (%) - survey weights were included in calculating the summary data. P-values as calculated by the Wilcoxon rank sum test or Fisher’s exact test and significant P-values are boldfaced.

Figure 1. Odds Ratio plot of iron parameters with PAD: HEIST-DiC participants
The plot shows a compilation of the OR (odds ratio) and 95% CI (95% Confidence Interval) derived from the logistic regression analysis (sex-stratified) of each of the iron parameters with PAD.
Model 1: represents the univariate analysis. Model 2: adjusted for the presence of diabetes and hypertension. Model 3: adjusted for the presence of diabetes and hypertension, High sensitivity C-reactive protein, Urine Albumin-Creatinine Ratio, and Low-density Lipoprotein.

Figure 2. The coefficient plot of iron parameters with ICAM-1: HEIST-DiC participants
The plot shows a compilation of the estimate and 95% CI (95% Confidence Interval) derived from the linear regression analysis (sex-stratified) of each of the iron parameters with PAD.
Model 1: represents the univariate analysis. Model 2: adjusted for the presence of diabetes and hypertension. Model 3: adjusted for the presence of diabetes and hypertension, High sensitivity C-reactive protein, Urine Albumin-Creatinine Ratio, and Low-density Lipoprotein.

Figure 3. The coefficient plot of iron parameters with VCAM-1: HEIST-DiC participants
The plot shows a compilation of the estimate and 95% CI (95% Confidence Interval) derived from the linear regression analysis (sex-stratified) of each of the iron parameters with PAD.
Model 1: represents the univariate analysis. Model 2: adjusted for the presence of diabetes and hypertension. Model 3: adjusted for the presence of diabetes and hypertension, High sensitivity C-reactive protein, Urine Albumin-Creatinine Ratio, and Low-density Lipoprotein.

Figure 4. The Odds Ratio plot of iron parameters with PAD: NHANES 1900-2004 participants
The plot shows a compilation of the OR (odds ratio) and 95% CI (95% Confidence Interval) derived from the logistic regression analysis (sex-stratified) of each of the iron parameters with PAD.
Model 1: represents the univariate analysis. Model 2: adjusted for age, ethnicity, BMI and smoking. Model 3: adjusted for age, ethnicity, BMI, smoking, the presence of diabetes and
hypertension, FIB4 score, Urine Albumin-Creatinine Ratio, and C-reactive protein. Model 4: adjusted for age, ethnicity, BMI, smoking, the presence of diabetes and hypertension, FIB4 score, Urine Albumin-Creatinine Ratio, C-reactive protein, LDL, antihyperlipidemic and antiplatelet medications, and HOMA2-IR.

Supplementary files

Supplementary Table 1. Model 4 Regression Summary NHANES 1999-2004.
The table shows the regression results of the multivariate Model 4 analysis of iron biomarkers with PAD. The Odds ratio, 95% confidence interval, and p-value are shown in the table. The significant associations are highlighted in bold.

Supplementary Table 2. Data fields and variables from NHANES 1999-2004.
The table shows the variables and the corresponding codes used for accessing data from the NHANES. The hyperlinks to the procedure manuals and datafiles are also provided in the table.

Supplementary Figure 1. The Odds Ratio plot of iron parameters with PAD: Sensitivity analysis of NHANES 1900-2004 participants
<table>
<thead>
<tr>
<th>Variable</th>
<th>Males (N=192)</th>
<th>Females (N=165)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No PAD N = 175</td>
<td>PAD N = 17</td>
</tr>
<tr>
<td>Age</td>
<td>60 (11)</td>
<td>70 (8)</td>
</tr>
<tr>
<td>BMI</td>
<td>29.8 (5.1)</td>
<td>30.8 (6.0)</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>67 (38%)</td>
<td>3 (18%)</td>
</tr>
<tr>
<td>Yes</td>
<td>108 (62%)</td>
<td>14 (82%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No diabetes</td>
<td>37 (21%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Prediabetes</td>
<td>17 (9.7%)</td>
<td>2 (12%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>136 (69%)</td>
<td>15 (88%)</td>
</tr>
<tr>
<td>Dietary management (=Yes)</td>
<td>19 (11%)</td>
<td>3 (18%)</td>
</tr>
<tr>
<td>Oral antidiabetic</td>
<td>60 (34%)</td>
<td>7 (41%)</td>
</tr>
<tr>
<td>medications (=Yes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statins (=Yes)</td>
<td>57 (33%)</td>
<td>6 (35%)</td>
</tr>
<tr>
<td>Fasting blood glucose</td>
<td>135 (47)</td>
<td>175 (59)</td>
</tr>
<tr>
<td>(mg/dL)</td>
<td>6.78 (3.10)</td>
<td>7.40 (1.43)</td>
</tr>
<tr>
<td>Parameters of vascular function</td>
<td>191</td>
<td>192</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Insulin</td>
<td>30</td>
<td>(17%)</td>
</tr>
<tr>
<td>Parameters of vascular function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ankle-brachial index (Right)</td>
<td>191</td>
<td>1.11 (0.08)</td>
</tr>
<tr>
<td>Ankle-brachial index (Left)</td>
<td>191</td>
<td>1.12 (0.08)</td>
</tr>
<tr>
<td>Carotid intima-media thickness (mm)</td>
<td>176</td>
<td>0.63 (0.16)</td>
</tr>
<tr>
<td>Carotid-femoral Pulse Wave Velocity</td>
<td>185</td>
<td>8.79 (1.79)</td>
</tr>
<tr>
<td>ICAM1</td>
<td>162</td>
<td>287 (104)</td>
</tr>
<tr>
<td>VCAM1</td>
<td>162</td>
<td>869 (247)</td>
</tr>
<tr>
<td>Other laboratory parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>192</td>
<td>171 (166)</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>192</td>
<td>190 (47)</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>192</td>
<td>49 (13)</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>179</td>
<td>111 (42)</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>192</td>
<td>14.85 (1.06)</td>
</tr>
<tr>
<td>Mean Corpuscular</td>
<td>192</td>
<td>88.8 (4.6)</td>
</tr>
<tr>
<td>Parameter</td>
<td>N</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----</td>
<td>-----------</td>
</tr>
<tr>
<td>Volume (fL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hsCRP</td>
<td>184</td>
<td>2.11 (3.10)</td>
</tr>
<tr>
<td>IL6</td>
<td></td>
<td>3.16 (1.85)</td>
</tr>
<tr>
<td>hsTNT</td>
<td></td>
<td>10.8 (9.3)</td>
</tr>
<tr>
<td>proBNP</td>
<td></td>
<td>136 (365)</td>
</tr>
<tr>
<td>eGFR (ml/min/1.73m²)</td>
<td></td>
<td>91 (17)</td>
</tr>
<tr>
<td>Urinary Albumin Creatinine Ratio (mg/g)</td>
<td>188</td>
<td>81 (454)</td>
</tr>
<tr>
<td>Iron-related parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td></td>
<td>17.8 (5.9)</td>
</tr>
<tr>
<td>Ferritin</td>
<td></td>
<td>189 (157)</td>
</tr>
<tr>
<td>Transferrin</td>
<td></td>
<td>2.41 (0.31)</td>
</tr>
<tr>
<td>TSAT (%)</td>
<td></td>
<td>27 (9)</td>
</tr>
</tbody>
</table>

Table 1. Demographics of HEIST-DiC participants

The demographics of the HEIST-DiC participants classified by sex and the presence of PAD are shown in Table 1. For continuous variables, the summary data are shown as Mean±Standard Deviation and for categorical variables as N (%). P-values as calculated by the Wilcoxon rank sum test or Fisher's exact test and significant P-values are boldfaced.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Males</th>
<th>Females</th>
<th>P-value</th>
<th>Males</th>
<th>Females</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall (N =5454)</td>
<td>No PAD (N =5067)</td>
<td>PAD (N =387)</td>
<td>P-value</td>
<td>Overall (N =3882)</td>
<td>No PAD (N =3519)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>2,323 (79)</td>
<td>2,114 (79)</td>
<td>209 (84)</td>
<td>0.003f</td>
<td>1,600 (75)</td>
<td>1,418 (74)</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>742 (8.6)</td>
<td>677 (8.5)</td>
<td>65 (10)</td>
<td></td>
<td>647 (11)</td>
<td>573 (11)</td>
</tr>
<tr>
<td>Mexican-American</td>
<td>871 (4.7)</td>
<td>812 (4.8)</td>
<td>59 (4.2)</td>
<td></td>
<td>676 (4.4)</td>
<td>621 (4.4)</td>
</tr>
<tr>
<td>Others</td>
<td>252 (7.3)</td>
<td>244 (7.6)</td>
<td>8 (1.2)</td>
<td><0.001</td>
<td>261 (10)</td>
<td>245 (11)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>52 (45, 61)</td>
<td>51 (45, 60)</td>
<td>69 (61, 75)</td>
<td><0.001</td>
<td>52 (46, 67)</td>
<td>52 (45, 65)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.9 (25.2, 30.8)</td>
<td>27.9 (25.2, 30.8)</td>
<td>28.0 (25.1, 32.0)</td>
<td>0.8</td>
<td>27 (24, 32)</td>
<td>27 (24, 32)</td>
</tr>
<tr>
<td>Diabetes (coded)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No diabetes</td>
<td>2,664 (74)</td>
<td>2,525 (62.6)</td>
<td>139 (3.4)</td>
<td><0.001f</td>
<td>1,968 (72)</td>
<td>1,829 (59.4)</td>
</tr>
<tr>
<td>Prediabetes</td>
<td>643 (12)</td>
<td>548 (13.6)</td>
<td>95 (2.4)</td>
<td></td>
<td>568 (15)</td>
<td>484 (14.7)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>730 (14)</td>
<td>637 (15.8)</td>
<td>93 (2.3)</td>
<td></td>
<td>545 (13)</td>
<td>454 (15.7)</td>
</tr>
<tr>
<td>Hypertension (coded)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>355 (22)</td>
<td>331 (19.9)</td>
<td>24 (1.5)</td>
<td>0.026f</td>
<td>273 (21)</td>
<td>246 (17)</td>
</tr>
<tr>
<td>Yes</td>
<td>1,302 (78)</td>
<td>1,137 (68.6)</td>
<td>165 (9.9)</td>
<td></td>
<td>1,173 (79)</td>
<td>1,003 (69.4)</td>
</tr>
<tr>
<td>Smoking (coded)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smoker</td>
<td>1,488 (37)</td>
<td>1,419 (33.9)</td>
<td>69 (1.7)</td>
<td><0.001<sup>F</sup></td>
<td>1,899 (57)</td>
<td>1,729 (54.4)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>---------</td>
<td>---------------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Former smoker</td>
<td>1,776 (41)</td>
<td>1,602 (38.3)</td>
<td>174 (4.2)</td>
<td>792 (26)</td>
<td>692 (21.8)</td>
<td>100 (3.1)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>919 (22)</td>
<td>821 (19.6)</td>
<td>98 (2.3)</td>
<td>487 (17)</td>
<td>431 (13.6)</td>
<td>56 (1.8)</td>
</tr>
<tr>
<td>Alcohol drinker (coded)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>282 (34)</td>
<td>263 (33.2)</td>
<td>19 (2.4)</td>
<td>0.6<sup>F</sup></td>
<td>723 (43)</td>
<td>632 (41.8)</td>
</tr>
<tr>
<td>Yes</td>
<td>511 (66)</td>
<td>470 (59.3)</td>
<td>41 (5.2)</td>
<td>790 (57)</td>
<td>690 (45.6)</td>
<td>100 (6.6)</td>
</tr>
<tr>
<td>Physical activity (coded)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedentary</td>
<td>1,922 (42)</td>
<td>1,758 (42.9)</td>
<td>164 (4)</td>
<td>0.8<sup>F</sup></td>
<td>1,550 (43)</td>
<td>1,379 (45.2)</td>
</tr>
<tr>
<td>Low to Moderate</td>
<td>1,313 (38)</td>
<td>1,220 (29.8)</td>
<td>93 (2.3)</td>
<td>938 (37)</td>
<td>851 (27.9)</td>
<td>87 (2.9)</td>
</tr>
<tr>
<td>Vigorous</td>
<td>863 (20)</td>
<td>793 (19.4)</td>
<td>70 (1.71)</td>
<td>564 (20)</td>
<td>524 (17.2)</td>
<td>40 (1.3)</td>
</tr>
<tr>
<td>Antihyperlipidemic medications (coded)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>3,118 (82)</td>
<td>2,866 (76.4)</td>
<td>252 (6.7)</td>
<td><0.001<sup>F</sup></td>
<td>2,519 (87)</td>
<td>2,277 (77.9)</td>
</tr>
<tr>
<td>Yes</td>
<td>634 (18)</td>
<td>560 (14.9)</td>
<td>74 (1.97)</td>
<td>405 (13)</td>
<td>337 (11.5)</td>
<td>68 (2.3)</td>
</tr>
<tr>
<td>Antiplatelet medications (coded)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>3,665 (98)</td>
<td>3,359 (89.5)</td>
<td>306 (8.2)</td>
<td><0.001<sup>F</sup></td>
<td>2,861 (98)</td>
<td>2,563 (68.3)</td>
</tr>
<tr>
<td>Yes</td>
<td>87 (1.6)</td>
<td>67 (1.8)</td>
<td>20 (0.5)</td>
<td>63 (1.7)</td>
<td>51 (1.4)</td>
<td>12 (0.3)</td>
</tr>
<tr>
<td>Ankle-brachial Index (Left)</td>
<td>1.16 (1.10, 1.22)</td>
<td>1.17 (1.11, 1.22)</td>
<td>0.87 (0.79, 0.98)</td>
<td><0.001<sup>F</sup></td>
<td>1.11 (1.04, 1.19)</td>
<td>1.12 (1.06, 1.19)</td>
</tr>
<tr>
<td>Ankle-brachial Index (Right)</td>
<td>1.16 (1.10, 1.22)</td>
<td>1.16 (1.11, 1.22)</td>
<td>0.87 (0.75, 0.96)</td>
<td><0.001<sup>F</sup></td>
<td>1.10 (1.03, 1.18)</td>
<td>1.11 (1.05, 1.19)</td>
</tr>
<tr>
<td></td>
<td>44.0 (42.0, 46.0)</td>
<td>44.0 (42.0, 46.0)</td>
<td>43.0 (41.0, 45.0)</td>
<td><0.001</td>
<td>43.0 (41.0, 44.4)</td>
<td>43.0 (41.0, 45.0)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>26 (21, 33)</td>
<td>26 (21, 34)</td>
<td>22 (18, 27)</td>
<td><0.001</td>
<td>19 (16, 25)</td>
<td>19 (16, 25)</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>24 (21, 29)</td>
<td>24 (21, 29)</td>
<td>23 (20, 29)</td>
<td>0.2</td>
<td>21 (18, 25)</td>
<td>21 (18, 25)</td>
</tr>
<tr>
<td>Blood urea nitrogen (mmol/L)</td>
<td>5.36 (4.28, 6.10)</td>
<td>5.00 (4.28, 6.10)</td>
<td>6.07 (4.64, 7.14)</td>
<td><0.001</td>
<td>4.60 (3.57, 5.71)</td>
<td>4.60 (3.57, 5.71)</td>
</tr>
<tr>
<td>Creatinine (μmol/L)</td>
<td>88 (71, 97)</td>
<td>88 (71, 97)</td>
<td>88 (80, 115)</td>
<td>0.002</td>
<td>62 (62, 80)</td>
<td>62 (53, 71)</td>
</tr>
<tr>
<td>Total Cholesterol (mmol/L)</td>
<td>5.22 (4.55, 5.89)</td>
<td>5.22 (4.55, 5.90)</td>
<td>4.86 (4.04, 5.58)</td>
<td>0.003</td>
<td>5.33 (4.71, 6.03)</td>
<td>5.33 (4.71, 6.03)</td>
</tr>
<tr>
<td>Triacylglycerols (mmol/L)</td>
<td>1.49 (1.01, 2.24)</td>
<td>1.49 (1.01, 2.24)</td>
<td>1.47 (0.97, 2.37)</td>
<td>0.8</td>
<td>1.22 (0.81, 1.82)</td>
<td>1.20 (0.80, 1.78)</td>
</tr>
<tr>
<td>LDL (mmol/L)</td>
<td>3.16 (2.61, 3.75)</td>
<td>3.18 (2.61, 3.78)</td>
<td>2.85 (2.17, 3.41)</td>
<td>0.025</td>
<td>3.13 (2.59, 3.72)</td>
<td>3.13 (2.59, 3.72)</td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>1.14 (0.98, 1.39)</td>
<td>1.14 (0.98, 1.40)</td>
<td>1.16 (0.96, 1.34)</td>
<td>0.6</td>
<td>1.45 (1.19, 1.73)</td>
<td>1.45 (1.12, 1.73)</td>
</tr>
<tr>
<td>Fasting plasma glucose (mmol/L)</td>
<td>5.62 (5.24, 6.21)</td>
<td>5.61 (5.25, 6.16)</td>
<td>5.89 (5.18, 6.73)</td>
<td>0.5</td>
<td>5.29 (4.97, 5.79)</td>
<td>5.28 (4.95, 5.74)</td>
</tr>
<tr>
<td>Insulin (pmol/L)</td>
<td>57 (38, 91)</td>
<td>57 (38, 90)</td>
<td>70 (41, 108)</td>
<td>0.14</td>
<td>46 (32, 79)</td>
<td>46 (31, 74)</td>
</tr>
<tr>
<td>CRP (mg/dL)</td>
<td>0.17 (0.08, 0.35)</td>
<td>0.17 (0.08, 0.35)</td>
<td>0.26 (0.17, 0.43)</td>
<td><0.001</td>
<td>0.25 (0.10, 0.58)</td>
<td>0.25 (0.10, 0.57)</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>15.20 (14.60, 16.00)</td>
<td>15.20 (14.70, 16.00)</td>
<td>14.90 (14.10, 15.60)</td>
<td><0.001</td>
<td>13.80 (13.10, 14.50)</td>
<td>13.90 (13.10, 14.50)</td>
</tr>
</tbody>
</table>
Table 2. Demographics of NHANES 1999-2004 participants

The demographics of the NHANES 1999-2004 participants classified by sex and the presence of PAD are shown in Table 2. The N of participants shown are unweighted numbers. For continuous variables, the summary data are shown as Median (Interquartile Range), and for categorical variables as N (%)—survey weights were included in calculating the summary data. P-values as calculated by the Wilcoxon rank sum test or Fisher’s exact test and significant P-values are boldfaced.

<table>
<thead>
<tr>
<th></th>
<th>FIB4 Score</th>
<th>Albumin-creatinine ratio (μg/mg)</th>
<th>Iron (μg/dL)</th>
<th>Ferritin (μg/dL)</th>
<th>TSAT (%)</th>
<th>TIBC (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIB4 Score</td>
<td>1.15 (0.91, 1.51)</td>
<td>1.14 (0.90, 1.50)</td>
<td>1.35 (1.10, 1.67)</td>
<td><0.001</td>
<td>0.87 (0.64, 1.17)</td>
<td>0.84 (0.63, 1.15)</td>
</tr>
<tr>
<td>Albumin-creatinine ratio (μg/mg)</td>
<td>0.60 (0.41, 1.06)</td>
<td>0.58 (0.40, 1.00)</td>
<td>1.13 (0.65, 2.78)</td>
<td><0.001</td>
<td>0.80 (0.54, 1.51)</td>
<td>0.77 (0.53, 1.40)</td>
</tr>
<tr>
<td>Iron (μg/dL)</td>
<td>91 (72, 115)</td>
<td>92 (73, 115)</td>
<td>80 (64, 108)</td>
<td><0.001</td>
<td>78 (60, 99)</td>
<td>79 (60, 99)</td>
</tr>
<tr>
<td>Ferritin (μg/dL)</td>
<td>146 (96, 259)</td>
<td>146 (97, 258)</td>
<td>127 (81, 262)</td>
<td>0.5</td>
<td>64 (32, 109)</td>
<td>62 (31, 106)</td>
</tr>
<tr>
<td>TSAT (%)</td>
<td>26 (21, 33)</td>
<td>26 (21, 33)</td>
<td>24 (17, 30)</td>
<td>0.021</td>
<td>22 (16, 29)</td>
<td>22 (16, 29)</td>
</tr>
<tr>
<td>TIBC (μmol/L)</td>
<td>63 (57, 70)</td>
<td>63 (57, 70)</td>
<td>65 (58, 72)</td>
<td>0.5</td>
<td>63 (58, 71)</td>
<td>64 (58, 71)</td>
</tr>
</tbody>
</table>
Serum iron indices vs PAD: HEIST–DiC

<table>
<thead>
<tr>
<th>Diabetes subgroup/Model 1</th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.86 (0.38–8.11), P=0.01</td>
<td>1.25 (0.77–1.93), P=0.31</td>
</tr>
<tr>
<td></td>
<td>2.44 (0.81–7.14), P=0.09</td>
<td>1.24 (0.81–1.82), P=0.28</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3 (1.23–8.7), P=0.06</td>
<td>1.23 (0.81–1.77), P=0.28</td>
</tr>
<tr>
<td></td>
<td>2.87 (0.96–9.18), P=0.01</td>
<td>1.19 (0.74–1.78), P=0.42</td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.21 (0.51–2.66), P=0.64</td>
<td>1.12 (0.62–1.89), P=0.69</td>
</tr>
<tr>
<td></td>
<td>0.81 (0.29–1.88), P=0.66</td>
<td>1.12 (0.62–1.89), P=0.69</td>
</tr>
</tbody>
</table>

Odds Ratio

- **Ferritin**
- **Iron**
- **TSAT**

Note: The table provides the odds ratio with confidence intervals and p-values for different models and diabetes subgroups. The figures show the distribution of odds ratios with markers indicating the central tendency and confidence intervals.
Serum iron indices vs ICAM1: HEIST–DiC

<table>
<thead>
<tr>
<th>Diabetes subgroup/Model</th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.06 (−0.24−0.35), P=0.71</td>
<td>0.07 (−0.08−0.22), P=0.36</td>
</tr>
<tr>
<td>Model 2</td>
<td>−0.04 (−0.34−0.25), P=0.76</td>
<td>0.11 (−0.02−0.25), P=0.1</td>
</tr>
<tr>
<td>Model 1</td>
<td>−0.1 (−0.38−0.18), P=0.48</td>
<td>0.11 (−0.02−0.24), P=0.11</td>
</tr>
<tr>
<td></td>
<td>0.01 (−0.42−0.44), P=0.96</td>
<td>0.19 (0.01–0.37), P=0.04</td>
</tr>
<tr>
<td>Diabetes subgroup/Model 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 (−0.16−0.15), P=0.97</td>
<td>−0.11 (−0.26–0.04), P=0.15</td>
</tr>
<tr>
<td>Model 3</td>
<td>0 (−0.16–0.15), P=0.97</td>
<td>−0.11 (−0.26–0.04), P=0.15</td>
</tr>
<tr>
<td>Model 2</td>
<td>−0.02 (−0.18−0.14), P=0.79</td>
<td>−0.12 (−0.25–0.02), P=0.08</td>
</tr>
<tr>
<td>Model 1</td>
<td>−0.04 (−0.2−0.12), P=0.66</td>
<td>−0.12 (−0.25–0.01), P=0.07</td>
</tr>
<tr>
<td></td>
<td>−0.03 (−0.28−0.21), P=0.8</td>
<td>−0.14 (−0.3–0.03), P=0.1</td>
</tr>
<tr>
<td>Diabetes subgroup/Model 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.07 (−0.09−0.24), P=0.38</td>
<td>−0.08 (−0.23−0.08), P=0.33</td>
</tr>
<tr>
<td>Model 3</td>
<td>0.02 (−0.15−0.19), P=0.82</td>
<td>−0.08 (−0.22−0.06), P=0.26</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.03 (−0.14−0.2), P=0.7</td>
<td>−0.05 (−0.19−0.09), P=0.48</td>
</tr>
<tr>
<td>Model 1</td>
<td>−0.05 (−0.34−0.23), P=0.72</td>
<td>−0.14 (−0.36−0.08), P=0.21</td>
</tr>
<tr>
<td>Diabetes subgroup/Model 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−2.0 −1.5 −1.0 −0.5 0.0 0.5</td>
<td>−2.0 −1.5 −1.0 −0.5 0.0 0.5</td>
</tr>
</tbody>
</table>

Estimates and p-values for ferritin, iron, and TSAT indices in females and males across different models.
Iron parameters vs PAD: NHANES

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferritin</td>
<td>1.6 (1.17−2.19), P=0.0036</td>
<td>1.52 (0.89−2.58), P=0.1223</td>
<td>1.38 (0.84−2.24), P=0.2001</td>
</tr>
<tr>
<td>Iron</td>
<td>3.3 (1.19−9.15), P=0.0219</td>
<td>0.75 (0.61−0.92), P=0.0048</td>
<td>0.77 (0.61−0.98), P=0.0342</td>
</tr>
<tr>
<td>TIBC</td>
<td>0.99 (0.6−1.62), P=0.9637</td>
<td>0.75 (0.61−0.92), P=0.0048</td>
<td>0.77 (0.61−0.98), P=0.0342</td>
</tr>
<tr>
<td>TSAT</td>
<td>0.28 (0.11−0.7), P=0.0066</td>
<td>0.56 (0.41−0.75), P=0.0001</td>
<td>0.63 (0.5−0.79), P=0.0001</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferritin</td>
<td>0.75 (0.61−1.06), P=0.1570</td>
<td>0.91 (0.64−1.3), P=0.5992</td>
<td>0.77 (0.61−0.98), P=0.0342</td>
</tr>
<tr>
<td>Iron</td>
<td>0.56 (0.19−1.6), P=0.2748</td>
<td>0.94 (0.72−1.24), P=0.6745</td>
<td>0.98 (0.71−1.34), P=0.8863</td>
</tr>
<tr>
<td>TIBC</td>
<td>2.01 (0.74−5.48), P=0.1706</td>
<td>0.75 (0.33−1.71), P=0.4955</td>
<td>0.79 (0.62−1.07), P=0.0457</td>
</tr>
<tr>
<td>TSAT</td>
<td>0.91 (0.64−1.3), P=0.5992</td>
<td>0.96 (0.76−1.22), P=0.7505</td>
<td>1.19 (0.9−1.59), P=0.2296</td>
</tr>
</tbody>
</table>

Odds Ratio