Period2-mediated downregulation of ERK/MAPK phosphorylation in nasopharyngeal carcinoma

Zhijuan Zhang1¶, Zheng Ma1¶, Jing Kang1, Jing Yang1, Qianru Xu2, Xinran Niu2, Xiaoya Luo2, Jingyuan Wang3, Hailiang Li4*, Li Hou1*

1Department of Otolaryngology, General Hospital of Ningxia Medical University, Yinchuan, China;
2School of Clinical Medicine, Ningxia Medical University, Yinchuan, China;
3School of Clinical Medicine, Hainan Medical College, Hainan, China;
4Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, China;
*Corresponding author

Name: Hailiang Li; E-mail: hailiang1995@163.com

Name: Li Hou; E-mail: hlahl99@sina.com

¶ These authors contributed equally to this work

Abstract

Purpose: Period2 (PER2) is associated with the occurrence and development of nasopharyngeal carcinoma (NPC); however, its mechanism(s) of action underlying NPC carcinogenesis remains unclear.
Method: In this study, differentially expressed proteins were identified via proteomics. The cells were infected with Lentivirus and divided into two groups: normal control group (Control) and PER2 overexpression Lentivirus-infected group (PER2-OE). Western blot was used to detect ERK and p-ERK expression in the two groups. Immunohistochemistry was used to further detect PER2 and p-ERK expression in human NPC samples, and the correlations between PER2, p-ERK and clinical NPC characteristics were analysed. Result: Statistical analysis revealed that MAPK3 (ERK) was among the top 20 differentially expressed proteins, PER2 overexpression and control samples were significantly different (P<0.05). The western blot results showed that PER2 overexpression downregulated p-ERK protein expression. Significant differences (P < 0.05) were observed in the proportions of cells which expressed PER2 and p-ERK between NPC tissues and normal nasopharyngeal mucosa samples.

Conclusion: Overexpression of PER2 downregulated the expression of p-ERK. In NPC tissues, PER2 protein was expressed at low levels, whereas p-ERK protein was highly expressed, and these trends are closely related to the occurrence and development of NPC.

Keywords: Nasopharyngeal carcinoma, Period 2, Circadian rhythm, ERK/MAPK signal path

Introduction
Nasopharyngeal carcinoma (NPC) is a malignant tumour of the head and neck that originates from the nasopharyngeal mucosa and is typically found in the nasopharyngeal crypts. Non-keratinised squamous cell carcinoma accounts for >95% of all pathologically typed carcinomas (1, 2). As these malignancies typically do not manifest clinically in the early stages, most patients are diagnosed at an advanced stage (3). Radiotherapy and chemotherapy are the preferred treatments for NPC. Recently, it has been shown that circadian clock genes are related to the occurrence and development of tumours and their sensitivity to anticancer drugs and radiation (4-6). Period2 (PER2), a core circadian clock gene, plays a significant tumour-suppressive role in most cancer cells and is related to proliferation, invasion, metastasis, cell cycle distribution, apoptosis, DNA damage and repair, transcriptional reprogramming, and anticancer drug and/or radiation sensitivity (7-11). PER2 downregulation increases the radiation resistance of cells and E1A- and RAS-driven oncogenic transformation (12). Circadian clock genes (PERs) are reportedly associated with NPC prognosis (13); however, the role(s) of PER2 in NPC has not been reported. In our previous study (14), we used qPCR to screen the expression of biological rhythm genes including PER1, PER2, PER3, BMAL1, CLOCK, CK1, TIMLESS, and CRY2 in NPC tissues. The results showed that PER2 expression differed the most between groups. PER2 expression was lower in NPC cell lines than in normal nasopharyngeal...
mucosa. By constructing a *PER2*-overexpressing NPC cell line, we further found that *PER2* overexpression could inhibit the proliferation, migration, and invasion of NPC, as well as its tumorigenicity in nude mice. *PER2* expression inhibits cell cycle progression in NPC cells and promotes apoptosis. *PER2* acts as a tumour suppressor in NPC. Therefore, the purpose of this study was to further explore the molecular mechanisms through which *PER2* regulates the biological behaviour of NPC, thereby providing novel insights into the clinical treatment of NPC to optimise antitumor treatments and improve the quality of life for patients with NPC.

Materials and methods

Materials

Cell line

CNE2, a human NPC cell line, was purchased from Shanghai Zhongqiao Xinzhou Biotechnology Co., Ltd.

PER2-overexpressing lentivirus

The *PER2*-overexpressing lentivirus used in this experiment was purchased from Shanghai Jikai Biological Company.

Clinical samples

Paraffin-embedded specimens of 66 NPC tissues and 29 nasopharyngeal mucosa tissues collected and stored at the General Hospital of Ningxia Medical University between January 2016 and November 2018.
were used in this study (The data was accessed on May 15, 2022). None of the patients had a history of malignant disease or an additional primary tumour and had not received radiotherapy, chemotherapy, or surgical treatments. Histopathological analyses confirmed that the tumour tissue specimens were nasopharyngeal squamous cell carcinomas. Clinical NPC staging was performed according to the UICC/AJCC staging system (8th edition, 2016).

Methods

Cell culture

The frozen cells were removed from a liquid nitrogen tank, quickly thawed in a 37 °C water bath, and centrifuged at 1000 rpm for 3-5 minutes. The supernatant was discarded, and fresh medium containing RPMI-1640 was added. Cells were resuspended and diluted based on cell density before being inoculated into a 10 cm culture flask and cultured in a 37 °C cell incubator (5% CO₂). Cell growth was observed microscopically, and the medium was changed every 2–3 days or based on cell growth.

Transfection of NPC cells with PER2-overexpressing lentivirus

NPC cells in the logarithmic growth stage were selected, and cell suspensions were prepared. The cells were counted, and the cell density was adjusted to 5 × 10⁴ cells/mL in RPMI-1640 complete medium. Briefly, 1 mL of each cell suspension was inoculated into 6-well plates. Following a 24 h incubation, the fresh medium was replaced with 90 μL of the diluted
transfected lentivirus solution, which had an multiplicity of infection (MOI) value of 20. Cell morphology was observed, and the fluorescence of the transfected cells in each group was observed under an inverted fluorescence microscope to evaluate the efficiency of viral transfection.

Cells were infected with Lentivirus and divided into two groups: normal control group (Control) and \textit{PER2}-overexpressing Lentivirus-infected group (\textit{PER2}-OE).

Proteomics

Cultured cells were subjected to protein extraction, enzymatic hydrolysis, and peptide desalting. A chromatogram of the total ion flow was obtained using the mass spectrometry signal. The screening parameters were set, and MS data were fed into Proteome Discoverer (PD version 2.1, Thermo Fisher Scientific) to screen the MS spectrum and conduct quantitative analyses on the output according to the subsequent search results and spectrum. The UniProt database (Homo sapiens, 201902, entry 20431; link: http://www.uniprot.org/uniprot/?query=taxonomy: 9606) was used for analysis.

Western blot

ERK and p-ERK protein expression was detected in the two groups. Western blotting was performed according to the manufacturer’s instructions. Total proteins from cells in each group were extracted, and their concentrations were determined. The proteins were subjected to
polyacrylamide gel electrophoresis (SDS-PAGE), membrane transfer, immune reactions, and exposure. The films were scanned, and the optical density of the target band was analysed using a gel image processing system (Gel-Pro-Analyzer software).

Immunohistochemistry

The standard SP method was used for immunohistochemical detection. The stained tissue sections were independently reviewed and scored by two experienced pathologists. Five high-power mirror fields were randomly selected from each slice to obtain the results. The staining intensity was categorised as brown (grade 3), yellow (grade 2), light yellow (grade 1), and unstained (grade 0) and scored according to the percentage of positively stained cells: ≤5% (0 points), 6%–25% (1 point), 26%–50% (2 points), and ≥51% (3 points). The score for each specimen was calculated by multiplying the staining intensity grading score by the staining degree score. A score of 0–2 was considered negative for protein expression, whereas a score >2 was considered positive.

Statistical analyses

SPSS V22.0 (IBM, USA) statistical analysis software was used. Data are presented as the mean ± standard deviation, and Student’s t-tests were used to compare results between groups. Chi-square tests were used for analysis of variance. One-way analysis of variance (ANOVA) was also used to compare data between groups. P ≤ 0.05 was considered statistically significant.
Results

PER2 downregulates ERK/MAPK phosphorylation in NPC cell lines.

Based on our proteomic analysis, 174 genes were differentially expressed between the PER2-overexpressing and control groups, of which 140 were upregulated and 34 were downregulated (Fig 1). The top 20 differentially expressed proteins included MAPK3 (ERK), an important molecule in the MAPK signalling pathway, which had a 4-fold difference in expression between the PER2-overexpressing and control groups (P < 0.05) (Table 1, Fig 2). Further validation experiments (via WB) of ERK and p-ERK expression between the two groups showed no significant changes in ERK levels; however, p-ERK protein expression levels were downregulated. The results showed that overexpression of PER2 downregulated the expression of p-ERK (Fig 3).

Table 1 MAPK3 expression in PER2 overexpression group and control group

<table>
<thead>
<tr>
<th>Protein name</th>
<th>log2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPK3</td>
<td>2.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

PER2 and p-ERK expression in human NPC and its
clinical correlations

To further understand the role of PER2 and p-ERK in NPC tissues, 66 NPC tissues and 29 normal nasopharyngeal mucosa paraffin specimens were selected for immunohistochemical detection. A significant difference was observed in the positive expression rates of PER2 in NPC tissues (15.15%, 10/66) when compared to normal nasopharyngeal mucosa (89.66%, 26/29) \(^{(P < 0.05)}\) (Table 2). PER2 protein was mostly localised in the nucleus (followed by the cytoplasm) in NPC tissues and normal nasopharyngeal mucosa. Yellow or brownish granules were observed in lymphocytes and mucosal epithelial cells of the nasopharyngeal mucosa (Fig 4A). In NPC tissues with downregulated PER2 protein expression, only some lymphocytes were positive for PER2 expression (Fig 4B). In NPC tissues positive for PER2 expression, lymphocytes and cancer cells were both positive for PER2 expression (Fig 4C). Further analyses were conducted to determine the correlation between PER2 expression in the pathological specimens and the clinical characteristics of patients with NPC (Table 3). No differences were observed in the rate of PER2 protein expression positivity in terms of age, sex, or clinical NPC stage \((P > 0.05)\). However, PER2 expression was correlated with tumour T stage. The positivity rate of PER2 expression decreased with an increase in the tumour T stage. The PER2 positivity rate was significantly higher \((P < 0.05)\) in T1.
2 patients (45.45%) than in T3-4 patients (9.09%).

Table 2 Expression of PER2 protein in nasopharyngeal carcinoma and asopharyngeal mucosa

| PER2 | | | P |
|------------|------|------|--|-------|
| + | | | - |
| Nasopharyngeal carcinoma | 10(15.15%) | 56(84.85%) | 0.000 |
| Nasopharyngeal mucosa | 26(89.66%) | 3(10.34%) |

Table 3 Expression of PER2 protein in nasopharyngeal carcinoma and its clinical correlation

| PER2 | | | P |
|------------|------|------|--|-------|
| + | | | - |
| Age | | | |
| ≤50 | 3(9.68%) | 28(90.32%) | 0.410 |
| >50 | 7(20.00%) | 28(80.00%) |
| Gender | | | |
| male | 9(19.15%) | 38(80.85%) | 0.296 |
| female | 1(5.26%) | 18(94.74%) |
The positive expression rate of p-ERK protein in nasopharyngeal carcinoma tissues was 83.33% (55/66) and that in the nasopharyngeal mucosa was 24.14% (7/29), the both have significant difference (P < 0.05). (Table 4). In nasopharyngeal carcinoma and nasopharyngeal mucosa, the p-ERK protein is mainly expressed in the cytoplasm. Yellow or tan granules were observed in mucosal epithelial cells of the nasopharynx (Fig 5A). P-

<table>
<thead>
<tr>
<th></th>
<th>T1-2</th>
<th>T3-4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1-2</td>
<td>5(45.45%)</td>
<td>6(54.55%)</td>
<td>0.009</td>
</tr>
<tr>
<td>T3-4</td>
<td>5(9.09%)</td>
<td>50(90.91%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>N0</th>
<th>N1-3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>0(0.00%)</td>
<td>4(100.00%)</td>
<td>0.510</td>
</tr>
<tr>
<td>N1-3</td>
<td>10(16.13%)</td>
<td>52(83.87%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>M0</th>
<th>M1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>10(15.87%)</td>
<td>53(84.13%)</td>
<td>0.606</td>
</tr>
<tr>
<td>M1</td>
<td>0(0.00%)</td>
<td>3(84.13%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>I+II</th>
<th>III +IV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+II</td>
<td>1(50.00%)</td>
<td>1(50.00%)</td>
<td>0.282</td>
</tr>
<tr>
<td>III +IV</td>
<td>9(14.06%)</td>
<td>55(85.94%)</td>
<td></td>
</tr>
</tbody>
</table>
ERK was negatively expressed in nasopharyngeal carcinomas (Fig 5B); however, positive expression of p-ERK in cancer cells was observed in nasopharyngeal carcinoma tissues with positive expression of the p-ERK protein (Fig 5C). Further analysis of the correlation between the expression levels of p-ERK protein in the pathological specimens and the clinical features of patients with nasopharyngeal carcinoma was performed (Table 5). There was no significant difference between the expression levels of p-ERK protein based on age, sex, and clinical stage of patients (P > 0.05); however, the positive expression of p-ERK protein increased with the increase in the N and M stages of tumors. The positive rate of N1-3 patients (83.87%) was higher than that of N0 patients (75.00%), whereas the positive rate of M1 patients (100.00%) was higher than that of M0 patients (82.54%). The relationship between the expression levels of PER2 and p-ERK in nasopharyngeal carcinoma tissues was also analyzed. Among the p-ERK-positive cases, nine were positive for the PER2 protein, and one case was negative for the p-ERK protein. Thus, the positive rate of PER2 protein expression in p-ERK-positive tumor tissues was low. The paired chi-square test showed a statistically significant difference between the expression levels of PER2 and p-ERK proteins in nasopharyngeal carcinoma tissues (P < 0.05) (Table 6).
<table>
<thead>
<tr>
<th></th>
<th>p-ERK</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasopharyngeal</td>
<td>55(83.33%)</td>
<td>11(16.67%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasopharyngeal</td>
<td>7(24.14%)</td>
<td>22(75.86%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mucosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Expression of p-ERK protein in nasopharyngeal carcinoma and its clinical correlation

<table>
<thead>
<tr>
<th></th>
<th>p-ERK</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤50</td>
<td>27(87.10%)</td>
<td>4(12.90%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>50</td>
<td>28(80.00%)</td>
<td>7(20.00%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>39(82.98%)</td>
<td>8(17.02%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>16(84.21%)</td>
<td>3(15.79%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{1-2}</td>
<td>10(90.91%)</td>
<td>1(9.09%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{3-4}</td>
<td>45(81.82%)</td>
<td>10(18.18%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
N stage

\[\begin{array}{ccc}
N_0 & 3(75.00\%) & 1(25.00\%) \\
N_{1-3} & 52(83.87\%) & 10(16.13\%) \\
\end{array}\]

M stage

\[\begin{array}{ccc}
M_0 & 52(82.54\%) & 11(17.46\%) \\
M_1 & 3(100.00\%) & 0(0.00\%) \\
\end{array}\]

Clinical stages

\[\begin{array}{ccc}
I+II & 1(50.00\%) & 1(50.00\%) \\
III+IV & 54(84.38\%) & 10(15.63\%) \\
\end{array}\]

\(P = 0.308\)

Table 6 Relationship between PER2 protein and p-ERK protein expression in nasopharyngeal carcinoma

<table>
<thead>
<tr>
<th>p-ERK</th>
<th>PER2</th>
<th>+</th>
<th>-</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>9</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>46</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Discussion
The occurrence and progression of NPC are caused by complex genomic interactions between the environment, Epstein-Barr virus, nasopharyngeal epithelial cells, immune cells, stroma, and the host (15). Recent studies have provide novel insights into the progression of NPC. p16 inactivation and cyclin D1 overexpression cause genomic changes, promote cell growth, survival, and immune escape, while activating oncogenes such as MYC. In NPC cells, several signalling pathways, including the p53, EGFR-PI3K-Akt-Mtor, NOTCH, Wnt/β-catenin, and DNA damage repair pathways, are affected (16, 17). However, interventions targeting a specific cellular signalling pathway cannot provide sufficient information about the pathogenesis and treatment of NPC. Presently, the treatment efficacy of NPC is poor, particularly in advanced patients, and the side effects of treatment severely affect patient quality of life. Therefore, further elucidation of the mechanisms underlying NPC occurrence, progression, and recurrence and investigations of biomarkers that can predict the prognosis and treatment response of patients with NPC are of great significance to further improve the efficacy of radiotherapy and chemotherapy, while reducing the adverse effects of treatment.

Recent studies have confirmed that circadian clock genes are related to the occurrence and development of various tumours, as well as the sensitivity of tumour cells to anticancer drugs or radiation. Several
physiological activities, such as sleep, hormone levels, immunity, and metabolism, are regulated by biological rhythms (18). Hence, biological rhythm dysregulation may lead to abnormal cell proliferation, cell resistance to apoptosis, and increased gene mutation rates, which may induce tumorigenesis (19). Further studies have shown that changes in biological rhythms are closely related to the occurrence of thyroid, breast, prostate, colorectal, liver, lung, and other cancers (20-23). At the mammalian cell level, the circadian rhythm system is a transcriptional translation feedback loop based on the oscillatory compilation of circadian clock gene expression (24, 25) and involves 14 core circadian clock genes as well as various circadian clock control genes. PER2 is a negative regulator of the biological clock gene BAML1 (26) and is primarily expressed in the brain and external nervous system (27). It is also an important negative feedback factor (28) that strictly regulates feedback mechanisms, controls cell rhythms, and maintains normal physiological function and metabolism in the human body. Studies have shown that PER2 dysregulation is related to the occurrence, development, treatment, and prognosis of various tumours (29). In vitro studies in lung, breast, pancreatic, and osteosarcoma cancers, as well as in LLC, EMT6, MG63, Panc1, and Aspc1 cells, have demonstrated significant increases in tumour cell apoptosis under PER2 overexpression; however, cell proliferation and metastasis were significantly reduced (30-32).
squamous cell carcinomas confirmed that PER2 dysregulation was related to prognosis and chemotherapy sensitivity (33). In glioma cells, PER2 inhibits ID3 expression through the PTEN/AKT/Smad5 axis, thereby further inhibiting the proliferation of glioma cells. PER2 is dysregulated, resulting in increased ID3 expression, which is positively correlated with WHO grade and poorer prognoses(34). PER2 can also act on various key checkpoints in the cell cycle and regulate cell proliferation and apoptosis (35). PER2 mutant mice show increased c-Myc and decreased p53 gene expression, which play vital roles in regulating the G1-S checkpoint of the cell cycle (36). Furthermore, studies have shown that expression levels of PER gene family members can be used as prognostic markers for head and neck squamous cell carcinomas (37). However, the mechanisms that govern the relationship between PER2 and NPC development have not been reported previously.

Earlier in our research, we found that PER2 overexpression could inhibit the proliferation, migration, and invasion of NPC cells, as well as their tumorigenicity in nude mice(14). PER2 overexpression also inhibited cell cycle progression in NPC cells, while promoting apoptosis. Thus, it was suggested that PER2 acts as a tumour suppressor in NPC. In this study, we further studied the proteomics of NPC cell lines by overexpressing PER2. PER2 overexpression downregulated ERK phosphorylation. Studies have shown that ERK and p38MAPK, members of the MAPK family, are
involved in cell proliferation, differentiation, migration, ageing, apoptosis, and other processes in various tumours (38-40). The classical MAPK activation pathway activates GTP proteins (RAS) via exogenous stimulation. MAPK kinase is phosphorylated by a cascade that ultimately activates ERK. The activated ERK protein then enters the nucleus and activates nuclear transcription factors. Throughout the entire cascade activation process, ERK is regulated by other factors such as TGF and Smad5 (41). The ERK/MAPK pathway primarily regulates cell differentiation, proliferation, and apoptosis by regulating activities including cell cycle progression, cell survival, and apoptosis-related proteins downstream of this pathway. Abnormal activation of this pathway is closely related to the occurrence and development of various tumours, such as NPC and liver cancer (42).

Studies have also shown that PER2 plays an important role in the post-translational modification of various proteins. PER2 is involved in the ubiquitination of p53 and hypoxia-inducible factor 1, thereby affecting their degradation. PER2 can competitively bind to ubiquitinated enzyme sites on p53 and other proteins, inhibiting the binding of ubiquitinated enzymes such as MDM2 to p53 and maintaining the stability of p53 (43, 44). Few studies have investigated the effects of PER2 phosphorylation on downstream proteins. p38 phosphorylation rates vary rhythmically in gliomas. When the biological rhythm is disturbed, phosphorylation is
disrupted, and high expression is observed, which may correlate with the invasiveness of tumour cells (45).

Further analysis of PER2 and p-ERK expression levels in NPC tissues and normal nasopharyngeal mucosa samples revealed low PER2 expression in NPC tissues and high p-ERK expression. The relationships between PER2, p-ERK, and clinical characteristics of NPC patients were analysed. The results showed that PER2 expression was related to the T stage of tumours, suggesting that PER2 expression may be related to the local invasiveness of NPCs. The positivity rate of p-ERK expression increased with an increase in tumour N and M stages. Furthermore, PER2 expression was associated with p-ERK expression in NPC, suggesting that the regulation of p-ERK by PER2 may be related to the invasion and metastasis of NPC. However, this study does have limitations such as the small clinical sample size and potential biases in the experimental results. In future studies, we hope to expand the sample size and further clarify the expression characteristics and role of PER2 in NPC.

Conclusions

In conclusion, overexpression of PER2 inhibited tumor development by downregulating the phosphorylation of ERK/MAPK in NPC cells. The modulation of the ERK/MAPK signalling pathway by regulating PER2 expression may be a promising strategy for chronotherapy of NPC.
Acknowledgments

Hailiang Li and Li Hou designed the work. Zhijuan Zhang and Zheng Ma contributed to the acquisition and analysis of data and manuscript writing. Jing Kang, Jing Yang, Qianru Xu, Xinran Niu, Xiaoya Luo and Jingyuan Wang contributed to analysis and data interpretation. All authors approved the submitted version.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Ethical Approval

This study was approved by the ethics committee of the General Hospital of Ningxia Medical University (Ethics Number: KYLL-2021-1023), and all patients signed written informed consent.

References

8. Morales-Santana S, Morell S, Leon J, Carazo-Gallego A, Jimenez-

20. Zhang L, Chen Y, Chong CS, Ma X, Tong S, He X, et al. The genomic and transcriptomic landscapes of clock genes reveal the significance of circadian rhythm in the progression and immune microenvironment of...

Fig 1. Differential protein expression information
Fig 2. Heat map of top 20 differential protein between PER2 overexpression group and control.
Fig 3. The protein expression of ERK, p-ERK in PER2-OE and Control group cells. Three samples were extracted from each PER2-OE and Control groups for sample loading testing.
Fig 4. Expression of PER2 protein in nasopharyngeal carcinoma and nasopharyngeal mucosa.

A. The positive expression of PER2 protein in nasopharyngeal mucosa. B. The expression of PER2 protein was negative in nasopharyngeal carcinoma. C. The positive expression of PER2 protein in nasopharyngeal carcinoma.
Fig 5. Expression of p-ERK protein in nasopharyngeal carcinoma and nasopharyngeal mucosa.

A. The positive expression of p-ERK protein in nasopharyngeal mucosa. B. The expression of p-ERK protein was negative in nasopharyngeal carcinoma. C. The positive expression of p-ERK protein in nasopharyngeal carcinoma.