Plasma water T_2 detects age-stratified differences in cardiometabolic health among familial CCM patients with Hispanic CCM1 mutation

Jacob Croft1*, Diana F. Sandoval2*, David Cistola2, Jun Zhang1

1 Center of Cancer Research, 2 Center of Diabetes and Metabolic Syndrome, Department of Molecular and Translation Medicine Texas Tech University Health Science Center El Paso, El Paso, TX 79905, USA

*contributed equally to this work

Running Title: CCM1 Plasma Water T_2 Values

All correspondence:
Jun Zhang, Sc.D., Ph.D.
Department of Biomedical Sciences
Texas Tech University Health Science Center
5001 El Paso Drive, El Paso, TX 79905
Tel: (915) 215-4197 Email: jun.zhang2000@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Introduction. Cerebral cavernous malformations (CCMs) are abnormal clusters of capillaries in the nervous system. This pilot study analyzed the cardiometabolic health status of individuals with familial CCMs caused by a rare mutation in the CCM1 gene (fCCM1). The aim was to compare plasma water T2 values from individuals with fCCM1 with values from metabolically unhealthy and healthy individuals with no known CCM mutations. Design. This observational, cross-sectional study included 75 participants: 11 fCCM1 patients, 24 metabolically unhealthy and 40 metabolically healthy individuals. Plasma water T2, an early, global and practical marker of cardiometabolic health, was measured in the time domain using benchtop magnetic resonance relaxometry. The results were stratified by age (≤ 45 vs. >45 years). Group means were compared using Welch’s one-way ANOVA and post hoc Tukey-Kramer tests. Multivariable linear regression, with T2 as the outcome variable, was used to explore associations with age, gender, Hispanic ethnicity and fCCM1 status. Results. In the younger age stratum, the fCCM1 group had a mean plasma water T2 value comparable to the metabolically healthy group (p=0.6388), but higher than the unhealthy group (p<0.0001). By contrast, in the older stratum, the mean plasma water T2 value for the fCCM1 group was comparable to the metabolically unhealthy group (p=0.7819) and lower than the healthy group (p=0.0005). Multivariable linear regression revealed that age and the interaction between age and fCCM1 status were significant predictors of T2, even after adjusting for gender and Hispanic ethnicity. Conclusion. Plasma water T2 shows potential as a biomarker for assessing the health status of individuals with fCCM1. Further research is needed to validate these preliminary observations and elucidate the association between CCMs and cardiometabolic health.
INTRODUCTION

Cerebral cavernous malformations (CCMs) are vascular lesions characterized by abnormal clusters of capillaries found in both the central and peripheral nervous system. The development of CCM lesions is attributed to endothelial cells that are dysfunctional, exhibiting diminished cellular adhesion. This condition leads to heightened vascular permeability and an increased susceptibility to hemorrhage. While relatively uncommon, CCMs account for approximately 15% of all vascular malformations, despite occurring in only approximately 0.5% of the population [1-3]. CCMs are characterized by two distinct features, each associated with both common and unique causative genetic mutation landscapes. These features encompass familial CCMs (fCCMs), which are inherited, and sporadic CCMs (sCCMs), which arise de novo [2, 4, 5]. The focus of this study is on a single “common Hispanic” fCCM1 mutation due to its inheritable nature and traceable genetic lineage route.

The majority of fCCMs are attributed to mutations in three genes: CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10) [1-3]. Among these mutations, CCM1 loss-of-function (LOF) is the most common, accounting for approximately 50% of all causative mutations [1-3]. These mutations result in vascular malformations that may present with symptoms in some patients or go undetected in asymptomatic individuals. Clinical manifestations of CCMs include headaches/migraines, focal neural deficits, seizures, hemorrhage, and stroke [1-3]. The incomplete penetrance exhibited by these mutations poses challenges for early detection in clinical settings. Currently, detection and diagnosis rely on methods such as magnetic resonance imaging (MRI), gradient-echo (GRE), susceptibility-weighted imaging (SWI), or pathological analysis of biopsied tissue [6, 7]. However, these diagnostic tools have practical limitations for ongoing monitoring due to cost and accessibility,
making it necessary to find accurate and affordable methods to assess the risk of acute hemorrhagic events.

The loss-of-function (LOF) of CCM1 leads to an increased vulnerability to oxidative DNA damage, which in turn activates DNA damage sensors, repair genes, and triggers an apoptotic response. Based on these observations, it suggests that CCM1 plays a vital role in preserving the intracellular balance of reactive oxygen species (ROS), thus preventing cellular dysfunctions caused by ROS [8]. Moreover, CCM1 functions to inhibit the upregulation of c-Jun induced by oxidative stimuli [9] and prevents abnormal activation of the Nrf2 stress defense system, along with its downstream effectors HO-1 and Glo1 [10]. The effect of CCM1 deficiency on the levels of reactive oxygen species (ROS) and redox status has been documented in multi-omics data [11, 12].

The LOF of CCM1 not only affects the process of angiogenesis, but also influences several other vital processes including metabolic syndrome (MetS). The LOF of CCM1 has been shown to impact food intake, systemic glucose disposal as well as plasma insulin levels [13]. In addition to these impaired processes, it has been found that LOF of CCM1 has been linked to higher levels of blood pressure and higher fasting glucose levels, which increase the intensity of symptoms of vascular malformations [14].

A recently developed technique for the early detection of the underlying pathophysiology of metabolic syndrome utilizes the plasma water transverse relaxation time constant (T2), measured using benchtop magnetic resonance relaxometry [15-18]. Conceivably, this early detection tool could assess the risk for, or monitor the status of, hemorrhagic events to allow the patient-clinician team to preemptively treat disorders known to increase symptoms. Therefore, the aim of this initial study was to compare plasma water T2 values for individuals with a known
CCM1 mutation with those of metabolically healthy and unhealthy controls with no known CCM mutations.

EXPERIMENTAL METHODS

Sample Recruitment: We recruited participants from a well-established patient cohort of familial CCM (fCCM) caused by the "common Hispanic CCM1 mutation" from a large Baca family pedigree [19, 20]. All CCM patients (N=11) carried the same Baca CCM1 hemizygous mutation. The participants recruited from the CCM cohort had experienced hemorrhagic lesions in close proximity to the time of sample collection. All CCM1 participants in this study fell within the age range of 16-61, in compliance with the protocols set by the local Institutional Review Board (IRB-E21010).

Individuals with no known CCM mutations ("controls") who were metabolically healthy (n=40) or metabolically unhealthy (n=24). Of the blood samples obtained from the 64 control subjects with no known CCM mutation, 20 of the samples were de-identified and provided by the Regional Laboratory of the University Medical Center of El Paso (IRB-E21010). The remaining 44 samples were from Phase 2 participants in the Fort Worth T2 Study, as described elsewhere [15, 16]. That study was approved by the Institutional Review Board of the University of North Texas Health Science Center in Fort Worth. Each of the 44 participants was metabolically phenotyped with a medical history and physical exam, including ~130 clinical lab tests and biomarkers. These individuals were asymptomatic, with no active acute or chronic disease, and no history of blood disorders or hemorrhagic stroke. The classification of metabolically healthy vs. unhealthy was based on the ROC-calibrated cut point for plasma water T2 (700 msec) in samples that had undergone one freeze-thaw cycle [16].
Benchtop Time-Domain Magnetic Resonance (MR) Relaxometry of Human Plasma

MR relaxometry: In contrast to frequency-domain MR imaging (MRI) and spectroscopy, MR relaxometry records and analyzes data directly in the time domain without Fourier transformation. The key advantage of MR relaxometry is simplicity and efficiency: it can be performed with a benchtop, compact or miniaturized device containing a low-field permanent magnet. Unlike spectroscopy and imaging, MR relaxometry measurements can be made using compact or portable devices at the point of care.

The plasma water T_2 value is highly sensitive to the rotational/translational diffusion of water molecules as they bind and exchange on and off abundant proteins and lipoproteins. Metabolic shifts in the numbers and sizes of proteins and lipoprotein particles occur as a result of insulin resistance, inflammation (acute phase response), oxidative stress and the pro-coagulation state, resulting in a net decrease in T_2. Thus, plasma water T_2 provides an overall or global assessment of cardiometabolic health and detects the underlying pathophysiology of metabolic syndrome. In prior work, we have effectively employed compact MR relaxometry to examine human blood samples and extract significant health information [15-18, 21-23].

Sample preparation: The current study utilized bio-banked human plasma samples frozen once at -80°C. Previous research comparing freshly drawn samples with plasma and serum samples that had undergone a single freeze-thaw cycle showed that the health information associated with T_2 was preserved in the frozen samples [16]. Here, plasma samples were retrieved from the -80°C freezer one day prior to the measurement and gradually thawed overnight at 4°C. On the following day, approximately 40-50 μL of unmodified human plasma, corresponding to a sample height of 1 cm, was carefully transferred into a 3 mm coaxial insert (catalog NE-10-CIC-SB) placed inside an empty outer 10 mm NMR tube (NE-L10-7, New Era
Enterprises, Inc, Vineland, NJ). Prior to MR relaxometry analysis, the plasma samples were pre-incubated at 37°C for 30 minutes.

Data acquisition: Plasma water 1H T$_{2}$ relaxation decay curves were measured in the time domain at 37°C using a Bruker mq20-NF Minispec instrument operating at 0.47 Tesla (20 MHz for 1H). The instrument was equipped with a H20-10-25AVGX4 probe assembly housed within the magnet’s 25 mm air gap. A modified Carr-Purcell-Meiboom Gill (CPMG) pulse sequence, including a repeated (τ-180°-τ) pulse train, was employed with data acquisition in the middle of every other 2τ delay [15, 21]. To minimize the influence of translational diffusion, a short 2τ delay time of 0.38 msec was utilized to ensure an adequate baseline for multi-exponential analysis, the spin-echo train was recorded for a minimum of 8 times T$_{2}$. Each experiment recorded 16 signal-averaged decay curves. The recording time for each experiment was approximately 4 minutes, and each sample was measured three times to assess precision. Before each round of the pulse sequence, a relaxation delay of 8 times T$_{1}$ (longitudinal or spin-lattice relaxation time) was implemented to allow the system to return to thermal equilibrium. To estimate T$_{1}$, an inversion-recovery pulse sequence with a series of 20 time delays was employed.

Data processing and analysis: The deconvolution of each raw multi-exponential CPMG decay curve was performed using a discrete inverse Laplace transformation algorithm. This algorithm is implemented in XpFit software (Soft Science, Alango, Ltd.). This algorithm permits the user to specify a fixed number of exponential components (here, 3), which is crucial for ensuring meaningful subject-to-subject comparison of T$_{2}$ values [15, 16, 21]. The discrete inverse Laplace transform algorithm yields a T$_{2}$ profile represented as signal intensity (y-axis) vs. T$_{2}$ (x-axis). This profile is not to be confused with a MR spectrum, where the x-axis measures frequency. The discrete inverse Laplace transform effectively resolves the water T$_{2}$
hydrogen peak (spike) from the peaks attributed to non-water hydrogens from proteins, lipids and metabolites. The reported plasma water T₂ values represent the mean of three repeats and were highly reproducible (SEM ~1%).

Statistical Analysis of the Human Dataset

Multiple mean comparisons and multivariable linear regression analyses were performed using RStudio v. 2023.3.0.386 [24] and JMP Pro v. 16.2 (SAS Institute, Cary, NC, USA). Mean comparisons utilized Welch’s one-way ANOVA and *post hoc* Tukey-Cramer tests. The purpose was to compare the mean plasma water T₂ value for the fCCM1 group to those for healthy and metabolically unhealthy control groups. Linear regression was performed to identify models that optimized the prediction of mean plasma water T₂ (outcome variable). The candidate predictors were fCCM1 status (known carrier of the Baca CCM1 hemizygous mutation) or no known CCM mutations, age (continuous or categorical), sex (gender at birth) and Hispanic vs. non-Hispanic ethnic status.

RESULTS

The characteristics of the study population (n=75) are summarized in Table 1. Overall, the study population had higher numbers of female vs. male participants, especially in the fCCM1 group. The age range was 16-61. The median age for the fCCM1 and unhealthy groups were similar: 44 and 47 years of age, respectively. The median plasma water T₂ value for the fCCM1 group (695.1 msec) fell between those of the unhealthy (661.8 msec) and healthy (754.7 msec) control groups. Healthy and unhealthy were defined using a T₂ cut point of 700.1 msec, calibrated using receiver operator characteristic (ROC) curves, where poor cardiometabolic
health (“unhealthy”) was defined as a combination of hyperinsulinemia, dyslipidemia and inflammation [16].

Figure 1 shows plasma water T$_2$ values for three categories of health status, stratified by age. The horizontal black line indicates the robust mean plasma water T$_2$ value for each category. The upper and lower ends of each colored box delineate the interquartile range (IQR), and the whiskers cover the full range of observations. Each participant is represented by solid black dots, and the dots are horizontally staggered to minimize overlap and aid in visualization. The red boxes represent fCCM1, and the green and blue boxes represent healthy and unhealthy controls without known CCM mutations, respectively.

Using Welch’s one-way ANOVA and post hoc Tukey-Kramer tests, the mean plasma water T$_2$ values were compared. As shown in Fig. 1A (younger age stratum), the robust mean T$_2$ value for the fCCM1 group was 742.4 msec. It was statistically indistinguishable from that for healthy group (757.6 msec; p=0.6388), but different from the metabolically unhealthy group (654.2 msec; p<0.0001). By contrast, for the older age stratum (Fig. 1B), the mean plasma water T$_2$ value for the fCCM1 group was 671.0 msec. It was statistically indistinguishable from the metabolically unhealthy group (669.3 msec; p=0.7819), but different from the healthy group (745.0 msec; p=0.0005). Based on a previously published cut point for samples that underwent one freeze-thaw cycle, plasma water T$_2$ values \leq700.1 msec are consistent with poor cardiometabolic health, i.e., hyperinsulinemia plus dyslipidemia plus inflammation [16].

This stratified analysis suggested that age may modify the association between plasma water T$_2$ and fCCM1 status. To further explore the potential interaction between age and fCCM1 status, two multiple linear regression models were generated. The outcome variable was plasma
water T₂, and the predictors were sex, Hispanic ethnicity, age, fCCM1 status and the interaction between age and fCCM1 status.

The regression parameters for Model 1 are displayed in Table 2A. Shown are the beta coefficients (“Estimate” column) and p-values (“Prob>|t|” column) when age was analyzed as a continuous variable. In this model, sex and Hispanic ethnicity were not significant predictors of plasma water T₂. Rather, the statistically significant predictors were age and the interaction term for age*fCCM1 status.

The interaction between continuous age and CCM1 status can be visualized using an interaction plot, as derived from Model 1. Figure 2 shows two regression lines for plasma water T₂ vs. age: one for individuals with fCCM1 (1, red line) and the other for those without known CCM mutations (0, black line). The slope for fCCM1 individuals was steeper than that for controls with no known CCM mutations. This change in slope provides further evidence for an interaction (effect modification) between age and fCCM1 mutation status. Stated another way, fCCM1 status modifies or magnifies the association between plasma water T₂ and age.

Table 2B lists the beta coefficients and p-values for Model 2: similar to Model 1, except that age was categorical and the interaction between age and CCM1 status was coded as a categorical variable with 4 levels. Level 1 represented individuals with age ≤45 and no known CCM mutations. Level 2 represented individuals with age ≤45 and fCCM1. Level 3 represented age >45 and no known CCM mutations. Level 4 represents age >45 and fCCM1. As shown in the bottom row of Table 2B, the combination between age >45 and fCCM1 (Level 4) was a significant predictor of plasma water T₂ (p=0.0154). None of the other levels or categorical predictors were statistically significant. Note that Level 2, while insignificant (p=0.0533), was close to the α=0.05 significance threshold.
DISCUSSION

The results from this study revealed a distinct age-stratified difference in mean plasma water T_2 values for individuals carrying the Baca familial “common Hispanic” hemizygous mutation in the $CCM1$ gene. Younger $fCCM1$ participants (≤ 45 years of age) had a mean T_2 value consistent with good cardiometabolic health. By contrast, $fCCM1$ participants >45 years of age exhibited a mean T_2 value consistent with poor cardiometabolic health. Subsequent regression analysis indicated that the association between plasma water T_2 and $fCCM1$ status was modified by age. Likewise, the association between plasma water T_2 and age was modified by $fCCM1$ status, even after adjusting for sex and Hispanic ethnicity. This effect modification manifested itself in the one-way ANOVA plots stratified by age, along with the statistically significant interaction terms in two multiple regression models.

The discrete decline in plasma water T_2 values in middle age aligns with the average known onset of CCM lesions occurring between the third and fifth decade of life [25]. The incomplete penetrance of CCMs suggests that an additional trigger, whether environmental or genetic, is required for the progression of vascular lesions towards hemorrhagic events. Several potential triggers have been proposed, but their validity is still debated due to conflicting results [26]. These triggers include factors of both pathological and physiological nature, such as the gut microbiota theory [27], the anticoagulant vascular domain theory [28], levels of antioxidants like vitamin D [29], retinoic acid levels [30] and perturbed progesterone (PRG) signaling [26].

Interestingly, the last three factors are all associated with signal pathways in breast cancer nuclear receptor categories, indicating a potential connection among them. The progesterone (PRG) pathway is of particular importance in the context of CCMs, as the CCM signaling
complex (CSC) has been found to involve both classic nuclear PRG receptors (nPR) and non-classic membrane PRG receptors (mPR), forming the CmPn (CSC-mPR-PRG-nPR) signal network that plays a role in the development and maintenance of the blood-brain barrier [31].

CCM patients exhibit varying PRG levels throughout their lives, and CCM mutations can lead to metabolic dysfunction and decreased plasma glucose levels, as demonstrated in studies involving Ccm mutant mice [13]. The mouse studies have been independently validated in a recent human retrospective study [14].

Plasma water T2 values have shown high sensitivity in detecting metabolic abnormalities, particularly insulin resistance measured as the combination of hyperinsulinemia, dyslipidemia and inflammation [16]. Although the current study was preliminary, we observed that T2 values for individuals with fCCM1 abruptly declined in mid-life. This decline was more abrupt than observed for healthy and unhealthy individuals without known fCCM mutations. Plasma water T2 could conceivably detect the trigger-point change in health status in fCCM1 patients. Further investigating the association between CCMs and plasma water T2 values presents an opportunity to develop a prognostic biomarker that could aid in detecting changes in cardiometabolic health and possibly, the onset or worsening of vascular malformations as precursors of hemorrhagic stroke.

The interaction between fCCM1 status and age in its impact on cardiometabolic health, as observed here, is consistent with the results of a clinical retrospective study that reported a higher prevalence of MetS in patients aged 50 and above [14]. Furthermore, the same study revealed that Mexican-Hispanic CCM subjects who developed MetS had a higher susceptibility to hemorrhagic stroke [14]. Currently, blood tests are capable of detecting the occurrence of
ischemic strokes. However, there is a need for the development of a prognostic biomarker for the early prediction and prevention of hemorrhagic strokes.

Limitations: This pilot study had several significant limitations. First, the study sample size for the fCCM1 group was small: 11 individuals. Mutations in the CCM1 gene are rare; identifying and recruiting such individuals and obtaining blood samples is challenging. Second, the sex of the fCCM1 group was skewed, as 9 of the 11 participants were female. Older women tend to exhibit a stronger response to changes in progesterone compared to men, which could have potentially contributed to disruptions in these pathways and their effects on the blood-brain barrier. Sex-related differences should be taken into consideration when interpreting the study's findings and understanding their broader applicability. Third, there was a lack of individuals in the fCCM1 group in the 20 to 35 age range, even though the full age range for that group was 16-61. Caution should be used in applying these results to fCCM1 individuals in their prime childbearing years. Fourth, the data provided with the fCCM1 samples, and 20 of the 64 control samples, were limited to sex, age and Hispanic status, with no access to medical histories, health records, or other test results. This precluded a broader assessment of health status and limited the statistical analyses that could be performed. Fifth, the fCCM1 mutation studied here was identified in a Hispanic extended family living in the southwestern border region of the U.S. Although the representation of ethnicities in the study are skewed, it is recognized that there is a higher risk of CCM inheritance among Hispanic families [32, 33]. There were insufficient numbers of individuals in other ethnic or racial groups to assess the impact of those variables on fCCM1 status or health outcomes. Sixth, the non-fCCM1 individuals were not genotyped, although it is highly unlikely that any carried rare CCM gene mutations. Finally, as a pilot study
focused on a rare gene mutation, the results from this study are not generalizable to other populations.

Strengths and Significance: In spite of the limitations listed above, the results from this pilot study revealed statistically significant age-stratified differences in cardiometabolic health, as assessed by plasma water T2, among fCCM1 patients. The findings provide justification for a larger study with more health measurements to validate and extend these findings. There is an unmet need for an affordable, easily accessible test for monitoring the onset and progression of CCM lesions, monitoring the decline cardiometabolic health, and predicting the risk of hemorrhagic stroke. Although further research and validation is needed, plasma water T2 shows potential for addressing that need.

Acknowledgements:

We would like to thank Johnathan Abou-Fadel, Victoria Reid, Ofek Belkin, Mellisa Renteria, Nickolas Sanchez and Charlie Harvey for their efforts and help with this project, as well as Ina Mishra, Clinton Jones, Vipulkumar Patel and Sneha Deodhar for generating data for 44 of the 64 control subjects.

Author Contributions: Croft, Jacob: Methodology, Writing – Original draft preparation, Writing- reviewing and Editing, Experiments: Data collection, data curation and management; Sandoval, Diana: Writing- Original draft preparations, Experiments- T2 data collection and analysis; Cistola, David: Conceptualization, Methodology Writing- Original draft preparation, Reviewing and Editing, Zhang, Jun: Conceptualization, Methodology, Writing- Original draft preparation, Reviewing, Editing, and Finalized manuscript.
Conflict of Interest/Competing Interest:

Dr. Cistola is the lead inventor on U.S. and European T2-related patents assigned to the Texas Tech University System, University of North Texas Health Science Center, and East Carolina University. The authors declared no other conflicts of interest. Dr. Zhang is the lead inventor on U.S. and PCT Contracting States (The member nations of Patent Cooperation Treaty) CCM biomarkers patents (PCT/US2021/035907-US2023/0228766 A1) assigned to the Texas Tech University System.

Funding resources:

This study was supported by institutional funds from Texas Tech University Health Sciences Center and NIH/NHLBI grant 1 R21 HL143030 to d.p.c.

Data Availability Statement:

R Code script, JMP scripts and data tables are available by request to the authors.
References

Figure Legends

Figure 1. Box plots for plasma water T_2 vs. CCM1 and cardiometabolic health status category; each participant is represented by a solid black dot. The lower and upper bounds of each colored box represent the 25th and 75th percentiles, respectively, and the horizontal colored line within each box, the 50th percentile; red, participants carrying the same fCCM1 mutation; green, control (non-fCCM1) participants with good cardiometabolic health, ($T_2 > 700.1$ msec); blue, control participants with poor cardiometabolic health ($T_2 \leq 700.1$ msec); abbreviations: fCCM1, cerebral cavernous malformation gene 1 mutation; T_2, transverse or spin-spin relaxation time from magnetic resonance relaxometry; msec, milliseconds.

Figure 2. Interaction plot showing the modification of the slope of plasma water T_2 vs. age, by fCCM1 gene status; 1 or red, regression line for individuals carrying the fCCM1 mutation; 0 or black, regression line for participants with no known fCCM mutations.
Figure 1

Figure 1A: Age ≤ 45 years

Plasma Water T₂ (msec)

fCCM1 vs. Healthy: p=0.6388
fCCM1 vs. Unhealthy: p<0.0001

CCM1 and Metabolic Health Status

Figure 1B: Age > 45 years

Plasma Water T₂ (msec)

fCCM1 vs. Healthy: p=0.0005
fCCM1 vs. Unhealthy: p=0.7819

CCM1 and Metabolic Health Status
Figure 2

- 0 = no known fCCM
- 1 = fCCM1 mutation

Plasma Water T_2 (msec) vs. Age (years)
Table 1. Characteristics of the Study Population (n=75).

<table>
<thead>
<tr>
<th>Group</th>
<th>Number</th>
<th>Sex¹</th>
<th>Hispanic Status²</th>
<th>Age³</th>
<th>Plasma water T² ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>fCCM1⁴</td>
<td>11</td>
<td>9 F, 2 M</td>
<td>10 H, 1 NH</td>
<td>44 (15), 16-61</td>
<td>695.1 (81.3), 515.2-767.8</td>
</tr>
<tr>
<td>unhealthy⁵</td>
<td>24</td>
<td>16 F, 8 M</td>
<td>11 H, 13 NH</td>
<td>47 (25), 19-61</td>
<td>661.8 (35.5), 603.7-695.7</td>
</tr>
<tr>
<td>healthy⁶</td>
<td>40</td>
<td>20 F, 20 M</td>
<td>10 H, 30 NH</td>
<td>30 (23), 16-61</td>
<td>754.7 (55.9), 700.1-840.4</td>
</tr>
<tr>
<td>all non-fCCM1⁷</td>
<td>64</td>
<td>36 F, 28 M</td>
<td>31 H, 44 NH</td>
<td>37 (25), 16-61</td>
<td>719.8 (91.9), 603.7-840.4</td>
</tr>
</tbody>
</table>

¹F, female; M, male
²H, Hispanic; NH, non-Hispanic
³median (interquartile range), full range
⁴individuals carrying the same Baca familial CCM1 hemizygous mutation
⁵individuals with no known CCM mutation and poor cardiometabolic health (T² ≤700.1 msec)
⁶individuals with no known CCM mutation and good cardiometabolic health (T² >700.1 msec)
⁷individuals with no known CCM mutation; combination of unhealthy and healthy groups
Table 2A

| Term | Estimate | Std Error | t Ratio | Prob>|t| | Lower 95% | Upper 95% |
|-----------------------------|----------|-----------|---------|------|--------------|--------------|
| Intercept | 808.80164 | 32.11933 | 25.18 | <.0001* | 744.72532 | 872.87796 |
| Sex[0] | -3.533942 | 8.386337 | -0.42 | 0.6748 | -20.26423 | 13.196343 |
| Sex[1] | 3.5339415 | 8.386337 | 0.42 | 0.6748 | -13.196343 | 20.264226 |
| Hispanic_NonHispanic[0] | 10.340824 | 7.425485 | 1.39 | 0.1682 | -4.472614 | 25.154262 |
| Hispanic_NonHispanic[1] | -10.34082 | 7.425485 | -1.39 | 0.1682 | -25.154262 | 4.4726136 |
| Age | -2.349684 | 0.753092 | -3.12 | 0.0026*| -3.852062 | -0.847306 |
| CCM_status[0] | -1.624408 | 10.30044 | -0.16 | 0.8752 | -22.17322 | 18.924405 |
| CCM_status[1] | 1.624408 | 10.30044 | 0.16 | 0.8752 | -18.92441 | 22.173221 |
| (Age-39.16)*CCM_status[0] | 1.4812804 | 0.655697 | 2.26 | 0.0270*| 0.1732013 | 2.7893595 |
| (Age-39.16)*CCM_status[1] | -1.48128 | 0.655697 | -2.26 | 0.0270*| -2.7893595 | -0.173201 |

Table 2B

| Term | Estimate | Std Error | t Ratio | Prob>|t| | Lower 95% | Upper 95% |
|-----------------------------|----------|-----------|---------|------|--------------|--------------|
| Intercept | 710.92143 | 9.856286 | 72.13 | <.0001* | 691.25999 | 730.58287 |
| Sex[0] | 1.4661237 | 7.846136 | 0.19 | 0.8523 | -14.18649 | 17.118736 |
| Sex[1] | -1.466124 | 7.846136 | -0.19 | 0.8523 | -17.11874 | 14.186489 |
| Hispanic_NonHispanic[0] | 9.2429538 | 7.511737 | 1.23 | 0.2227 | -5.742551 | 24.228459 |
| Age*CCM_Cat[1] | 12.492589 | 12.74033 | 0.98 | 0.3302 | -12.92367 | 37.908848 |
| Age*CCM_Cat[2] | 41.060751 | 20.93267 | 1.96 | 0.0538 | -0.698777 | 82.82028 |
| Age*CCM_Cat[3] | -5.816673 | 13.2803 | -0.44 | 0.6628 | -32.31016 | 20.676808 |
| Age*CCM_Cat[4] | -47.73667 | 19.21758 | -2.48 | 0.0154*| -86.0747 | -9.398638 |

Table 2. Estimates of beta-coefficients from multivariable linear regression models that include sex, Hispanic ethnicity status and either: (A) age as a continuous variable, along with an interacting variable for age*CCM category; or (B) age as part of a 4-level categorical interacting variable that also includes CCM status. Regression analysis was performed in JMP v16.2, which uses effect coding for categorical variables. **Abbreviations:** Prob>|t|, p-value at α=0.05; Sex[0]=male; Sex[1]=female; Hispanic_NonHispanic[0]=not Hispanic; Hispanic_NonHispanic[1]=Hispanic ethnicity; CCM_status[0]=no known CCM mutation; CCM_status[1]=carries fCCM1 mutation; Age*CCM_Cat[1]=Age ≤45 & no