Title: Timing dependent synergies between motor cortex and posterior spinal stimulation in humans

Abbreviated title: Paired motor cortex and spinal cord stimulation

James R. McIntosha, d, Evan F. Joinerb, *, Jacob L. Goldbergd, *, Phoebe Greenwaldb, Lynda M. Murrayh, i, Earl Thuetf, Oleg Modike, Evgeny Shelkove, Joseph M. Lombardia, f, Zeeshan M. Sardara, f, Ronald A. Lehmana, f, Andrew K. Chanb, f, K. Daniel Riewa, d, f, Noam Y. Harelg, h, i, Michael S. Virkd, Christopher Mandigob, f, Jason B. Carmela, c, d

aDept. of Orthopedic Surgery, bDept. of Neurological Surgery, cDept. of Neurology, Columbia University, 650 W. 168th St, New York, NY, 10032, USA

dDept. of Neurological Surgery, eDept. of Neurology, Weill Cornell Medicine - New York Presbyterian, Och Spine, 1300 York Ave, New York, NY 10065

fNew York Presbyterian, The Och Spine Hospital, 5141 Broadway, New York, NY 10034

gDepartments of Neurology, hRehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029

iJames J. Peters VA Med. Ctr., 130 West Kingsbridge Road, Bronx, NY 10468

*These authors contributed equally.

Correspondence should be addressed to J. B. Carmel (jason.carmel@columbia.edu) or J. R. McIntosh (j.mcintosh@columbia.edu)

Keywords: Epidural; Electrical stimulation; Cervical; Spinal cord injury; Myelopathy; Motor evoked potentials.

Abbreviations: ADM, abductor digiti minimi; AH, Abductor Hallucis; APB, abductor pollicis brevis; AUC, Area Under the Curve; DREZ, dorsal root entry zone; ECR, extensor carpi radialis; EDB, Extensor Digitorum Brevis; SCS,
spinal cord stimulation; FCR, flexor carpi radialis; mJOA, Modified Japanese Orthopaedic Association; MEP, Motor Evoked Potential; SEM, Standard Error of the Mean; TA, Tibialis Anterior; tES, transcranial electrical stimulation.

Conflict of interest

Jason B. Carmel is a Founder and stock holder in BackStop Neural and a scientific advisor and stockholder in SharperSense. He has received honoraria from Pacira, Motric Bio, and Restorative Therapeutics. Michael S. Virk has been a consultant and has received honorarium from Depuy Synthes and BrainLab Inc; he is on the Medical Advisory Board and owns stock with OnPoint Surgical. K. Daniel Riew: Consulting: Happe Spine (Nonfinancial), Nuvasive; Royalties: Biomet, Nuvasive; Speaking and/or Teaching Arrangements: Nuvasive (Travel Expense Reimbursement); Stock Ownership: Amedica, Axiomed, Benvenue, Expanding Orthopedics, Happe Spine, Paradigm Spine, Spinal Kinetics, Spineology, Vertiflex. Ronald A. Lehman: Consulting: Medtronic; Royalties: Medtronic, Stryker. Zeeshan M. Sardar: Consulting: Medtronic; Grant/Research support from the Department of Defense. Joseph M. Lombardi: Consulting: Medtronic, Stryker. The other authors have nothing to disclose.

Acknowledgements:

Sources of financial support: This study was funded by the National Institutes of Health (1R01NS124224); and the Travis Roy Foundation Boston, MA (Investigator Initiated).

We thank neurologists A. Mendiratta, P. Kent, H. Choi, M. Bell (The Och Spine Hospital At New York Presbyterian Hospital), S. C. Karceski (Weill Cornell Medicine) and intraoperative monitoring technologists N. Patel, Z. Moheet (Weill Cornell Medicine), Joe Elliott, Brian Demboski, Kelley Wichman, Susannah Storms, Meghan Mullaney, Evance Desriviere (The Och Spine Hospital At New York Presbyterian Hospital) for monitoring patient safety during the experiments, as well as help with running the experiments. We also thank M. Vulapalli, C. Mykolajetchuk, J. Berger, (Weill Cornell Medicine), J. Reyes and P. Martinez (The Och Spine Hospital At New York Presbyterian Hospital) for help with patient recruitment and administrative matters.
Significance Statement

Pairs of stimuli that alter nervous system function typically target the motor system alone or the sensorimotor convergence in cortex. In humans undergoing clinically indicated surgery we tested a paired brain and spinal cord stimulation paradigm that we developed in rats to target sensorimotor convergence in the cervical spinal cord. Arm and hand muscle responses to paired stimulation were six times larger than brain or spinal cord stimulation alone and more selective to the targeted muscles when applied to the posterior but not anterior spinal cord. The paired stimulation effect was independent of the degree of myelopathy, suggesting that it could be applied as therapy in people affected by spinal cord injury.
Abstract

Electrical stimulation of the brain and spinal cord can strengthen sensorimotor circuits and improve movement through associative plasticity. Current paired stimulation paradigms target the motor system alone or sensorimotor connections in cortex. We developed a paired stimulation approach in rats that targets sensory and motor connections in the cervical spinal cord. Since the circuits necessary for paired stimulation are conserved between species, we hypothesized that paired stimulation of motor cortex and posterior cervical spinal cord in humans would produce synergistic muscle responses but only when stimulation is properly timed. In 59 individuals undergoing clinically indicated cervical spine surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord with epidural electrodes while muscle responses were recorded in arm and leg muscles. Spinal electrodes were placed over either the posterior or anterior spinal cord, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and posterior, but not anterior, spinal cord stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred when descending motor and spinal afferent stimuli were timed to converge in the cervical spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, paired stimulation effects were present regardless of the severity of myelopathy as measured by clinical signs or spinal cord imaging. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation.
1 Introduction

Learning and execution of skilled movement, such as reaching and grasping, require coincident activity of motor and sensory circuits. The optimal site to target paired stimulation for restoring arm and hand function in people is unknown. Plasticity has been demonstrated in humans at the sensorimotor interface in the brain through paired associative stimulation (Stefan et al., 2000), as well as by directly targeting the motor system in the spinal cord (Bunday & Perez, 2012). Previous studies in our laboratory found that paired stimulation of sensorimotor interfaces in the spinal cord can induce plasticity and enhance dexterity in rats (Mishra et al., 2017; Pal et al., 2022), a phenomenon we term spinal cord associative plasticity (SCAP). These studies paired stimulation of the motor cortex and posterior cervical spinal cord, yielding larger muscle responses when stimuli were delivered at specific latencies. The crucial role of sensorimotor interactions in the spinal cord (Akay et al., 2014) was highlighted by the absence of facilitation when either the corticospinal tract or cervical afferents were inactivated (Pal et al., 2022).

While there are many similarities between the neural architectures of rats and humans, significant differences are present in the pathways that likely mediate the effects of cortical and spinal pairing. Specifically, rats lack corticospinal tract projections that directly synapse onto motor units (Alstermark et al., 1981; H.-W. Yang & Lemon, 2003), necessitating the mediation of paired stimulation effects via spinal interneurons. Conversely, in humans, the corticospinal tract can directly synapse onto motor units (Colebatch et al., 1990; de Noordhout et al., 1999), an interaction that has been targeted for modulation with electrical stimulation (Bunday & Perez, 2012; Nishimura et al., 2013). Additionally, corticospinal inhibition varies considerably across species, potentially leading to variations in the magnitude of paired stimulation effects (Lemon, 2008). In rats, stimulation of the posterior spinal cord that activates large-diameter afferents (Capogrosso et al., 2013) is necessary to induce spinal cord associative plasticity (Pal et al., 2022); however, such timing dependent augmentation has not yet been seen in humans.

The best sites to target for brain and spinal stimulation in humans remains undefined. The importance of timing in paired stimuli protocols has been established both when targeting motor cortex (Moritz, 2018; Seeman et al., 2017; Stefan et al., 2000) and spinal cord via the antidromic activation of efferent fibers (Bunday & Perez, 2012). Current
methods that enhance arm and hand function in humans (Inanici et al., 2018, 2021; Powell et al., 2023) function by activating afferents while engaging descending pathways via rehabilitative training. Yet, these methods do not specifically make use of an optimized timing between discrete signals at the spinal cord. In rats, a timed approach, converging motor cortex and dorsal epidural spinal stimulation in the spinal cord, markedly increased the motor evoked potential (MEP) (by 155%), while convergence in motor cortex resulted in a much smaller effect (17%) (Pal et al., 2022). In rats, effective paired stimulation relied on both descending motor and cervical afferent connections; consequently facilitation would be expected to depend on whether spinal cord stimulation is posterior or anterior (Greiner et al., 2021; Guiho et al., 2021; McIntosh et al., 2023). However, this has yet to be explored in humans.

Moreover, the effects of paired stimulation must be selective for the muscles that subserve impaired function. Electrical stimulation of the motor cortex at a single site can produce widespread activation across multiple muscles (Szelényi et al., 2007). Previous work (McIntosh et al., 2023) showed that epidural spinal cord stimulation (SCS) produces the largest MEPs from muscles innervated by the stimulated spinal segment with spread to adjacent myotomes. Combined brain and spine stimulation may allow an increase of selectivity for the muscles activated in common by both methods.

Therefore, we hypothesized that motor cortex and posterior cervical spinal cord stimulation would create strong and selective muscle responses when timed to converge in the cervical cord in people undergoing clinically indicated spine surgery.

2 Materials and methods

2.1 Experimental design

We conducted a single session physiology study in people during clinically indicated surgery for cervical stenosis to address this hypothesis. Participants were identified prospectively by study personnel when they were scheduled for elective surgery with the goal of spinal cord decompression via either an anterior or posterior approach. Anterior surgery included removal of the intervertebral disc or the vertebral body, while posterior surgery included
laminectomy. Both approaches provided access to the epidural compartment. The primary outcome of the study was change in the MEP size recorded from arm muscles during paired stimulation compared to brain or spinal cord stimulation alone. To test the proper timing of stimulation, the inter-stimulus interval (ISI) between motor cortex and spinal stimulation was varied. To determine the differential effects of sensory versus motor spinal cord stimulation, suprathreshold motor cortex stimulation was combined with either dorsal (sensory) or anterior (motor) spinal cord stimulation performed below motor threshold (Extended Table 1-1). To quantify whether pairing produces synergistic effects, suprathreshold brain stimulation and suprathreshold spinal stimulation were compared to each site alone. To further examine the role of timing, we paired single-pulse and subthreshold motor cortex stimulation with suprathreshold spinal stimulation. In order to determine the selectivity of paired stimulation for the targeted muscle, optimal pairing was compared to suprathreshold brain-only and suprathreshold spinal-only stimulation. Finally, to determine whether spinal cord and nerve root compression alter the effects of paired stimulation, the MEPs of paired stimulation were compared in segments with and without compression and also analyzed in relation to clinical signs of neural injury.

![Figure 1](https://example.com/figure1.png)

Figure 1. Cervical spine epidural and brain stimulation experiment during posterior and anterior cervical spine surgery. A, Colors correspond to different muscles recorded with subdermal needles (see legend). Subdermal needles were also placed for brain stimulation. Catheter electrode shown placed below the lamina on the posterior aspect of the spinal cord. B, Example of catheter placement targeting dorsal root fibers, relative to bony anatomy when the posterior aspect of the spinal cord is being stimulated. X-ray was acquired after surgical instrumentation but prior to removal of the catheter. Red arrows indicate the contacts of the catheter electrode. C, The catheter electrode was used to stimulate the posterior (top) or anterior (bottom) aspect of the spinal cord in different participants.
2.2 Participants

The study enrolled adult patients who required surgical treatment for cervical spondylotic myelopathy or foraminal stenosis. Patients were recruited from the clinical practices of spine surgeons at the Och Spine Hospital and Weill-Cornell NewYork-Presbyterian. The study protocol was reviewed and approved by the Institutional Review Boards of Columbia University Irving Medical Center and Weill Cornell Medicine (ClinicalTrials.gov: NCT05163639). We limited the extension of surgery for the purpose of experimentation to no longer than 15 minutes to minimize the risk of increased surgical and anesthetic complications (Brendler, 1968).

Enrollment criteria: Participants were recruited if their clinically indicated surgery provided access to the cervical epidural space. Participants were excluded if they had neck or chest stimulation devices (e.g., vagal nerve stimulation, cardiac pacemaker), epilepsy, a history of skull surgery with metal implants, cochlear implants, aneurysm clips or stents in neck or cerebral blood vessels, or evidence of skull shrapnel. Before surgery, written informed consent was obtained from all participants. Standard of care preoperative clinical assessments were conducted, including clinical MRI scans to assess the degree of foraminal stenosis and the extent and location of T2 signal hyperintensity within the spinal cord. Foraminal stenosis was defined as severe when no fat could be observed around the nerve root within the foramen. The severity of myelopathy in terms of motor and sensory dysfunction in the upper and lower extremities, as well as urinary dysfunction, was assessed using the Modified Japanese Orthopaedic Association (mJOA) scale (Benzel et al., 1991). Mild myelopathy is defined as mJOA scores from 15 to 17, moderate myelopathy with mJOA from 12 to 14, and severe myelopathy is mJOA scores from 0 to 11.

We powered the study based on the first 5 participants taking part in the main stimulation paradigm: suprathreshold motor cortex stimulation paired with subthreshold posterior spinal cord stimulation. To achieve >80% power on the comparison of whether facilitation was greater than 0%, 12 participants would be needed. Additional participants were subsequently recruited to investigate other conditions and enable correction for multiple comparisons in the ISI range 3-13 ms.
2.3 Electrical stimulation and recording

Following anesthesia induction and during recording, only total intravenous anesthesia without paralytics was used. The Cadwell IOMAX (Cadwell Inc., WA, USA) intraoperative monitoring system was used for recording and stimulation. Muscles were chosen for intramuscular electromyogram (EMG) per standard of care, with additional recordings from wrist muscles (Fig. 1A). MEP responses were recorded with subdermal needles (Rhythmlink, SC, USA or Ambu, Denmark) at a sampling rate of ~3 kHz and band-pass filtered between 10 Hz and 2 kHz.

Motor cortex stimulation was performed with transcranial electrical stimulation (tES). A monophasic triplet pulse with a width of 75μs and an ISI of 3ms was delivered through subdermal needle electrodes (Rhythmlink, SC, USA or AMC, FL, USA) placed in a quadripolar montage at C1, C2, C3, and C4 (see Fig. 1A inset). The two subdermal electrodes in the hemisphere targeted for stimulation served as the anode, and the two electrodes on the opposite hemisphere served as the cathode. The quadripolar configuration resulted in lower thresholds than bipolar stimulation in pilot experiments (data not shown). Triple-pulse stimulation can reduce MEP threshold, which is important for experiments during ongoing surgery, but the timing of descending activation is ambiguous. Hence, we employed single-pulse tES in a subset of experiments to determine precise timing of brain-spinal cord interactions. For experiments in 11 participants we observed reliable MEPs at 50V, the lowest stimulation intensity allowed by the intraoperative hardware. In these instances, in order to measure the MEP threshold we reduced the pulse width to 50μs for the duration of the experiment.

The experimental procedure began once the dura was exposed and the epidural stimulation electrode was positioned. For spinal cord stimulation (SCS), a single biphasic pulse (pulse-width = 250 μs) using a flexible catheter electrode with 1.3-mm contacts and 15-mm spacing (Ad-Tech Medical Instrument Corp, WI, USA) was used. Epidural electrodes were oriented in the rostro-caudal direction (Fig. 1B-C), with the cathode caudal and straddling the dorsal root entry zone (DREZ) when placed laterally. The electrodes were positioned on the less affected side as determined by the muscle strength grading. If the strength grading was the same on both sides, the side with a lower threshold cortical-evoked MEPs was targeted. If the selected side was surgically inaccessible, the experiment was carried out on
the accessible side. The location of the exiting or entering cervical nerve was estimated based on bony and neural anatomical landmarks. This method of hand placement of the electrode was previously validated by co-registering intraoperative computer tomography with pre-operative MRI and verifying the electrode placement relative to the DREZ (McIntosh et al., 2023). In a subset of cases (n = 23), intraoperative imaging was required as part of the surgical procedure and this was subsequently utilized to confirm the location of the electrode contacts (e.g., Fig. 1C).

2.3.1 Determination of MEP Threshold and Choice of Target Muscle

Upon insertion of the cervical epidural spinal cord electrode, we determined the threshold for spinal-evoked MEPs by increasing the stimulation intensity in 0.5 mA steps. Next, we conducted an equivalent procedure for tES by incrementing the voltage in steps of 5 V and observing the threshold for cortical MEPs in multiple ipsilateral muscles. All trains of brain and spinal stimulation stimuli were delivered at a rate of 0.5 Hz. For both spinal- and brain-evoked MEPs, we defined threshold as the lowest intensity at which a response was present in at least 50% of trials. Spinal stimulation was confirmed to be subthreshold by recording five MEPs.

Candidate target muscles were those where both brain- and spinal-evoked MEPs could be observed at stimulation intensities that did not interfere with ongoing surgery, irrespective of which cervical segment was stimulated. We prioritized hand muscles, starting with the abductor pollicis brevis (APB), followed by the wrist, upper arm, and shoulder. Ultimately, we selected a single muscle as the target and re-determined thresholds to a resolution of 0.1 mA for spinal stimulation intensity and 1 V for tES intensity.

2.3.2 Comparison of Facilitation of Cortical MEPs by Posterior vs Anterior Spinal Stimulation

To determine whether posterior or anterior spinal stimulation augments cortical MEPs, equivalent experiments were performed with epidural electrodes placed either in the posterior or anterior epidural space. Posterior spinal stimulation was targeted to the DREZ, and the ventral stimulation was targeted to the root exit zone of the segment exposed during the surgery. In a single participant, both anterior and posterior positioning was performed within the same surgery. Paired stimulation performed with triple-pulse tES was delivered at 110% of the MEP threshold, and subthreshold
spinal stimulation at 90% of the MEP threshold. The ISI between the initiation of tES and subsequent SCS was varied between 3 and 13 ms. Each pairing event was repeated five times, with the MEPs sequentially averaged and saved for subsequent analysis. In a subset of experiments, pairing events were repeated ten times.

To quantify the size of the paired brain and spinal stimulation effect, the MEP size at each ISI was divided by the brain-only stimulation MEP. We defined the optimal ISI as the ISI at which the largest MEP was generated.

2.3.3 Estimation of Synergy in Corticospinal Convergence

When applying tES and SCS each at 110% of MEP threshold, a simple additive model would predict that the resultant MEP is the sum of the brain-only and spinal-only MEPs. On the other hand, a synergistic model of the interaction of brain and spine stimulation would predict a resultant MEP that is greater than the sum of its parts. In order to determine whether the convergence of brain and spinal stimulation was additive or synergistic, we performed triple-pulse suprathreshold tES (110%) combined with suprathreshold SCS (110%), targeting either the DREZ or the ventral root exit zone.

Lastly, to investigate the effect of tES intensity on facilitation, we applied suprathreshold SCS in conjunction with subthreshold tES, where the intensity of tES was varied between 50V and its previously determined maximum.

2.3.4 Estimation of the Precise Interstimulus Interval

To accurately determine the ISI required for SCS to produce convergence relative to tES, we employed single-pulse tES. In most cases, the cortical MEP threshold was above the maximum tested voltage (typically 300 V) or at intensities that would disrupt the ongoing surgical procedure. As a result, we used the maximum possible voltage that would neither interfere with surgery nor exceed 300 V. In cases where the threshold was observable, we maintained consistency with the subthreshold tES approach by setting the stimulation intensity to 90% of threshold. For the pairing condition, we combined subthreshold tES with suprathreshold SCS set at 110% to establish a baseline. Pairing was conducted with ISIs ranging from 0 ms to 5 ms.
2.3.5 Epidural spinal cord recording

In order to directly determine the timing of corticospinal transmission in a single participant, tES was ramped from 50V to 300V while the catheter electrode was switched to ports for recording of electrophysiological potentials. The recorded potentials were bandpass filtered between 0.3 kHz and 10 kHz.

2.4 Data analysis

The intraoperative monitoring software's data was exported to MATLAB (R2022a, MathWorks, Inc., MA, USA). MEPs were zero-phase filtered using a Butterworth design, with a fifth-order lowpass filter at a 500 Hz passband and a sixth-order bandstop filter with a 59–61 Hz stopband. The AUC was calculated over a window from 8.5 ms to 75 ms after the first stimulation pulse began. Study data were collected and managed using REDCap (Research Electronic Data Capture) electronic data capture tools hosted at Weill Cornell Medical Center and Columbia University Irving Medical Center (Harris et al., 2009, 2019).

2.4.1 Statistical analysis

Values are reported as mean ± standard error of the mean (SE) except when the median is employed. Nonparametric statistical tests are used throughout (Wilcoxon rank-sum, signed-rank tests and Kruskal–Wallis tests, α = .05), and Bonferroni correction was applied unless otherwise noted.

2.4.2 Artifact rejection

We employed the same method for rejecting MEPs as previously described (McIntosh et al., 2023). Briefly, rejection was based on principal component analysis and human observer confirmation. The process involved computing principal components for a specific muscle across multiple stimulation intensities, regressing them with each MEP, and ranking the responses based on the root mean square of the regression error. While blinded to the stimulation condition, a manually adjusted sliding scale was then applied to reject traces that did not appear physiological under visual inspection: deflections in baseline, spread of stimulation artifact into the evoked response, excessive line noise, and fluctuations that were not time-locked to other responses. These were typically related to electrocautery or drilling.
and appeared stereotypical; they were randomly distributed across different phases of the experiment. This led to 52,048 analyzed MEPs of which 11,337 (21.8%) were rejected. When considering the targeted muscles of the arm and hand, 30,188 MEPs were analyzed of which 2,949 (9.8%) were rejected. Note that this is higher than in our previous work with SCS (McIntosh et al., 2023) due to the tES induced artifact being more extensive and the presence of additional sources of artifact induced by the ongoing surgery. Rejection was performed blinded to the ISI.

2.4.3 Calculation of pairing effect

To assess facilitation, we normalized the AUC at each tested pairing ISI using the following approach:

1. Suprathreshold tES paired with subthreshold SCS was divided by the suprathreshold brain-only stimulation after confirming the absence of spinal MEPs.

2. Subthreshold tES paired with suprathreshold SCS was divided by suprathreshold spinal-only stimulation after confirming the absence of tES MEPs.

3. Suprathreshold tES paired with suprathreshold SCS was divided by the sum of the suprathreshold spinal-only and suprathreshold brain-only stimulation (minus background activity (Guiho et al., 2021)).

2.4.4 Across participant averaging

Normalized AUCs were converted to % Facilitation and illustrated as bar charts (e.g., Fig. 2D). A facilitation of 0% indicates that pairing produces no change relative to baseline, and 100% indicates a doubling of the MEP size. To generate the across-participant average (e.g., Fig. 3A), AUCs were averaged among all participants that had experiments with a given condition. In cases where ISIs within our test range (3-13 ms) were missing due to experimental error, surgical procedure constraints, or presence of artifact, we applied linear interpolation (14% of data) at the individual participant level before calculating the average. Analyses without interpolating data did not change the major findings.
2.4.5 Calculation of selectivity

To examine whether the combination of brain and spinal cord stimulation can isolate individual muscles more effectively than either brain-only or spinal-only stimulation, we conducted a comparison of selectivity across these conditions. The pairing MEPs used for this analysis were extracted from suprathreshold tES (110%) and subthreshold SCS (90%) conditions. For the brain-only condition, suprathreshold stimulation (110%) was used. We included only those cases in which suprathreshold (110%) spinal-only stimulation intensity was also tested, as this was used to estimate spinal-only selectivity values. This analysis uses all muscles recorded ipsilateral to spinal cord stimulation; however, because the intensity can only be set for a single targeted muscle, non-targeted muscles may be above or below threshold.

The selectivity for a particular muscle was calculated as its AUC divided by the sum of the AUCs of all other muscles recorded on the same side of the body (McIntosh et al., 2023). This calculation ensures that the sum of selectivities across all muscles equals one. The AUC of the target muscle was selected to compare the levels of selectivity in a given experiment. However, we also established a measure of selectivity that could be evaluated across muscles regardless of the target. For this across-muscle measure, we utilized the equation

\[S = 1 + \frac{\sum_{m=1}^{M} x_m \times \log(x_m)}{\log(M)} \]

where \(x_m \) is the individual muscle selectivity for muscle \(m \), and \(M \) is the number of muscles. This equation incorporates the same structure as the entropy equation which has been previously used as a measure of selectivity (Lehky et al., 2005) but is normalized so that it takes a value of 0 when individual muscle selectivities are equal in all muscles and a value of 1 when only one muscle is activated.

2.4.6 The impact of impairment on synergistic effects

To determine if paired stimulation was affected by neural element injury, the degree of facilitation was analyzed in relation to clinical and radiographic evidence of compression. In this analysis, the maximum pairing effect was compared with 3 pre-operative clinical scores related to myelopathy (strength, reflex, and mJOA) and radiographic evidence of neural injury (T2 signal hyperintensity and foraminal stenosis). Medical Research Council strength scores
(Compston, 2010) were averaged over the muscles of the forearm and hand on the stimulated side as these were the primarily targeted muscles. Reflex scores were derived from biceps and triceps on the targeted side as muscles of the forearm and hand were not typically tested. The maximum facilitation of suprathreshold brain and subthreshold spinal stimulation (Fig. 11) was used to summarize the strength of facilitation. Because of the strongly non-gaussian distribution of facilitation across participants, values were log transformed. Non-parametric Kruskal–Wallis one-way analysis of variance was used to assess the presence of a relationship between each of the dependent variables and the pairing facilitation strength. No correction for multiple comparisons was applied.

3 Results

3.1 Participant recruitment and characteristics

The study enrolled adult patients who required surgical treatment for cervical spondylotic myelopathy or multilevel foraminal stenosis (n = 63, 34M/29F, mean age 66 years, standard deviation = 11). In a subset of participants (n = 4), experimental procedures could not be attempted due to surgical constraints, and these participants have been excluded from further analysis. tES and SCS, at either the posterior (n = 46, 27M/19F), anterior (n = 12, 5M/7F) or both (n = 1, 1F) aspects of the cervical enlargement were performed. We determined that participants undergoing stimulation of the posterior aspect of the spinal cord were not detectably different from those undergoing stimulation of the anterior aspect in their demographics or degree of impairment (Table 1 and Extended Table 1-2).
Table 1. Summary clinical characteristics of all participants separated by posterior vs anterior spinal cord stimulation.

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Posterior*</th>
<th>Anterior*</th>
<th>p***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>59(100%)</td>
<td>47(100%)</td>
<td>12(100%)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td>0.489</td>
</tr>
<tr>
<td>30-49</td>
<td>4(8.8%)</td>
<td>2(13.4%)</td>
<td>2(16.7%)</td>
<td></td>
</tr>
<tr>
<td>50-64</td>
<td>22(37.3%)</td>
<td>19(40.4%)</td>
<td>3(25.0%)</td>
<td></td>
</tr>
<tr>
<td>65+</td>
<td>31(52.5%)</td>
<td>24(51.1%)</td>
<td>7(58.3%)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td>0.233</td>
</tr>
<tr>
<td>F</td>
<td>27(45.6%)</td>
<td>20(42.6%)</td>
<td>7(58.3%)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>32(54.4%)</td>
<td>27(57.4%)</td>
<td>5(41.7%)</td>
<td></td>
</tr>
<tr>
<td>mJOA</td>
<td></td>
<td></td>
<td></td>
<td>0.394</td>
</tr>
<tr>
<td>1-12</td>
<td>15(25.4%)</td>
<td>11(23.4%)</td>
<td>4(33.3%)</td>
<td></td>
</tr>
<tr>
<td>13-15</td>
<td>28(47.5%)</td>
<td>22(46.8%)</td>
<td>6(50.0%)</td>
<td></td>
</tr>
<tr>
<td>16-18</td>
<td>16(27.1%)</td>
<td>14(29.8%)</td>
<td>2(16.7%)</td>
<td></td>
</tr>
<tr>
<td>Axial neck pain</td>
<td></td>
<td></td>
<td></td>
<td>0.971</td>
</tr>
<tr>
<td>Y</td>
<td>35(51%)</td>
<td>29(61.7%)</td>
<td>6(50.0%)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>24(38.6%)</td>
<td>18(38.3%)</td>
<td>6(50.0%)</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>4(6.8%)</td>
<td>3(6.4%)</td>
<td>1(8.3%)</td>
<td></td>
</tr>
<tr>
<td>Radiating pain</td>
<td></td>
<td></td>
<td></td>
<td>0.899</td>
</tr>
<tr>
<td>Y</td>
<td>29(49.2%)</td>
<td>23(48.9%)</td>
<td>6(50.0%)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>26(42.1%)</td>
<td>21(44.7%)</td>
<td>5(41.7%)</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>4(6.8%)</td>
<td>3(6.4%)</td>
<td>1(8.3%)</td>
<td></td>
</tr>
<tr>
<td>Weakness</td>
<td></td>
<td></td>
<td></td>
<td>0.808</td>
</tr>
<tr>
<td>Y</td>
<td>46(78%)</td>
<td>36(76.6%)</td>
<td>10(83.3%)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>10(16.6%)</td>
<td>9(18.8%)</td>
<td>1(8.3%)</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>3(5%)</td>
<td>2(4.2%)</td>
<td>1(8.3%)</td>
<td></td>
</tr>
<tr>
<td>Unsteady gait</td>
<td></td>
<td></td>
<td></td>
<td>0.728</td>
</tr>
<tr>
<td>Y</td>
<td>38(64.4%)</td>
<td>30(63.8%)</td>
<td>8(66.7%)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>21(35.6%)</td>
<td>17(36.2%)</td>
<td>4(33.3%)</td>
<td></td>
</tr>
<tr>
<td>Hypoesthesia</td>
<td></td>
<td></td>
<td></td>
<td>0.060</td>
</tr>
<tr>
<td>Y</td>
<td>25(42.4%)</td>
<td>21(44.7%)</td>
<td>4(33.3%)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>22(37.3%)</td>
<td>15(31.9%)</td>
<td>7(58.3%)</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>7(11.8%)</td>
<td>6(12.2%)</td>
<td>1(8.3%)</td>
<td></td>
</tr>
<tr>
<td>Sphincter Dysfunc</td>
<td></td>
<td></td>
<td></td>
<td>0.312</td>
</tr>
<tr>
<td>Y</td>
<td>5(8.8%)</td>
<td>3(6.4%)</td>
<td>2(16.7%)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>54(91.2%)</td>
<td>44(93.6%)</td>
<td>10(83.3%)</td>
<td></td>
</tr>
<tr>
<td>Racial category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>2(3.4%)</td>
<td>1(2.1%)</td>
<td>1(8.3%)</td>
<td></td>
</tr>
<tr>
<td>Black or Afric Am</td>
<td>8(13.6%)</td>
<td>6(12.8%)</td>
<td>2(16.7%)</td>
<td></td>
</tr>
<tr>
<td>More than one</td>
<td>2(3.4%)</td>
<td>1(2.1%)</td>
<td>1(8.3%)</td>
<td></td>
</tr>
<tr>
<td>Unspecified</td>
<td>17(28.8%)</td>
<td>15(31.9%)</td>
<td>2(16.7%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>30(50.8%)</td>
<td>24(51.1%)</td>
<td>6(50.0%)</td>
<td></td>
</tr>
<tr>
<td>Ethnic category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>5(8.8%)</td>
<td>5(10.6%)</td>
<td>0(0%)</td>
<td></td>
</tr>
<tr>
<td>Not Hispanic</td>
<td>43(72.9%)</td>
<td>33(70.2%)</td>
<td>10(83.3%)</td>
<td></td>
</tr>
<tr>
<td>Unspecified</td>
<td>11(18.6%)</td>
<td>9(18.8%)</td>
<td>2(16.7%)</td>
<td></td>
</tr>
</tbody>
</table>

*A single participant took part in both anterior and posterior portions of the experiment. **Wilcoxon Rank Sum test. No correction for multiple comparisons was applied. ***At the time of surgery, mJOA modified Japanese Orthopaedic Association (mJOA) score. No - N, Yes - Y, Unknown/Unspecified - U.
3.2 Posterior SCS augments motor cortex MEPs at the predicted convergence time, while anterior SCS does not

We observed strong facilitation between appropriately timed transcranial electrical stimulation (tES) and posterior SCS. By calculating the difference between brain-only and spinal-only MEP onset times, we predicted that convergence would occur at 9.8±0.6ms (Extended Figure 3-1). When suprathreshold tES was paired with subthreshold SCS (Fig. 1A-B), appropriate ISI for convergence in the spinal cord resulted in a significant facilitation of cortical MEPs in individual participants (Fig. 2). The degree of facilitation, when averaged across participants, was substantial, with an optimum ISI of 9 ms yielding an average increase of 577 ± 173% ($p = 3.2 \times 10^{-5}$, $n = 38$, signed-rank test; Fig. 3A). Facilitation was strongly time-dependent ($p = 0.001$, H(10) = 28.7, Kruskal–Wallis test), with the optimal ISI not different from the predicted convergence time (Extended Figure 3-1).

In contrast, when anterior spinal cord stimulation was paired with tES, there was no facilitation (23 ± 21% at an optimum ISI of 7 ms, $p = 1.0$, $n = 12$, signed-rank test; Fig. 3B). A direct comparison of the maximum facilitation of each participant between posterior (Extended Figure 3-2) and anterior (Extended Figure 3-3) stimulation demonstrated that posterior stimulation was more effective than anterior stimulation ($p = 0.006$, $n_{\text{posterior}} = 38$, $n_{\text{anterior}} = 12$, Wilcoxon Rank Sum test).

![Figure 2](image_url)

Figure 2. Experimental paradigm and results of varying the timing of spinal stimulation relative to transcranial electrical stimulation (tES) in a single participant. A, Schematic. A1, Three pulses are delivered over the motor cortex followed by a variable period of time before a single pulse is delivered to the spinal cord. The catheter electrode was positioned over the C8 dorsal spinal cord, and the abductor pollicis brevis (APB) was the target muscle. A2, Baseline conditions. The intensity of cortical stimulation was set to 110% of the APB threshold, ensuring a small MEP in the brain-only condition. The intensity of spinal stimulation was set to 90% of the APB threshold, so no MEP was observed with spinal-only stimulation. B, Paired stimulation. Averaged responses over 5 trials with variable ISI. C, Quantification of pairing facilitation. The facilitation is calculated relative to the brain-only MEP size. Facilitation of 324% was observed when the inter-stimulus interval was set to 8 milliseconds.
Figure 3. Augmentation of motor cortex MEPs with posterior, but not anterior, spinal stimulation. A, Schematic: 110% threshold transcortical electrical stimulation is combined with 90% threshold posterior cervical spinal stimulation. A strong facilitation is present when averaging across participants (n = 38, 23M/15F). B, Schematic: as in A but cervical stimulation applied to the anterior aspect of the spinal cord. Anterior stimulation results in no observable facilitation (n = 12, 4M/8F). Across-participant signed-rank test, *p < .05, **p < .01, ***p < .001, Bonferroni corrected for multiple comparisons.

3.3 Synergistic effects of brain and spinal stimulation

To better understand the interactions of brain and spinal stimulation, we stimulated each site above motor threshold. We hypothesized there would be synergistic effects (i.e. the combined effects would be much larger than the MEPs of brain- or spinal-only stimulation). Using suprathreshold (110%) tES and posterior SCS, we altered the relative timing of stimulation.

A direct comparison of posterior and anterior stimulation demonstrated that suprathreshold posterior SCS was more effective than suprathreshold anterior SCS (p = 0.034, n_{posterior} = 10, n_{anterior} = 8, Wilcoxon Rank Sum test). The optimal ISI was 9 ms (n = 10; Fig. 4A), similar to Fig. 3. The facilitation at this ISI was strongly synergistic (average = 1166 ± 537% relative to the sum of brain-only and spinal-only MEPs) but did not reach statistical significance (p = 0.16, n = 10, signed-rank test, lowest p = 0.02 at 8ms not significant after correction for multiple comparisons). In contrast, with anterior SCS there was no facilitation, and the MEPs were simply additive (average = 31 ± 29% at peak ISI of 11 ms, p = 1.0, n = 8, signed-rank test; Fig. 4B).
Figure 4. Suprathreshold posterior but not anterior spinal cord stimulation produces synergistic effects when paired with suprathreshold tES. A, Schematic: 110% threshold transcortical electrical stimulation is combined with 110% threshold posterior cervical spinal stimulation. A strong facilitation is present when averaging across participants (n = 10, 6M/4F). The peak facilitation is 1174% at 9ms relative to the sum of brain-only and spinal-only stimulation. B, Schematic: as in A but cervical stimulation applied to the anterior aspect of the spinal cord. In contrast, posterior aspect stimulation anterior stimulation results in no observable facilitation (n = 8, 3M/5F; peak facilitation = 38% at 11 ms).

3.4 The timing of brain and spinal stimulation convergence

To better understand the timed interactions between brain and spinal stimulation, we varied the time between a single pulse of tES and SCS (Fig. 5A). In the previous experiments, the interpretation of the timing of facilitation, as displayed in Fig. 3 and Fig. 4, was complicated by the application of three consecutive tES pulses over a span of 6ms, which was needed to reliably evoke a cortical MEP. Single pulse tES, as depicted in Fig. 5, does not typically generate an MEP at the voltages we employed (less than 300 V). However, given our previous observations of pronounced amplification in spinal circuits, we hypothesized that facilitation would still occur if suprathreshold SCS were introduced with an appropriate ISI relative to the subthreshold single pulse tES.

In an individual participant we evaluated ISIs at sub-millisecond precision to determine the onset and optimal ISI of facilitation (Fig. 5C-E). We also measured the recruitment curve of tES intensity at the optimal ISI to determine the dynamics of facilitation (Fig. 6). Additionally, recordings from the epidural spinal cord were made to assess the transmission time from the brain to the spinal cord (Fig. 5E, Extended Figure 5-1).

Facilitation began to be observed with spinal stimulation initiated between 1.0 ms and 1.3 ms after brain stimulation (Fig. 5A-C) and reached its maximum at an ISI of 2.5 ms (899%, \(p = 0.018 \), n = 10 repetitions, signed-rank test). Notably, even without a detectable cortical MEP in the target muscle at voltages up to 300 V for this participant,
facilitation initiated within the 50-75 V range (Fig. 6B, P56) and appeared to saturate at roughly 100 V when an ISI of 2ms was used.

Epidural spinal cord recordings of tES (Deletis et al., 2012; Di Lazzaro et al., 2012) were made in the same participant. The initial deflection is an indication of the corticospinal transmission time and is visible starting at 2.8 ms after the initiation of stimulation at the intensity used for pairing brain and spine. Transmission time was reduced by 0.2 ms at higher intensities (Extended Figure 5-1).

We confirmed that the facilitation was present in the 2-3 ms range by pairing single pulse tES and SCS in a further 10 participants (Fig. 5E). Maximum facilitation was found to be 690.5 ± 338% at 3.0 ms (p = 0.041, n = 11, signed-rank test; Bonferroni corrected in the tested interval 0-5 ms). This finding is consistent with paired triple-pulse tES stimulation generating the largest MEP 3 ms after the last tES pulse (Fig. 3, Fig. 4) and demonstrates that subthreshold brain stimulation can augment suprathreshold spinal stimulation.

![Figure 5](https://example.com/figure5.png)

Figure 5. Facilitation occurs 2-3 ms after cortical stimulation. A, Schematic: Subthreshold (150V) single pulse transcranial electrical stimulation is combined with 110% threshold posterior cervical spinal stimulation. A1, single pulse delivered to the brain and spinal cord for participant 56. The catheter electrode was positioned over the C7 dorsal root entry zone (DREZ) of the spinal cord and the FCR was the target muscle. A2, Baseline conditions. The intensity of spinal stimulation was set to 110% of the threshold needed to induce a motor evoked potential (MEP) in the flexor carpi radialis (FCR) muscle, while the intensity of transcranial stimulation was set to 150 V and no MEP was present below the maximum tested 300 V. B, Paired stimulation. Averaged responses over 10 trials with variable ISI. C, Quantification of pairing facilitation. The facilitation is calculated relative to the spinal-only MEP size. While the peak facilitation appears to be at 2.5 ms, the earliest facilitation appears to be in the range 1-1.5 ms. D, Epidural spinal recordings. Brain-only stimulation was applied while a recording was made from the spinal electrode. A deflection is visible starting at 2.8 ms with the maximal deflection occurring at 4 ms. E, Average over participants (n = 11, 4M/7F)
receiving subthreshold (77-288 V) single pulse transcortical electrical stimulation combined with 110% threshold posterior cervical spinal stimulation. The optimal ISI when single pulse cortical stimulation is used is 3ms.

3.5 Synergy with tES far below motor threshold

Facilitation of spinal MEPs was present even when combined with tES far below motor threshold. In five experiments we investigated the dependence of the paired facilitation to the stimulation intensity (Fig. 6A). At the optimal ISI using high intensity single-pulse tES (Fig. 6B), we stimulated the spinal cord at 110% of the MEP threshold while ramping up the single pulse tES intensity from 50V. Facilitation was initiated between 50 V and 100 V in all cases, which was considerably lower than the threshold for brain-only single-pulse stimulation in the majority of experiments (>250 V).

3.6 Paired stimulation activated muscles more selectively

Synergistic effects of stimulation were greatest in muscles targeted by brain and spinal stimulation in two representative cases (Fig. 7). In each, the tES was performed at 110% of threshold and SCS at 90% of threshold. In Fig. 7B, the spinal cord electrode was placed at C6, and tES intensities were optimized for the biceps muscle. While the strongest facilitation is presented in the biceps (1850%), it is also apparent in triceps (190%). In Fig. 7C, the spinal
electrode was positioned at C8, and tES was optimized for the APB muscle. The strongest facilitation is present in the APB (138% increase).

Figure 7. Facilitation is greatest in targeted muscles. A, Schematic representing a triple pulse stimulation delivered to the brain and single pulse stimulation delivered to the spinal cord. For the muscle that was optimized for, intensity of brain stimulation was set to be 110% of threshold, and the intensity of spine stimulation was set to be 90% of threshold. The baseline condition used for normalization is the sum of brain-only and spinal-only MEPs. B, In one example participant, the catheter electrode was positioned over the C6 dorsal root entry zone (DREZ) of the spinal cord and the Biceps muscle was targeted. Facilitation was strong in the targeted muscle and present in muscles innervated at nearby segments. C, In a different participant, the catheter electrode was placed over the C8 DREZ and the APB was targeted. Strong facilitation was present in the target muscle but was also present in ECR and FCR.

We quantified this selectivity, first for individuals and then across participants (Fig. 8). Fig. 8A shows the muscle selectivity for a single participant. The measure of selectivity was calculated as the relative activation of a muscle under each of the conditions. For example a selectivity of 0.75 in the target flexor carpi radialis (FCR) indicates that the FCR contributes 75% of the total MEP AUC across muscles. This measure was repeated with brain only (110% of threshold), spinal only (110% of threshold), and paired stimulation at the optimal latency. In this participant, FCR was the most activated muscle in all conditions, but the selectivity measure of this muscle was larger for the paired condition than for the brain-only and spinal-only conditions.

The selectivity of muscle activation was compared across all participants. Facilitation in the targeted muscle was larger for paired than for brain-only stimulation ($p = 0.002, n = 38$, signed-rank test) but not for spinal-only stimulation ($p = 0.094, n = 30$, signed-rank test, Fig. 8B). To ensure that these effects were not due to the choice of muscles, the selectivity of activation was compared across muscles. In order to condense multiple muscle selectivities into a single value, we used a metric that is small when MEP sizes are similar across muscles and large when a single muscle MEP dominates. Fig. 8C shows that when considering all muscles jointly, paired stimulation produces more selective muscle
responses than either brain-only ($p = 0.014$, $n = 38$, signed-rank test) or spinal-only stimulation ($p = 0.003$, $n = 30$, signed-rank test).

Figure 8. Paired brain and spine stimulation yields more selective activation of individual muscles. A, Example of individual muscle selectivity from a single participant showing that for the FCR and APB the selectivity of pairing is larger than for either brain-only or spinal-only stimulation alone. B, selectivity as in A can be pooled across participants ($n = 38, 23M/15F$) and collapsed across muscles by selecting the selectivity corresponding to the target muscle from each participant. Median target muscle selectivity is higher for pairing stimulation than for brain-only stimulation. While it is also higher for pairing stimulation than spinal-only stimulation this difference is not statistically significant. C, Across muscle selectivity measures the selectivity of muscle activation irrespective of the target muscle and is higher for pairing stimulation than for both brain-only stimulation and spinal-only stimulation ($n = 38, 23M/15F$). For B and C: Individual lines correspond to individual participants. Dark line corresponds to the participant shown in A. Hinges represent 1st and 3rd quartile, and whiskers span the range of the data not considered outliers (defined as $q_3 + 1.5 \times (q_3 - q_1)$ or less than $q_1 - 1.5 \times (q_3 - q_1)$).

3.7 Degree of impairment does not influence strength of facilitation

In previous work we found that the facilitatory effects of combined brain and spinal stimulation were strong in both uninjured (Mishra et al., 2017) and spinal cord injured (Pal et al., 2022) rats. Consistent with this, there was no relationship between MEP augmentation and clinical measures of neural injury. Specifically, clinical measures of hand use (mJOA; $p = 0.696$; $n = 38$, Kruskal–Wallis test, Fig. 9A), average strength of the forearm and hand (MRC scale; $p = 0.375$; $n = 35$, Kruskal–Wallis test, Fig. 9B), a reflex score measured in the biceps muscle ($p = 0.324$; $n = 28$, Kruskal–Wallis test, Fig. 9C), and a reflex score measured in the triceps muscle ($p = 0.410$, $n = 27$, Kruskal–Wallis test, Fig. 9D).

Additionally, no relationship was detectable between immediate effect size and the presence of T2-weighted signal change at the segment ($p = 0.726$, $n = 37$, Wilcoxon rank-sum test; Fig. 9E) or above the segment ($p = 0.742$, $n = 37$, Wilcoxon rank-sum test; Fig. 9F). However, the presence of severe foraminal stenosis at the stimulated segment was associated with weaker facilitation ($p = 0.042$, $n = 22$, Wilcoxon rank-sum test; Fig. 9G).
4 Discussion

Our understanding of the interactions between descending motor systems and segmental afferents was advanced in four important ways. First, posterior but not anterior spinal cord stimulation augmented cortical MEPs, suggesting that synergistic effects of pairing involve descending motor and spinal sensory interactions. Second, the facilitation induced by spinal stimulation was maximal at the time that motor cortex stimuli arrived in the spinal cord, suggesting this location as the site of interaction. Third, pairing made muscle responses more selective, in addition to making them stronger. Fourth, the degree of facilitation was not detectably influenced by radiographic or clinical evidence of myelopathy.

We found a synergistic facilitation of MEPs when brain stimulation was combined with stimulation over the posterior—but not anterior—cervical spinal cord. This finding suggests that the interaction critical for the convergence mechanism that we observed takes place at the sensory-motor interface rather than solely within the motor system. This aligns with the understanding that anterior stimulation directly engages the motor unit (Guiho et al., 2021). In contrast, the observed synergistic facilitation (greater than 5 fold) observed while pairing posterior spinal cord
stimulation is consistent with facilitation in rats and monkeys (2-3 fold) that has been demonstrated to be mediated by afferents (Guiho et al., 2021; Pal et al., 2022), the primary neural target of SCS (Capogrosso et al., 2013; Greiner et al., 2021; Minassian et al., 2004). Prior research in rats has shown that repeated pairing of the posterior cervical spinal cord and motor cortex at the ISI that produces the largest facilitation (optimal ISI) also leads to lasting plasticity effects (Pal et al., 2022). Nonetheless, the lack of facilitatory effects we observed from combined brain and anterior spinal cord stimulation does not necessarily preclude the induction of plasticity with repeated stimulation that directly engages the motor unit (Bunday & Perez, 2012).

The timing of spinal stimulation relative to brain stimulation emerges as a critical factor in realizing these synergistic effects. In all tested conditions, the latency of strongest facilitation was observed at 3 ms after the last stimulation pulse; when taken together with the estimate of corticospinal conduction time, this time interval suggests that the synergistic interaction is occurring in the cervical spinal cord. In a single participant, the central conduction time to spinal stimulation was estimated by recording from the epidural spinal cord in response to brain stimulation. Interpreted together, the difference in onset timing between the evoked potential (2.6 - 2.8 ms) (Di Lazzaro & Rothwell, 2014), and the facilitation (1 - 1.3 ms) suggests the presence of a single synaptic delay of 1.5 ms in the sensory pathway prior to convergence (Mills & Murray, 1986; Taylor & Martin, 2009).

The paired conditions are more selective than the brain- or spinal-only conditions. It is currently unclear whether neuromodulation strategies are more effective when they are highly targeted to individual muscles (high selectivity) or when they are weakly targeted (low selectivity) producing broad activation of multiple muscles. Selective activation might benefit patient recovery without causing excessive muscle activation or off-target effects. When optimized, pairing brain and spinal stimulation may allow for more targeted plasticity.

Synergistic effects of pairing brain and spinal stimulation were present regardless of the severity of myelopathy as measured by clinical signs or spinal cord imaging. This finding is consistent with the observation of pairing effects that are equally strong in uninjured rats and rats that have received a spinal cord injury (Mishra et al., 2017; Pal et al., 2022), which spares <1% of the corticospinal tract (Q. Yang et al., 2019). We demonstrated that spinal stimulation can
be a potent modulator of weak corticospinal activation, resonating with human studies where volitional control was regained despite severe damage to the neural pathway (Angeli et al., 2018; Carhart et al., 2004; Gill et al., 2018; Inanici et al., 2018, 2021; Powell et al., 2023; Rowald et al., 2022; Wagner et al., 2018). With regards to delivering paired brain and spinal stimulation as therapy, as has been applied in rats (Pal et al., 2022), it is also noteworthy that synergistic effects can be accessed at low intensities that may be tolerated by patients. In short, the independence of the synergistic effect from the degree of myelopathy suggests that repeated pairing could be viable as therapy for spinal cord injury.

Despite the large effect size on average, some participants did not display any synergistic effect. While the presence of severe foraminal stenosis at the stimulated segment may be associated with weaker facilitation, there may be other factors that contribute to this variability. As we have shown by comparing anterior and posterior stimulation, the position of the electrode is critical. For example, while large diameter afferents are the lowest threshold fibers in response to posterior cord stimulation (Greiner et al., 2021), it has been demonstrated that the corticospinal tract can be activated when it is specifically targeted (Deletis et al., 2018; Deletis & Bueno De Camargo, 2001). Thus, deviations in the location of the electrodes may contribute to the activation of alternative tracts or fibers. Despite confirmation of electrode position via clinically indicated imaging in a subset of cases, the precise location of the electrode could not be directly visually inspected because it was placed under the lamina. Further study with intraoperative imaging and more targeted electrode configurations will be needed to understand the relationship between position and efficacy of stimulation.

The limitations of this study are largely related to the physiology being performed during a clinically indicated surgery. Experiments were performed under general anesthesia, which can alter responses. However, while it is conceivable that general anesthesia specifically affects the synergistic effect of paired stimulation, in rat studies synergistic effects were observed both in anesthetized (Mishra et al., 2017) and awake animals (Pal et al., 2022). The surgery also limited the segments of the spinal cord that could be stimulated. The catheter electrode was placed at one segment below the most caudal laminectomy, and only one segment was tested in each surgery. Because of this, the most common segments tested were C7-T1, and the upper arm was targeted for pairing in less than 15% of experiments. Despite
increased selectivity with pairing, we observed some synergistic effects at muscles innervated at distant segments. Due to intraoperative constraints, we were unable to record full recruitment curves of the synergistic, brain-only and spinal-only conditions, or determine their saturation points.

This study paves the way to test the repeated application of combining brain and spinal stimulation in humans with the aim to invoke spinal cord associative plasticity mechanisms that have been previously observed in rats (Pal et al., 2022). The goal will be to convert the immediate changes in MEP size observed in this study into adaptive changes in the sensorimotor system that persist, taking advantage of the spinal cord’s capacity for plasticity (Wolpaw, 2010). We will also explore whether paired stimulation requires epidural electrodes or whether non-invasive methods could be used (Gad et al., 2018; Hofstoetter & Minassian, 2022). This research deepens our understanding of spinal cord stimulation and may inform neurorehabilitation intervention based on associative stimulation of brain and spinal cord in humans.

5 Data availability

The data that support the findings of this study are available from the corresponding authors, upon reasonable request.

6 References

https://doi.org/10.1093/brain/113.6.1843

https://doi.org/10.1093/brain/awq270

descending inputs to upper-limb motoneurons in monkeys. Journal of Neural Engineering, 18(4).

https://doi.org/10.1088/1741-2552/abe358

https://doi.org/10.1016/j.jbi.2008.08.010

https://doi.org/10.3390/jcm11133836

https://doi.org/10.1109/TNSRE.2018.2834339

https://doi.org/10.1146/annurev.neuro.31.060407.125547

