MENDS-on-FHIR: Leveraging the OMOP common data model and FHIR standards for national chronic disease surveillance

Shahim Essaid,¹ Jeff Andre,² Ian M Brooks,¹,³ Katherine H Hohman,⁴ Madelyne Hull,³ Sandra L Jackson,⁶ Michael G Kahn,¹,³ Emily M Kraus,⁶,⁷ Neha Mandadi,¹,³ Amanda K Martinez,⁴ Joyce Y Mui,¹,³ Bob Zambarano,² Andrey Soares⁸

Affiliations

1. Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Denver CO
2. Commonwealth Informatics Inc, Waltham MA
3. Health Data Compass, University of Colorado Anschutz Medical Campus, Denver CO
4. National Association of Chronic Disease Directors (NACDD), Decatur GA
5. National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention (CDC), Atlanta GA
6. Kraushold Consulting, Denver CO
7. Public Health Informatics Institute, Decatur, GA
8. Department of Medicine, University of Colorado Anschutz Medical Campus, Denver CO

Corresponding Author

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Michael G Kahn MD

Department of Biomedical Informatics

University of Colorado Anschutz Medical Campus

Anschutz Health Sciences Building
1890 N. Revere Court, Mailstop F600
Aurora, CO 80045

Michael.Kahn@cuanschutz.edu

+1 303.324.2829

Key Words [MESH term if available]

1. Health Information Interoperability [L01.470.813]
2. Public Health Surveillance [N06.850.780.675.487]
3. Health Level Seven [N03.540.630.480]
4. Electronic Health Records [N06.850.520.308.940.968.625.250]
5. HL7 Fast Healthcare Interoperability Resources (FHIR)

Word Count: Abstract: 246 / Main text (no captions): 3806

Tables: 4

Figures: 5
ABSTRACT

Objective

The Multi-State EHR-Based Network for Disease Surveillance (MENDS) is a population-based chronic disease surveillance distributed data network. Current data partners create institution-specific extraction-transformation-load (ETL) routines. MENDS-on-FHIR provides a standards-based ETL approach using Health Language Seven’s Fast Healthcare Interoperability Resources (HL7® FHIR®) and US Core Implementation Guide (US Core IG) compliant resources derived from the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM).

Materials and Methods

The input data source was a research data warehouse (RDW) containing clinical and administrative data in OMOP CDM Version 5.3 format. OMOP-to-FHIR transformations, using a unique JavaScript Object Notation (JSON)-to-JSON language called Whistle, created FHIR R4.0.1/US Core IG V4.0.0 conformant resources that were stored in a local FHIR server. A REST-based Bulk FHIR $export request extracted FHIR resources to populate a local MENDS database.

Results

Eleven OMOP tables were used to create 10 FHIR/US Core compliant resource types. A total of 1.13 trillion resources were extracted and inserted into the MENDS repository. A very low rate of non-compliant resources was observed.
Discussion

OMOP-to-FHIR transformations passed validation with only minimal non-compliance issues. These resources provided the clinical and administrative data elements required by the MENDS surveillance use case. The Bulk FHIR application programming interface (API) enabled population-level data exchange using interoperable FHIR resources. The OMOP-to-FHIR transformation pipeline creates a FHIR “facade” for accessing OMOP data.

Conclusion

MENDS-on-FHIR successfully replaced custom ETL with standards-based interoperable FHIR resources using Bulk FHIR. The OMOP-on-FHIR transformations provide an alternative mechanism for sharing OMOP data.
1 INTRODUCTION

Public health networks that collect, harmonize, and report on acute diseases have traditionally relied on manual health surveys and local data collection methods. Expanding these networks to a national scale that reaches a wide range of populations and settings has significant technical and sustainability challenges. Chronic disease surveillance has additional challenges, given the need for diagnostic, therapeutic, and observational longitudinal data over many years. The Multi-State EHR-Based Network for Disease Surveillance (MENDS) pilot project focuses on harmonizing clinical data from electronic health records (EHRs) to support chronic disease monitoring at scale and across disparate clinical settings [1]. Focusing on data elements and measures related to hypertension, smoking, statin use, diabetes, and obesity, MENDS aims to inform local and national health departments regarding chronic disease burden and outcomes at the population level. The MENDS data infrastructure is built using Electronic Medical Record Support for Public Health (ESP), an open-source software suite [2–5]. A detailed description of the MENDS governance, technical structure, and data elements has been published previously [6].

Currently, MENDS data are imported using several custom extraction-transformation-load (ETL) processes. Detailed specifications describe the format and content for each MENDS data element. MENDS data contributors write custom ETL routines, resulting in significant technical burden[7]. The MENDS team partnered with Health Data Compass (HDC)—the data custodian for a multi-institutional clinical research data warehouse
(RDW)—to create an ETL process using interoperable data standards based on Health Language Seven’s Fast Healthcare Interoperability Resources (HL7® FHIR®), resulting in MENDS-on-FHIR. Combined with the US Core Implementation Guideline (US Core IG) and HL7 Bulk FHIR export, this data exchange environment could significantly reduce the technical effort by enabling access to standardized data that are independent of underlying database structures and supported by commercial EHR vendors.

HL7 FHIR is an extensive international health data exchange standard [8]. It is based on units of data exchange, called Resources, that must conform to explicit standards for structure (data formats), content (allowed terms), and operations (queries, updates, data exchanges). The health information technology (HIT) industry’s implementation of FHIR-based interfaces and applications has increased dramatically [9]. In addition to responding to traditional marketplace forces, in the United States, EHR vendors must comply with the 21st Century Cures Act. It contains regulatory mandates with implementation deadlines, certification criteria, and penalties for non-conformance requiring implementation of FHIR Version 4.0 and US Core IG Version 4.0.0 by December 31, 2022 [10,11].

Two additional elements of the FHIR specification are FHIR Profiles [12] and Implementation Guides (IGs) [13]. FHIR Profiles define additional specifications that narrow or expand the scope of a FHIR base resource definition. For example, a Profile can specify additional data fields, alter fields from optional to mandatory, define
relationships between data elements, or declare alternative or expanded terminologies or value sets in a FHIR resource. An IG is a collection of Profiles that defines a specific use case for the use of a resource. The US Core IG is widely deployed in the United States because it is closely aligned to the data domains and terminologies defined in the US Core Data for Interoperability (USCDI) Version 1. USCDI V1 defines the set of mandatory elements for data exchange required by legislation to certify commercial EHR systems.

FHIR-based data exchange occurs using two basic models: real-time single-patient and batch-oriented bulk data queries. For the MENDS population surveillance use case, only the batch-oriented bulk data exchange method is used. FHIR Bulk Data Access (also called Bulk FHIR and Flat FHIR), uses the same data and coding formats (FHIR Resources, Profiles, IGs) but returns data for all patients in a cohort in a single asynchronous batch-oriented operation [14]. Bulk FHIR is designed to enable population-focused use cases, such as public health surveillance, clinical quality assessment, and health services research [15]. The Bulk FHIR standard is in early development and is less widely deployed than single-patient FHIR. Mandatory conformance certification for Bulk FHIR data standards was delayed until December 31, 2023. However, a few Bulk FHIR public health applications have been developed [16]. For example, VACtrac is a public health use case that uses Bulk FHIR to exchange vaccine data between health institutions and a state immunization registry [17].
Because production-ready EHR Bulk FHIR interfaces are not yet widely available, MENDS-on-FHIR is implemented using an RDW that contains EHR data [18]. Transformation routines produce conformant FHIR Resources from patient-level data stored in an Observational Medical Outcomes Partnership (OMOP) common data model (OMOP CDM) format [19,20]. It is supported by the Observational Health Data Sciences and Informatics (OHDSI) collaborative, an international research data network [19,21]. By implementing a Bulk FHIR interface based on the OMOP CDM, other institutions that have implemented OMOP can use the OMOP-to-FHIR transformations directly to provide Bulk FHIR access to their OMOP RDW. As institutions deploy US Core IG conformant Bulk FHIR interfaces in their certified EHRs, MENDS can use the same Bulk FHIR import interface to obtain more timely data directly from clinical systems without creating institution-specific ETL programs, reducing the technical lift to onboarding new data contributors.

This report presents the MENDS use case and one technical approach for enhancing interoperable data exchange in chronic disease surveillance efforts; this implementation can inform how others could apply FHIR-based standards, especially those using the OMOP CDM.

2 METHODS

Figure 1 illustrates the data processing pipeline that begins with EHR data stored in an OMOP CDM Version 5.3 data mart (Marker 1) and creates a set of US Core IG V4.0.0 compliant FHIR resources in a FHIR Server (Marker 2). A new ESP Bulk FHIR import plugin extracts the FHIR resources via a Bulk FHIR REST call (Marker 3a) and inserts
them into the MENDS database (Marker 3b). Although the MENDS team initially leveraged software developed in a proof-of-concept project [22], the new tooling work required a substantial level of technical effort. A prototype OMOP-to-FHIR data transformation pipeline (processing steps in green) with synthetic data in OMOP JSON format is freely available on GitHub (https://github.com/CU-DBMI/mends-on-fhir).

2.1 OMOP-to-OMOP JSON

ANSI-standard SQL statements query OMOP CDM V5.3 tables and columns to generate output rows that create FHIR resources. Because the transformation engine cannot perform additional SQL operations, all data elements required for a FHIR
resource must be included in the SQL output. For example, the OMOP DEATH table is LEFT JOINed with the OMOP PERSON table so that a death date, when available, is included in the query. OMOP concept_names, concept_codes, and vocabulary_ids for all concept_id fields are also included.

A Python script executes each SQL statement and outputs the results as a single "OMOP JSON" object. Figure 2 illustrates this file where the JSON key = "Condition_Occurrence". The key represents an OMOP table or domain. Each element in the JSON array is a database row. All keys and values are represented as JSON strings, irrespective of the native data type. Because of memory limitations in the transformation engine, SQL results are partitioned across multiple JSON files.
Figure 2. Structure of “OMOP JSON” extracted from OMOP CDM V5.3 queries using synthetic data based on the OMOP Condition_Occurrence table. The person_id, provider_id, condition_start/end dates fields do not refer to actual values.

2.2 OMOP JSON to FHIR R4 Bundle JSON (OMOP-to-FHIR)

OMOP JSON is transformed into FHIR R4 Bundle JSON format using an open-source JSON-to-JSON transformation engine that implements a functional language called Whistle [22]. Additions to the original project include configuration files to support
OMOP JSON input, MENDS resources output, and conformance to FHIR R4.0.1 and US Core IG 4.0.0.

Figure 3 illustrates a portion of the Whistle specification for transforming an OMOP PERSON record into a FHIR PATIENT resource. Elements on the left side of a colon are either internal variables (declared with VAR) or FHIR JSON keys. Elements on the right side of a colon are OMOP fields, Whistle functions that modify OMOP fields, or constants.

A top-level Whistle function matches the JSON Key (e.g., “Person”, “Observation”, “Condition_Occurrence”) and routes the JSON data array to the relevant implementation function that converts OMOP JSON into FHIR JSON resource(s). The transformation functions are applied to each row in the OMOP JSON array, creating one or more FHIR resources. A terminal function wraps the array of FHIR resources into a single FHIR Bundle resource.
One unique feature of the Whistle mapping language is a built-in function focused on code harmonization using local FHIR ConceptMap resources or remote FHIR terminology services. For example, the Whistle function USCore_Birthsex() in Figure 3...
(red box) uses the local FHIR ConceptMap shown in Figure 4 to translate OMOP concept_ids into US Core IG conformant values. Network restrictions on PHI-containing data sets prohibit use of remote terminology services. All OMOP-to-FHIR terminology mappings use local ConceptMap files. Utility programs enable bulk mappings from spreadsheets/CSV files into FHIR ConceptMaps.
Figure 4. FHIR ConceptMap maps OMOP-specific concept_ids for patient sex into FHIR US Core compliant values.

When the FHIR Resource specification allows, MENDS-on-FHIR includes nonstandard source values and codes in addition to the required FHIR and US Core codes. For example, the Medication.code field accepts an array of Coding objects. The US Core IG
requires one Coding object to be a RxNorm code but allows additional non-RxNorm Codings. Figure 5 illustrates the inclusion of the mandated RxNorm code mapped from the drug_concept_id (red box) and the original nonstandard National Drug Code (NDC) code (green box). The same approach enabled FHIR Condition resources to contain both nonstandard ICD9CM/ICD10CM source codes along with US Core-required Systematized Nomenclature of Medicine (SNOMED) codes.

Figure 5. Multiple JSON Codings in a FHIR code element enable inclusion of both local source and FHIR-required values. In this example, both FHIR-required RxNorm (red box) and local NDC source codes (green box) are included in two Coding objects in the Medication.code JSON object.

2.3 FHIR R4 and US Core IG Validation

FHIR validation tools examine the structure and content of FHIR resources for conformance to FHIR Profiles and IGs. Two settings used the open-source HL7 FHIR Validator [23]:

- FHIR resources that contain full PHI use the HL7 FHIR Validator without access to terminology services. This setting checks conformance to the FHIR structural
specifications and any additional structural constraints or extensions in the US Core IG.

- De-identified versions of the same FHIR resources use the HL7 FHIR Validator with access to the HL7 public-domain terminology server. This setting checks conformance with terminologies and permitted values.

The validator uses FHIR R4.0.1 and US-Core IG V4.0.0.

2.4 Bulk FHIR Import

Each FHIR Bundle JSON file created in Step 2.2 is uploaded to a FHIR Server configured with base FHIR R4 and the US Core IG v4.0.0 using a FHIR $import call.

The FHIR Server is configured to not perform referential integrity checks on data import operations and to produce server-generated Resource IDs. Import errors are logged for inspection after all resources are loaded. A full data refresh is performed with each FHIR $import.

2.5 Bulk FHIR Extract

FHIR resources are requested by the ESP server using a small Python script that makes FHIR $export calls to the FHIR server. The $export API initiates an asynchronous export process that returns an OPERATION_ID tag that is used to determine when bulk extractions have been completed. All instances of a FHIR resource type (Patient, Condition, MedicationRequest, Medication, Immunization, Observation) are exported in one large NDJSON file.
2.6 ESP FHIR Import

After completing the Bulk FHIR extract, a second Python script in ESP imports FHIR NDJSON into the ESP database. The load process initially copies the NDJSON files into temporary tables as JSONB objects. Data in the temporary tables are then inserted into the ESP relational data tables.

3 RESULTS

Table 1 shows the alignment among the clinical and demographic data domains required by the MENDS database, the FHIR resources that contain these data elements, and the OMOP table(s) used to construct the FHIR resources. The 10 FHIR resources needed by MENDS required data extracted from 10 OMOP tables plus the OMOP CONCEPT table for codes and text labels. OMOP Observation rows were transformed into one of three different FHIR Observation Profiles defined by the US Core IG: Observation (Smoking), Observation (Non-Smoking) and Observation (Laboratory). Three separate transformations were used to create Profile-conformant variants of the Observation Resource. Although the OMOP CDM can map to additional FHIR resources, only those required to meet MENDS chronic disease surveillance use cases were deployed.
Table 1. Alignment of MENDS, FHIR R4, and OMOP data models.

<table>
<thead>
<tr>
<th>MENDS data domain</th>
<th>FHIR R4 resource(s) required</th>
<th>OMOP CDM V5.3 table(s) used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>Patient</td>
<td>Person, Location, Death, Concept</td>
</tr>
<tr>
<td>Encounter</td>
<td>Encounter</td>
<td>Visit_Occurrence, Concept</td>
</tr>
<tr>
<td></td>
<td>Condition</td>
<td>Condition_Occurrence, Concept</td>
</tr>
<tr>
<td></td>
<td>Coverage</td>
<td>Payer_Plan_Period, Concept</td>
</tr>
<tr>
<td></td>
<td>Observation (all)</td>
<td>Observation, Concept</td>
</tr>
<tr>
<td>Prescription</td>
<td>MedicationAdmininstration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MedicationDispense</td>
<td>Drug_Exposure, Drug_Strength, Concept</td>
</tr>
<tr>
<td></td>
<td>MedicationRequest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medication</td>
<td></td>
</tr>
<tr>
<td>Lab Result</td>
<td>Observation (laboratory)</td>
<td>Measurement, Concept</td>
</tr>
<tr>
<td>Social History</td>
<td>Observation (non-smoking)</td>
<td>Observation, Concept</td>
</tr>
<tr>
<td></td>
<td>Observation (smoking)</td>
<td></td>
</tr>
<tr>
<td>Immunization</td>
<td>Immunization</td>
<td>Drug_Exposure, Drug_Strength, Concept</td>
</tr>
</tbody>
</table>

Table 2 provides basic statistics about the MENDS cohort and the FHIR resources generated.
Table 2. Patient and OMOP row counts versus FHIR Resources. OMOP and FHIR counts are for the MENDS cohort only.

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique Patients – OMOP RDW (total)</td>
<td>4.38M</td>
</tr>
<tr>
<td>Unique Patients – OMOP MENDS Cohort</td>
<td>3.24M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OMOP Table (Figure 1 – Tag 1)</th>
<th>Rows</th>
<th>FHIR Resource</th>
<th>Resources (Figure 1 – Tag 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person</td>
<td>3.24M</td>
<td>Patient</td>
<td>3.24M</td>
</tr>
<tr>
<td>Visit_Occurrence</td>
<td>141M</td>
<td>Encounter</td>
<td>141M</td>
</tr>
<tr>
<td>Condition_Occurrence</td>
<td>189M</td>
<td>Condition</td>
<td>189M</td>
</tr>
<tr>
<td>Payer_Plan_Period</td>
<td>162M</td>
<td>Coverage</td>
<td>162M</td>
</tr>
<tr>
<td>Observation (smoking)</td>
<td>138M</td>
<td>Observation</td>
<td>411M</td>
</tr>
<tr>
<td>Observation (non-smoking)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement (labs)</td>
<td>399M</td>
<td>MedicationAdministration</td>
<td>102M</td>
</tr>
<tr>
<td>Drug_Exposure</td>
<td>221M</td>
<td>MedicationDispense</td>
<td>8.4M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MedicationRequest</td>
<td>109M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medication</td>
<td>55K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immunization</td>
<td>640K</td>
</tr>
</tbody>
</table>

Table 3 provides timing results from a recent end-to-end run for a complete data refresh across the entire MENDS cohort.
Table 3. Representative processing times. See Figure 1 for the data processing sequence.

<table>
<thead>
<tr>
<th>Processing step</th>
<th>Wall time*</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMOP BigQuery to OMOP JSON GCS* export</td>
<td>30 minutes</td>
</tr>
<tr>
<td>OMOP JSON GCS to FHIR server import (includes OMOP-to-FHIR transformation in pipeline)</td>
<td>39 hours</td>
</tr>
<tr>
<td>FHIR server Bulk to FHIR NDJSON GCS export</td>
<td>30 minutes</td>
</tr>
<tr>
<td>FHIR NDJSON GCS to PostgreSQL FHIR NDJSON import</td>
<td>2 hours</td>
</tr>
<tr>
<td>PostgreSQL FHIR NDJSON to PostgreSQL ESP CDM ETL</td>
<td>80 hours</td>
</tr>
</tbody>
</table>

*GCS = Google Cloud Storage
Wall time = The actual elapsed time to complete a task as would be seen using a wall clock or chronometer.

4 DISCUSSION

The COVID-19 pandemic highlighted the urgent need for rapid access to clinical data from diverse settings to assess risk factors and treatment outcomes [24–29]. Chronic disease surveillance registries also need access to linked clinical, administrative, and social determinants of health data across diverse healthcare settings [30]. Although EHR systems capture detailed clinical data in health-seeking populations, these data are difficult to extract and harmonize to common data structures and terminologies [31]. The base FHIR standard and the additional specifications of an IG address many data interoperability issues. MENDS-on-FHIR illustrates how Bulk FHIR access to US Core IG conformant FHIR resources can support a large-scale population-level chronic
disease surveillance database replacing one-off, institution-specific custom ETL programming.

MENDS-on-FHR creates FHIR resources using the OMOP CDM. The EHR data contained in the HDC OMOP CDM contains sufficient clinical data to meet MENDS requirements. The same ESP Bulk FHIR import interface could be used in EHR systems when regulatory mandates result in broader commercial implementations.

A secondary benefit is enabling population-level data access to a RDW via a Bulk FHIR “facade.” Sites that have deployed the OMOP CDM can use the MENDS-on-FHIR transformations to generate US Core conformant FHIR resources. The OHDSI community, which supports the OMOP CDM, currently contains “over 3,200 collaborators in 80 countries across 21 time zones in 6 continents” (https://ohdsi.org/who-we-are/collaborators/; accessed 23-May-2023). A Bulk FHIR extraction capability opens this expansive data network to even more data sharing possibilities.

Propelled by regulatory mandates and certification requirements, FHIR data exchange capabilities are present in nearly all U.S. commercial EHR systems. Data aggregators do not have the same regulatory pressures and therefore have been slower to incorporate FHIR capabilities. They have implemented FHIR importing functions to consume new data sources. However, aggregators generally have not developed FHIR exporting functions to share interoperable data with others. External data reporting
requirements that use FHIR-based query tools, such as electronic clinical quality measurement reporting, may provide the impetus for data aggregators to add Bulk FHIR export features [32,33]. MENDS-on-FHIR demonstrates one mechanism for adding FHIR features to a clinical data warehouse.

The Whistle language enabled implementation of OMOP-to-FHIR transformations as a batch conversion using a functional JSON-to-JSON programming model. Other batch-oriented OMOP-to-FHIR conversion programs include the original Google Data Harmonization proof-of-concept project [22], CAMP FHIR [34], and FHIR-Onтоп-OMOP [35]. VACtrac [17] performed batch conversion of HL7 Immunization messages rather than OMOP as its data source. An alternative approach, using dynamic real-time conversion during query execution, has been implemented by OMOP-on-FHIR [36,37]. Boussadi et al. created a similar dynamic FHIR conversion program using the i2b2 CDM as the underlying data source [38]; Kasthurirathne et al. used OpenMRS [39]. A batch conversion process does not incorporate new data additions or updates that occur between batch runs. However, a batch transformation, once completed, does not incur transformation overhead during query execution or data extraction. The processing overhead in dynamic translation may go unnoticed when extracting data for a single patient (e.g., mobile apps). However, when executing a query that extracts and transforms multiple FHIR resources in a large cohort as illustrated in Table 2, dynamic transformation is simply not tenable.
A second distinction is the choice of data transformation languages. Whistle is a template-based functional JSON-to-JSON conversion language that allows transformation functions to be combined into higher level functions. Whistle implements functions that operate on FHIR ConceptMaps to support terminology mappings. MENDS-on-FHIR created functions for US Core IG compliant Code mappings, manipulating Coding arrays, mapping Code_Systems, converting measurement units, and reformatting Date and DateTime fields into FHIR standard formats. Whistle transformations are stored in configuration-like text files rather than being embedded in program code.

4.1 Limitations

MENDS-on-FHIR limited the scope of OMOP-to-FHIR transformations to OMOP tables and fields required to meet the MENDS data requirements and conform to the US Core IG. The only exception was including local source codes as additional FHIR Coding objects when allowed by the FHIR specification. Including source values aided debugging when original provenance was needed.

4.1.1 Data model challenges

OMOP, FHIR, and ESP define data elements and allowed values differently. Thus, translating from OMOP into FHIR and then into ESP entails a field-by-field analysis to identify how a field required by ESP could be represented in FHIR and found in OMOP (backwards translation). With any data translation, mapping fidelity is a concern [40], although mapping errors may have smaller-than-anticipated impact on analytic results [41–43]. For example, OMOP associates insurance coverage over an interval of time
that is not tied to clinical events. ESP links a primary payer to each clinical encounter.

FHIR defines a Coverage Resource that directly maps to the OMOP interval-based representation. The ESP FHIR importer converts FHIR Coverage Resource intervals into an encounter-based representation using a configurable hierarchy to select a primary payer when there are overlapping coverage periods.

4.1.2 Mapping challenges

Incomplete transformations occurred when field values could not be directly aligned between OMOP and FHIR. Inferred values were used when semantically justified. Otherwise, field values were left blank, even if this decision caused validation errors.

4.1.2.1 Medications

Some mandatory FHIR data elements do not have an equivalent data value from OMOP and were inferred. For instance, the FHIR MedicationRequest.status was set to “stopped” if the OMOP Drug_exposure.stop_reason was present, and set to “unknown” otherwise. For MedicationAdminstration.status and MedicationDispense.status, if an end date existed, the status was considered “completed”, or otherwise “in-progress”.

The MedicationRequest.requester is a mandatory data element, but this information is not always present in the OMOP Drug_Exposure table. When absent, the Drug_Exposure.provider_id was used. If both were absent, the requester field was left blank. When the requester field is blank, the HL7 Validator correctly identifies the resource as being US Core IG non-conformant. Although non-conformant, these resources are still stored in the FHIR Server and are available for Bulk FHIR extracts.
FHIR medication-related resources contain a doseQuantity field to record the amount of a medication per dose. OMOP has defined methods for calculating drug dose from the medication ingredient (https://ohdsi.github.io/CommonDataModel/drug_dose.html). However, due to the complexity of calculating drug doses for multi-ingredient medications, doseQuantity in a FHIR resource is included only when the OMOP Drug_Exposure.quantity field is available. Future work is needed to properly calculate drug dosages in multi-ingredient medications.

4.1.2.2 Smoking

OMOP smoking information represents a class of clinical data where multiple OMOP rows represent answers to a survey instrument. In the HDC OMOP CDM, up to 10 rows were entered from the smoking survey. The FHIR transformer requires all information about a resource to be available in a single row. For the FHIR smoking observation resource, a SQL query was created that concatenated all responses to the smoking questionnaire in an encounter into a single "source value" string. For example, nine separate smoking responses were concatenated into a single "value" that was used to determine the correct SNOMED code in the FHIR smoking observation resource.

(CHew:No) – (CigarettePacksPerDay:<20) – (Cigarettes:No) – (Cigars:No) – (Nicotine dependence, cigarettes, uncomplicated) – (Pipes:No) – (Snuff:No) – (TobaccoUse:Yes) – (TobaccoUseInYears:+)

The combination of smoking responses generated thousands of unique combinations. While SNOMED-CT contains several dozen smoking related codes, the US Core IG
only allows six valid codes. MENDS-on-FHIR maps the concatenated strings to one of the six valid FHIR codes and also keeps the concatenated "value" in the CodableConcept.text field to retain the raw survey selections made by a patient.

4.1.3 Execution challenges

4.1.3.1 Memory

The Whistle Transformation Engine reads and transforms the entire OMOP JSON file into memory before writing the final transformed FHIR structure. Thus the execution environment requires sufficient memory to hold the OMOP JSON file plus the output FHIR Bundle resource. The Python program that creates OMOP JSON accepts a parameter, called CHUNKSIZE, that partitions the OMOP query results into separate OMOP JSON files containing exactly CHUNKSIZE number of OMOP rows. This variable is adjusted according to the memory size of each processing node instantiated in the parallel processing pipeline.

4.1.3.2 Validation

Several validation issues were identified that could not be rectified using existing OMOP data, FHIR ConceptMaps, or Whistle transformations. Table 4 lists these unresolved validation errors. Collectively, the error rate was ~1%.
Table 4. FHIR/US Core IG validation errors that could not be resolved.

<table>
<thead>
<tr>
<th>Validation issue</th>
<th>Explanation and examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error: Element cardinality</td>
<td>“MedicationRequest.requester” is a required element in US-Core. In rare cases, the OMOP PROVIDER_ID field was blank. By design, a “fake” entry was not created to meet the cardinality requirement.</td>
</tr>
<tr>
<td>Error: Code not from code system</td>
<td>A small number of valid SNOMED-CT codes were flagged as not valid by the terminology server. On manual verification, these were noticed to be US-only SNOMED-CT codes. Examples include condition and smoking related codes. Similarly, a small number of valid RxNorm codes were not recognized as RxNorm codes by the terminology service. Manual verification showed them to be influenza or remapped codes.</td>
</tr>
<tr>
<td>Error: Violations of FHIR invariant rules</td>
<td>On very rare occasions, OMOP data contained datetime values where the start date was later than the end value in the Medication.validityPeriod field. These resources were kept “as is” because this is an accurate representation of the original data, and it had no impact on the immediate use case.</td>
</tr>
<tr>
<td>Warning: Code not from value set.</td>
<td>US-Core binds the “Medication.code” element to a “Medication Clinical Drug” value set derived from RxNorm. Validation indicated RxNorm codes that did not belong to this value set. Manual examination revealed valid RxNorm codes for the package form, but the value set does not include package related codes.</td>
</tr>
<tr>
<td>Warning: No coding from the value set.</td>
<td>Validation indicated certain records did not contain any RxNorm codes when one was required. These DRUG_EXPOSURE records contained HCPCS (J1200) and OMOP RxNorm extension codes (OMOP1088103), CVX, CPT but no RxNorm code.</td>
</tr>
<tr>
<td>Warning: Label not matching from terminology server</td>
<td>The validator verifies code label text and warns if there is not an exact match with the label string in the terminology service. A few of the OMOP concept labels had variations from the original labels, such as additional spaces around hyphens. OMOP also truncates all labels at 256 characters.</td>
</tr>
<tr>
<td>Info: Unknown extensions</td>
<td>A FHIR Bundle extension was added to hold the OMOP-specific metadata found in the OMOP CDM_SOURCE table. This extension was correctly flagged as an unknown extension.</td>
</tr>
<tr>
<td>Info: Unknown terminologies</td>
<td>Terminologies not known to the terminology server but that are still assigned URLs by HL7 are present in OMOP source values and source codes. The data elements holding these codes could not be verified</td>
</tr>
<tr>
<td>Validation issue</td>
<td>Explanation and examples</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>code systems</td>
<td>because the code system is not available at the terminology server. Examples are HCPCS, OMOP RxNorm extension, and CPT.</td>
</tr>
</tbody>
</table>

One additional validation challenge involved the inability to detect very low frequency errors using small test sets during validation testing (10,000 resources per resource type). Low frequency errors were detected only at run-time when the full data set was processed. Thus, resources that passed validation testing still had rare run-time errors.

4.2 Future Work

MENDS-on-FHIR limits the scope of FHIR resources to include only those required by the MENDS project and the FHIR/US Core IG. The OMOP CDM contains clinical and administrative data across a broad range of data domains, such as clinical procedures, devices and notes, that could create more FHIR resources.

Even within the included domains, the OMOP CDM has many data elements that MENDS-on-FHIR does not use. For example, the OMOP drug_exposure table includes data on patient-informed medications, which could be used to create FHIR MedicationStatement resources. Another opportunity for future expansion is immunization records. FHIR specifies immunization data coded in the CVX CodeSystem, but OMOP allows immunizations to also be coded using the RxNorm CodeSystem. The current Immunization Whistle transformation template only includes CVX records. Mapping RxNORM immunization records into CVX is possible with the existing OMOP Concept_Relationship table, but was not done with the current immunization transformation template.
5 CONCLUSION

The MENDS-on-FHIR pipeline makes two related but distinct contributions:

- Replacing a CSV-based data import with US Core IG compliant FHIR resources and Bulk FHIR data access demonstrates the viability of using existing FHIR standards to support a national chronic disease public health surveillance use case.
- Transforming the OMOP research data warehouse into US Core IG compliant FHIR resources expands standards-based data access methods to research data.

Both contributions add to the growing landscape of interoperable data exchange using FHIR-based standards. Using Bulk FHIR as a standards-based data source for population-level surveillance could greatly expand the reach of public health use cases as certified EHR systems meet the 21st Century Cures Act requirements. Linking a FHIR-based interface to an EHR could also improve data timeliness. One limitation of current Bulk FHIR interfaces is the absence of incremental data extracts, which includes only data elements added or revised since a previous extract request. However, as the Bulk FHIR standard and implementations mature, incremental data extractions may be possible.

The OHDSI community has established practices that enable data sharing across OMOP sites using OMOP-specific tools. Enabling access to OMOP data via FHIR resources expands data access options for OMOP data use in broader settings. For example, tools for executing and visualizing population-specific clinical quality measures
using FHIR resources is an area of active development that could leverage OMOP data via a Bulk FHIR interface. Given the high level of innovation and commercial activities using FHIR-based data access, providing FHIR access to OMOP data increases an institution’s return-on-investment in implementing and maintaining this international RDW data asset.

6 ACKNOWLEDGMENTS

The authors acknowledge the contribution of MENDS partner sites and project team that participated in the creation of the MENDS data network (https://chronicdisease.org/page/MENDSinfo/).

The authors also acknowledge the open-source contribution by the Google Healthcare Data Harmonization proof of concept project [22], which created the Whistle transformation engine and example templates.

HL7®, and FHIR® are the registered trademarks of Health Level Seven International and use of these trademarks does not constitute an endorsement by HL7.

7 STATEMENT OF AUTHORS CONTRIBUTIONS

SE, JA, MH, MGK, NM, BZ, and AS developed the software and GitHub site. SE, MGK, AS, KHH, SLJ, and AKM created the initial draft manuscript. IMB, MH, EMK, JYM, and BZ provided additional input to subsequent manuscript versions. All co-authors approved the final manuscript prior to submission.
<table>
<thead>
<tr>
<th>Author</th>
<th>ORCID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shahim Essaid</td>
<td>0000-0003-2338-255</td>
</tr>
<tr>
<td>Jeff Andre</td>
<td>0009-0007-2654-6764</td>
</tr>
<tr>
<td>Ian M Brooks</td>
<td>0000-0003-2724-936X</td>
</tr>
<tr>
<td>Katherine H Hohman</td>
<td>0000-0003-1552-4010</td>
</tr>
<tr>
<td>Madelyne Hull</td>
<td>0000-0002-1387-5004</td>
</tr>
<tr>
<td>Sandra L Jackson</td>
<td>0000-0003-4810-0572</td>
</tr>
<tr>
<td>Michael G Kahn</td>
<td>0000-0003-4786-6875</td>
</tr>
<tr>
<td>Emily M Kraus</td>
<td>0000-0002-2966-6936</td>
</tr>
<tr>
<td>Neha Mandadi</td>
<td>0009-0008-8317-4327</td>
</tr>
<tr>
<td>Amanda K Martinez</td>
<td>0000-0001-5549-7788</td>
</tr>
<tr>
<td>Joyce Y Mui</td>
<td>0000-0002-4952-5735</td>
</tr>
<tr>
<td>Bob Zambarano</td>
<td>0009-0003-5723-748X</td>
</tr>
<tr>
<td>Andrey Soares</td>
<td>0000-0003-4319-9411</td>
</tr>
</tbody>
</table>

8 HUMAN PARTICIPANT COMPLIANCE STATEMENT

CDC provided a written determination that MENDS operates within the public health authority pursuant to the Health Insurance Portability and Accountability Act. As a public health surveillance project, MENDS does not require institutional review board approval.

9 COMPETING INTERESTS

BZ and JA are affiliated with an organization that has funding from the Massachusetts Department of Public Health for support and development of Electronic Medical Record
Support for Public Health (ESP) and MDPHnet, which is the underlying technology of MENDS. All other authors declare no competing interests.

No copyrighted materials were used in this article.

10 FUNDING

The "Improving Chronic Disease Surveillance and Management Through the Use of Electronic Health Records/Health Information Systems" project is supported by the Centers for Disease Control and Prevention (CDC) of the U.S. Department of Health and Human Services (HHS) as part of a financial assistance award totaling $2,500,000 with 100 percent funded by CDC/HHS. Disclaimer: The contents are those of the authors and do not necessarily represent the official views of, nor an endorsement, by CDC/HHS, or the U.S. Government.

Additional funding from “A phenomics-first resource for interpretation of variants” project, supported by the National Human Genome Research Institute (5RM1HG010860-03: PI: Melissa Haendel).

Institutional funding was provided by Health Data Compass and the Chief Research Informatics Office from the University of Colorado Anschutz Medical Campus.

Andrey Soares was partially funded by the Harvard/STSI/NIH All of Us Program (Project #U24OD023716), project title: Technology to Empower Changes in Health (TECH) Network Participant Technologies Center – Sync for Science (S4S).
11 REFERENCES

https://doi.org/10.13063/2327-9214.1295.

