Title: Twenty-four-hour activity-count behavioral patterns associated with depressive symptoms.

Saida Salima Nawrin¹,¶, Hitoshi Inada¹,*,#a, Haruki Momma², and Ryoichi nagatomi¹,* ²

¹ Laboratory of Health and Sports Sciences, Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi, Japan

² Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan

#a Current address: Department of Biochemistry & Cellular Biology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan

*Corresponding author

E-mail: hinada@med.tohoku.ac.jp (HI)

E-Mail: nagatomi@med.tohoku.ac.jp (RN)

¶These authors contributed equally to this work.
Abstract

Depression is a global burden with profound personal and economic consequences. Previous studies have reported that the amount of physical activity is associated with depression. However, the relationship between the temporal patterns of physical activity and depressive symptoms are not well understood. We hypothesize that the temporal patterns of daily physical activity could better explain the association of physical activity with depressive symptoms. To address the hypothesis, we investigated the association between depressive symptoms and daily dominant activity behaviors based on 24-hour temporal patterns of physical activity. We found that evening dominant behavior was positively associated with depressive symptoms compared to morning dominant behavior as the control group. Our results might contribute to monitoring and identifying individuals with latent depressive symptoms, emphasizing the importance of nuanced activity patterns and their probability in assessing depressive symptoms effectively.

Index terms Objectively measured physical activity, activity pattern, unsupervised machine learning, time-series clustering, kernel K-means, Depressive syndrome
Introduction

Depression is a prevalent mental health condition, affecting about 280 million people worldwide and responsible for more than 47 million disability-adjusted life years in 2019 [1][2]. It is also a leading cause of disability globally and is associated with premature mortality from other illnesses [3] and suicide [4]. Depression not only causes significant personal suffering but also imposes substantial economic burdens. In 2010, it was estimated that approximately $US210.5 billion was spent annually in the US alone on lost work productivity and medical treatment associated with depression [5][6][7]. Moreover, the costs experienced an increase of 12.9% between 2010 and 2018 [7]. The manifestation of depressive symptoms contributes to the development of depression. Therefore, to effectively intervene and impede the progression of depressive symptom severity, it is crucial to identify individual participants promptly.

Physical activity is a factor associated with depression [8]. A recent observational study of US adults found that every additional hour of light-intensity physical activity decreased the chances of being depressed by 20%; even moderate-to-vigorous physical activity was linked to a lower risk of depression [9]. Another study mentioned that each additional hour of light activity per day between ages 12 and 16 reduced depression scores by 8-11% at age 18 [10]. Similarly, higher physical activity levels, especially among women, are associated with a reduced likelihood of having depression [11]. Consistent with these observations, interventional studies showed a benefit for improving depression, anxiety, and distress across various adult populations [12]. Although recent investigations challenge the notion that higher volume or intensity is beneficial for depressive symptoms [13][14],...
some studies have indicated a potential association between the timing of physical activity and depressive symptoms [15][16], possibly due to the shift in the circadian rhythm experienced by individuals with depression [17]. Consequently, the temporal pattern of physical activity, regardless of total volume or intensity, could also be important in understanding the association between physical activity and depressive symptoms.

Several studies have explored the relationship between physical activity patterns, specifically in timing, and the association with depressive symptoms [18]. For example, higher depressive symptoms are associated with late-night activity around 1:30 a.m. [19]. There was a tendency towards a later timing of activity peak in the acute depression group [15]. Similarly, participants with depression exhibited notably lower physical activity from 7 a.m. to 10 p.m. (daytime) compared to the healthy control group [20]. By contrast, a previous study has reported that individuals with depression and anxiety exhibited lower overall activity levels but did not show a specific association between the timing of activity and the presence or severity of depressive symptoms [21]. No differences in the timing of physical activity between depressed and non-depressed individuals was found, even when participants receiving antidepressant treatment were excluded from the analysis [22]. Considering these reports, the association between physical activity patterns and depressive symptoms remains inconsistent.

The inconsistency of the association between depressive symptoms and physical activity patterns, including timing or phase, might be due to the difficulty of establishing a standardized procedure to categorize physical activity patterns. Previous studies can be
attributed to the limitations in capturing the behavior of physical activity based on the temporal shape of each day [15][19][20][21][22]. By aggregating data from multiple days, the unique temporal shape of each day's activity is diluted, potentially masking the associations with depressive symptoms [23]. These temporal shape/temporal patterns could be critical because depressive individuals have more fragmented physical activity throughout the day because of distorted circadian rhythm [23][24]. Thus, the temporal pattern/shape of physical activity could be a useful marker to detect depressive symptoms.

In this study, we investigated the relationship between activity count behaviors, defined as probability of temporal physical activity patterns, and depressive symptoms using big data of the accelerometer from the National Health and Nutrition Examination Survey (NHANES) 2011-2012 [25]. We classified four distinct activity count behaviors based on the dominant activity counting pattern. Individuals with the Evening dominant behavior had a higher prevalence of depressive symptoms than those with the Morning dominant behavior (as a reference), even though they showed similar total counting activity. These findings could highlight the importance of distribution in activity count behaviors for understanding the relationship between physical activity and depressive symptoms. Recognizing the patterns and variability of physical activity might contribute to finding a behavioral context for manifesting depressive symptoms.

Results

Demographic characteristics of activity-count behavior
Twenty-four-hour activity-counting patterns and daily activity-count behaviors were determined using the machine learning procedure reported previously [26] with modifications (See Methods). Five 24-hour activity-counting patterns all day (AD), morning (M), evening (E), bi-phasic (BP), and irregular morning (IM) and 4 clusters of daily activity-count behaviors (AD dominant, M dominant, E dominant, and BP dominant) were identified (Figure 1, Figure 2 and Supplementary Tables S1-S3). Participants with depressive symptom data (n = 4242) were extracted from the clustered data (n = 6613) and used subsequent analyses. Table 1 presents the demographic characteristics of each activity-count behavior. Out of 4242 participants, M dominant behavior held the maximum number of participants (n = 1885, 44.44%), followed by AD dominant (n = 1664, 39.23%), E dominant (n = 526, 12.40%) and BP dominant (n = 167, 3.93%) behaviors. For age, M dominant is the most elderly (53.89 ± 16.91 years), followed by AD dominant (45.34 ± 18.51 years), BP dominant (40.18 ± 16.81 years), and E dominant (33.90 ± 15.28 years) (p < 0.0001). BMI also shows a significant difference among the activity-count behavior (p = 0.0038), and the BMI is highest for the BP dominant (30.05 ± 8.82) and lowest for the E dominant (28.42 ± 7.75). AD dominant has the least percentage of male participants (45.37%) but E dominant showed the highest number of male participants (56.84%). BP dominant (56.29%) and M dominant (51.83%) followed. The work situation also differs between activity-count behaviors (p < 0.0001). The total activity is highest in AD dominant (12901.90 ± 3659.46), followed by M dominant (12698.87 ± 4182.43), E dominant (12094.30 ± 4154.93), and BP dominant (6684.1 ± 6041.0). E dominant showed the highest prevalence of depressive symptoms (17.11%), followed by BP dominant (10.78%), AD dominant (8.29%), and M dominant (7.64%) (p < 0.0001).
Relationship between activity-count behavior and depressive symptoms

Table 2 represents the odds ratios (ORs) and 95% confidence intervals (CIs) for the depressive symptoms based on activity-count behaviors. The reference group is the M dominant behavior, which had the lowest percentage of individuals with depressive symptom. In the crude model (Model 1), the OR for depressive symptoms was 2.49 (95% CI: 1.87–3.31) for the E dominant behavior, 1.46 (95% CI: 0.87–2.45) for the BP dominant behavior, and 1.09 (95% CI: 0.86–1.39) for the AD dominant behavior. The significant association between E dominant behavior and depressive symptoms was observed after adjusting for covariates including age, BMI, gender, work situation, and total activity (Model 2 to 6). No strong correlation was observed among these covariates (Supplementary Figure S1). The significant difference was still observed even after adjusting for each confounding factor separately (age, BMI, gender, work situation, and total activity), E dominant behavior remains associated with a higher prevalence of depressive symptoms compared to M dominant behavior (p < 0.0001) as shown in Supplementary Table S4. These results suggest that the association between E dominant behavior and depressive symptoms is robust against these confounding factors.

Discussion

The current study identified five activity-counting patterns and four activity-count behaviors using unsupervised and supervised machine learning techniques. Based on the dominant activity-count behaviors, we revealed that individuals exhibiting E dominant behavior had a higher prevalence of depressive symptoms compared to those with M
dominant behavior, irrespective of total activity count. This association was confirmed after adjusting for potential confounding factors.

Previous studies showed various results regarding the association between the timing of activity and depressive symptoms. For example, the higher depression severity was linked to increased activity late at night, around 1:30 a.m., in the calculated 24-hour activity pattern [19]. Moreover, the depressed participants had significantly lower motor activity count during the daytime compared to healthy controls in the two-time windows, one from 7:00 a.m. to 10:00 p.m. (daytime) and the other from 10:00 p.m. to 7:00 a.m. (nighttime), by averaging several days (24 ±16 days) for each participant [20]. In contrast with the above reports, the other observational and case-control studies have indicated no association between activity timing and depressive symptoms [21][22]. However, these studies did not observe or detect the evening or nighttime activity patterns, possibly leading to no association of physical activity patterns with depressive symptoms. Different classifications of the activity patterns due to the distinct procedures might result in inconsistent conclusions.

In our results, the E pattern showed the highest activity between 6 p.m. and 9 p.m., and the E dominant behavior showed a higher prevalence of depressive symptoms. The association between E dominant behavior and the depressive symptom might reflect a disruption of circadian rhythm, which could play a crucial role in regulating mood and sleep-wake cycles since disruptions in the circadian rhythms, such as delayed sleep-wake timing, have been associated with increased risk of depressive symptoms and mood disorders [27].
Alternatively, individuals with depression may reduce daytime activity and compensate for total physical activity by increasing their evening activity when they feel energetic [28][29]. The latter possibility might explain our result in which E dominant (risk group) and M dominant (control group) behavior showed a similar total count activity.

Many previous studies reported that there is a connection between low physical activity levels and depressive symptoms [15][20][21]. These findings suggested that total physical activity would be important for the association with depressive symptoms. For instance, individuals with depression had lower 24-hour physical activity levels compared to controls without depression, and those with acute depression exhibited a marginal significance towards later timing of daily activity peaks, particularly in the evening [15]. Similarly, individuals with depression displayed significantly lower motor activity levels between 7 a.m. and 10 p.m. compared to healthy controls, considering both timing and activity levels [20]. Additionally, the presence and severity of depressive and anxiety disorders were associated with reduced overall daily activity levels, but no significant association was found with the timing of activity [21]. In our study, however, E dominant behavior showed a similar total amount of step count compared with M dominant behavior, and E dominant behavior showed a association with depressive symptoms compared to the M dominant behavior (Table 2). On the other hand, the BP dominant behavior has nearly half of the amount of activity count compared to the M dominant behavior (Table 1), but the BP dominant behavior did not associated with depressive symptoms (Table 2). These results suggests that the dominant behavioral pattern of physical activity count might be a
more significant parameter than the total amount of physical activity to explain the association with depressive symptoms in a particular procedure.

Our study examined the relationship between the day-to-day variability and stability of activity-count behavior (Supplementary Table S3). Using activity-count behavior based on the probability of 24-hour temporal activity patterns, we found that individuals with more irregular and less stable activity patterns (E dominant behavior) had the highest depressive symptoms. Conversely, those with more stable activity patterns (M dominant behavior) had lower rates of depressive symptoms. Our findings suggest that activity variability and temporal shape might play a role in determining the association between physical activity and depressive symptoms, emphasizing the importance of considering these factors in understanding depressive symptoms.

A major limitation of the current study is that we could not explain the causal relationship between activity-count behavior and depressive symptoms. In addition the assessment of depressive symptoms was used by self reported questionnaires. Although PHQ-9 used in this study has high sensitivity and specificity [30][31][32], we didn’t exactly diagnos the depression. However, our study would provide a possible impact of physical activity patterns rather than the total amount of physical activity on the relationship with depressive symptoms. Evaluating the physical activity/behavioral patterns, such as temporal changes or probability, may lead to valuable insights into the association between physical activity and depressive symptoms. Our findings also have a potential benefit to developing software for wearable devices alerting or reminding a risk to prevent the progression of depressive
symptoms. These findings might have implications for improving the management and prevention of depressive symptoms in clinical and community settings.

Methods

Activity-counting data

National Health and Nutrition Examination Survey (NHANES) 2011-2012 data was used for the analysis [25]. Participants were asked to wear a wrist-worn ActiGraph model GT3X+ accelerometer for seven consecutive days, 24 hours a day, starting on the day of their examination. The device was water-resistant, triaxial, and could detect the magnitude of acceleration at 80 Hz sampling intervals. The device was worn on the non-dominant wrist, and participants were instructed to wear it continuously except when they needed to temporarily remove it.

Depression data

The NHANES 2011-2012 uses the PHQ-9 questionnaire to measure depression. The Patient Health Questionnaire (PHQ-9) is a commonly used screening tool to assess the presence and severity of depression. It consists of nine questions about the frequency of symptoms of depression experienced over the past 2 weeks. Each question has four response categories: “not at all,” “several days,” “more than half the days,” and “nearly every day.” Each response category is assigned a point ranging from 0 to 3, with 0 indicating that the symptom was not present and 3 indicating that the symptom was present nearly every day. The scores for each item are then summed to give a total score ranging from 0 to 27. The final follow-up question in the PHQ-9 assesses the overall impairment
caused by depressive symptoms. This question asks the patient to rate the degree to which their symptoms have caused problems in their daily life, including work, school, or relationships. Overall, the PHQ-9 provides a simple and reliable method for identifying individuals experiencing depression and assessing the severity of their symptoms. It is widely used in clinical practice and research to screen for depression and monitor the response to treatment. PHQ-9 score > or =10 had a sensitivity of 88% and a specificity of 88% for major depression [30][31][32].

Software and data processing

MATLAB (2021a, MathWorks, MA) and Python (3.11.0) were used for data processing and visualization.

Twenty-four hour activity-counting pattern and daily activity-count behaviors

In this analysis, the minute-level physical activity data from the NHANES 2011-2012 dataset is utilized. Only participants with 1440 minutes of data for 7 complete days (totaling 6613 participants) are included to ensure data completeness. The data is then converted into a standardized format (mean = 0 and SD = 1) for each 24 hours, resulting in a dataset comprising 46291 days of 24-hour standardized data. To cluster the 24-hour physical activity patterns, a combination of unsupervised and supervised machine learning techniques using the tslearn Python package is employed [33]. Due to computational limitations associated with the kernel k-means algorithm utilizing the Global Alignment Kernel (GAK), a mixed approach is adopted. First, a randomly selected 10% of the entire dataset is clustered using the kernel k-means algorithm with GAK. The number of clusters
is determined by analyzing the distortion values through an elbow plot, revealing an optimal number of five clusters. Next, the entire dataset is predicted using a support vector machine (SVM). SVMs are known for their scalability and efficiency when handling large volumes of data, making them a suitable choice for this stage. By employing this mixed approach of unsupervised (kernel k-means with GAK) and supervised (SVM) machine learning techniques, the computational limitations associated with kernel k-means are overcome, allowing for deriving the desired 24-hour physical activity patterns. The probability of each 24-hour physical activity pattern was obtained for each participant to figure out dominant daily behavioral patterns. Vectors of the probability of each 24-hour physical activity pattern (with five values) were used to cluster the daily behavioral patterns by unsupervised machine learning using a K-means clustering algorithm with MATLAB. Four clusters of daily behavioral patterns were obtained. Five clusters of 24-hour physical activity patterns and four behavioral patterns are shown in Figure 1 and Figure 2.

Depression measurement

The study used the PHQ-9 questionnaire to measure depression. Out of the total 6613 participants, 4,242 participants provided complete answers to all nine questions, and they have the complete dataset for Age, Gender, BMI, and Work situation. The questionnaire provides a total score ranging from 0 to 27, with a threshold score of 10 being used to determine depression [34]. Participants who scored less than 10 were labeled as not having depression, while those who scored 10 or more were labeled as having depression. Out of 4242 participants, 390 participants have depression, and 3852 participants have no depression.
Statistical analysis:

The statistical analyses were performed using JMP software (version 16.2.0). For the demographic analysis, we reported descriptive statistics such as means and standard deviations (SD) for continuous variables and percentages for categorical variables stratified by activity-count behavior. To compare differences in continuous variables, we used ANOVA, while chi-square tests were employed for categorical variables across different activity-count behavior.

To investigate the relationship between activity-count behavior and depressive symptoms, we conducted a multivariable logistic regression analysis. Depressive symptoms were the dependent variable, and activity-count behavior was the independent variable. We calculated odds ratios (ORs) and 95% confidence intervals (CIs). Initially, we examined the crude model (Model 1), which assessed the association between activity-count behavior and depressive symptoms without considering any confounding factors. Subsequently, we introduced one confounding factor at a time, progressing from Model 2 to Model 6.

In order to assess the impact of residual confounding, we conducted a sensitivity analysis. This analysis aimed to determine the influence of age, BMI, gender, work situation, and total activity on the association between activity-count behavior and depressive symptoms. We performed logistic regression analyses similar to the previous models, adding only one individual confounding factor in each model. We used the Wald test to assess the
significance of the association in both cases. We also checked the correlations between each individual variable. We considered statistical significance as p < 0.05 for all analyses.

References

N. Banihashemi *et al.*, “Quantifying the effect of body mass index, age, and depression severity on 24-h activity patterns in persons with a lifetime history of
affective disorders,” *BMC Psychiatry*, vol. 16, no. 1, Sep. 2016, doi:

10.1249/MSS.0000000000002900.

Disease Control and Prevention, [2011-2012].”

Supporting information

S1 Fig. Correlation coefficients.

Work situation and age showed very weak positive correlation. Work situation and total activity showed a very weak negative correlation. Other variables showed no correlation among them.

S1 Table. No of days for each activity counting pattern

S2 Table. No of participants for behavior.

S3 Table. Proportion of activity counting patterns in each behavior.

S4 Table. Sensitivity analysis (Odd ratios for depressive symptoms by activity behavior)

Acknowledgments

We would like to thank all the participants who have contributed to the experiment. A pioneering research support grant from Tohoku University partially supported this project. The funding body has no role in the study design, data analysis, or manuscript submission.

Author contributions

SSN and HI analyzed the data. SSN, HI, and HM wrote the manuscript. HI and RN designed and supervised the research. All authors revised the manuscript and approved the final manuscript.

Data availability

Competing interest

The authors declare no competing interests.

Figure Legends

Figure 1. Five 24-hour physical activity patterns

A. Individual plots of standardized activity count for each pattern.
B. Plots of mean values with standard deviation (SD) for each pattern.

AD, All-day; E, Evening; BP, Bi-phasic; IM, Irregular morning; M, Morning.

Figure 2. Four daily behavioral patterns

A. Individual spider plots of the probability of 24-hour physical activity patterns.
B. Spider plots of mean values for each pattern.

M, Morning; E, evening; BP, Bi-phasic; AD, All-day.
Table 1. Demographic characteristics of the clusters.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>AD dominant</th>
<th>M dominant</th>
<th>E dominant</th>
<th>BP dominant</th>
<th>Total</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (%)</td>
<td>1664 (39.23)</td>
<td>1885 (44.44)</td>
<td>526 (12.40)</td>
<td>167 (3.93)</td>
<td>4242</td>
<td><0.0001</td>
</tr>
<tr>
<td>Age (Mean ± SD)</td>
<td>45.34 ± 18.51</td>
<td>53.89 ± 16.91</td>
<td>33.90 ± 15.28</td>
<td>40.18 ± 16.81</td>
<td>4242 <0.0001</td>
<td></td>
</tr>
<tr>
<td>BMI (Mean ± SD)</td>
<td>28.60 ± 6.93</td>
<td>29.19 ± 6.46</td>
<td>28.42 ± 7.75</td>
<td>30.05 ± 8.82</td>
<td>4242 0.0038</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>45.37%</td>
<td>51.83%</td>
<td>56.84%</td>
<td>56.29%</td>
<td>2125 <0.0001</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>54.63%</td>
<td>48.17%</td>
<td>43.16%</td>
<td>43.71%</td>
<td>2117 <0.0001</td>
</tr>
<tr>
<td>Work situation</td>
<td>Working at a job or business</td>
<td>48.38%</td>
<td>53.74%</td>
<td>43.73%</td>
<td>58.68%</td>
<td>2146 <0.0001</td>
</tr>
<tr>
<td></td>
<td>With a job or business but not at work</td>
<td>2.10%</td>
<td>1.22%</td>
<td>1.52%</td>
<td>2.40%</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Looking for work</td>
<td>5.77%</td>
<td>2.81%</td>
<td>10.65%</td>
<td>7.19%</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Not working at a job or business</td>
<td>43.75%</td>
<td>42.23%</td>
<td>44.11%</td>
<td>31.74%</td>
<td>1809</td>
</tr>
<tr>
<td>Total activity (m/s²) (Mean ± SD)</td>
<td>12901.90 ± 3659.46</td>
<td>12698.87 ± 4182.43</td>
<td>12094.30 ± 4154.93</td>
<td>6684.10 ± 6041.04</td>
<td>390 <0.0001</td>
<td></td>
</tr>
<tr>
<td>Depressive symptoms</td>
<td>Yes</td>
<td>8.29%</td>
<td>7.64%</td>
<td>17.11%</td>
<td>10.78%</td>
<td>3852 <0.0001</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>91.71%</td>
<td>92.36%</td>
<td>82.89%</td>
<td>89.22%</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Odd ratios for depressive symptoms by activity-count behavior

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
<th>Model 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>M dominant</td>
<td>1.00 (ref)</td>
<td>1.00 (ref)</td>
<td>1.00 (ref)</td>
<td>1.00 (ref)</td>
<td>1.00 (ref)</td>
<td>1.00 (ref)</td>
</tr>
<tr>
<td>AD dominant</td>
<td>1.09 (0.86, 1.39)</td>
<td>1.15 (0.89, 1.47)</td>
<td>1.16 (0.90, 1.49)</td>
<td>1.11 (0.86, 1.42)</td>
<td>0.98 (0.76, 1.27)</td>
<td>0.98 (0.76, 1.27)</td>
</tr>
<tr>
<td>E dominant</td>
<td>2.49 (1.87, 3.31)</td>
<td>2.82 (2.07, 3.84)</td>
<td>2.82 (2.07, 3.86)</td>
<td>2.88 (2.11, 3.94)</td>
<td>2.25 (1.62, 3.11)</td>
<td>2.18 (1.58, 3.03)</td>
</tr>
<tr>
<td>BP dominant</td>
<td>1.46 (0.87, 2.45)</td>
<td>1.59 (0.94, 2.68)</td>
<td>1.48 (0.87, 2.51)</td>
<td>1.51 (0.89, 2.57)</td>
<td>1.47 (0.86, 2.52)</td>
<td>1.23 (0.68, 2.19)</td>
</tr>
<tr>
<td>p-value</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Notes
- Model 1: Activity-count behavior (crude model)
- Model 2: Activity-count behavior, age
- Model 3: Activity-count behavior, Age, BMI
- Model 4: Activity-count behavior, Age, BMI, gender
- Model 5: Activity-count behavior, Age, BMI, gender, work situation
- Model 6: Activity-count behavior, Age, BMI, gender, work situation, total activity
Figure 1
Figure 2