The Therapy Intensity Level scale for traumatic brain injury: clinimetric assessment on neuro-monitored patients across 52 European intensive care units

Shubhayu Bhattacharyay1,2,*, Erta Beqiri3, Patrick Zuercher4, Lindsay Wilson5, Ewout W Steyerberg6, David W Nelson7, Andrew I R Maas8,9, David K Menon1, Ari Ercole1,10, and the CENTER-TBI investigators and participants†

1Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom.
2Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
3Brain Physics Laboratory, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom.
4Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland.
5Department of Psychology, University of Stirling, Stirling, United Kingdom.
6Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
7Department of Physiology and Pharmacology, Section for Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden.
8Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium.
9Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.
10Cambridge Centre for Artificial Intelligence in Medicine, Cambridge, United Kingdom.

*Corresponding author: sb2406@cam.ac.uk (SB)
†A full list of the CENTER-TBI investigators and participants are listed after the acknowledgements.
The Therapy Intensity Level (TIL) scale and its abridged version (TIL\(^{\text{Basic}}\)) are used to record the intensity of daily management for raised intracranial pressure (ICP) after traumatic brain injury (TBI). However, it is uncertain: (1) whether TIL is valid across the wide variation in modern ICP treatment strategies, (2) if TIL performs better than its predecessors, (3) how TIL’s component therapies contribute to the overall score, and (4) whether TIL\(^{\text{Basic}}\) may capture sufficient information. We aimed to answer these questions by assessing TIL on a contemporary population of ICP-monitored TBI patients \((n=873)\) in 52 intensive care units (ICUs) across 18 European countries and Israel. From the observational, prospective Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study, we extracted first-week daily TIL scores (TIL\(_{24}\)), ICP values, physician-based impressions of aberrant ICP, clinical markers of injury severity, and six-month functional outcome scores. We evaluated the construct and criterion validity of TIL against that of its predecessors, an unweighted version of TIL, and TIL\(^{\text{Basic}}\). We calculated the median score of each TIL component therapy for each total score as well as associations between each component score and markers of injury severity. Moreover, we calculated the information coverage of TIL by TIL\(^{\text{Basic}}\), defined by the mutual information of TIL and TIL\(^{\text{Basic}}\) divided by the entropy of TIL. The statistical validity measures of TIL were significantly greater or similar to those of alternative scales, and TIL integrated the widest range of modern ICP treatments. First-week median TIL\(_{24}\) (TIL\(_{\text{median}}\)) outperformed first-week maximum TIL\(_{24}\) (TIL\(_{\text{max}}\)) in discriminating refractory intracranial hypertension (RIC) during ICU stay, and the thresholds which maximised the sum of sensitivity and specificity for RIC detection were TIL\(_{\text{median}}\geq 7.5\) (sensitivity: 81\% [95\% CI: 77–87\%], specificity: 72\% [95\% CI: 70–75\%]) and TIL\(_{\text{max}}\geq 14\) (sensitivity: 68\% [95\% CI: 62–74\%], specificity: 79\% [95\% CI: 77–81\%]). The sensitivity-specificity-optimising TIL\(_{24}\) threshold for detecting surgical ICP control was TIL\(_{24}\geq 9\) (sensitivity: 87\% [95\% CI: 83–91\%], specificity: 74\% [95\% CI: 72–76\%]). The median component scores for each TIL\(_{24}\) reflected a credible staircase approach to treatment intensity escalation, from head positioning to surgical ICP control, as well as considerable variability in the use of cerebrospinal fluid drainage and decompressive craniectomy. First-week maximum TIL\(^{\text{Basic}}\) (TIL\(^{\text{Basic}}\)_\(_{\text{max}}\)) suffered from a strong ceiling effect and could not replace TIL\(_{\text{max}}\). TIL\(^{\text{Basic}}\)_\(_{24}\) and first-week median TIL\(^{\text{Basic}}\) (TIL\(^{\text{Basic}}\)_\(_{\text{median}}\)) could be a suitable replacement for TIL\(_{24}\) and TIL\(_{\text{median}}\), respectively (up to 33\% [95\% CI: 31–35\%] information coverage). Numerical ranges were derived for categorising TIL\(_{24}\) scores into TIL\(^{\text{Basic}}\)_\(_{24}\) scores. Our results validate the TIL scale across a spectrum of ICP management and monitoring approaches and support its use as an intermediate outcome after TBI.
**Main Text**

**Introduction**

Elevated intracranial pressure (ICP) following traumatic brain injury (TBI) may impede the potential recovery of injured brain tissue and damage initially unaffected brain regions.\(^1\) Therefore, for TBI patients admitted to the intensive care unit (ICU), clinicians often monitor ICP and may apply a wide range of ICP-reducing treatments.\(^2\) The selective use of these treatments typically follows a staircase approach, in which therapeutic intensity – defined by the risk and complexity of each treatment – is incrementally escalated until adequate ICP control is achieved.\(^3\)–\(^5\) Thus, therapeutic intensity must be considered when interpreting ICP. Even if two TBI patients have comparable ICP readings, a difference in the intensity of their ICP-directed therapies likely indicates a difference in pathophysiological severity.

Several versions of the Therapy Intensity Level (TIL) scale have been developed to rate and compare the overall intensity of ICP management amongst TBI patients. TIL scales assign a relative intensity score to each ICP-targeting therapy and return either the sum or the maximum value of the scores of simultaneously applied therapies. In 1987, Maset et al. produced the original, 15-point TIL scale (TIL\(^{1987}\)) to be assessed once every four hours.\(^6\) In 2006, Shore et al. published the 38-point Paediatric Intensity Level of Therapy (PILOT) scale,\(^7\) revising TIL\(^{1987}\) to: (1) represent updated paediatric TBI management practices, (2) have a more practical, daily assessment frequency, and (3) resolve a statistical ceiling effect. In 2011, the interagency TBI Common Data Elements (CDE) scheme developed the most recent, 38-point TIL scale as well as a condensed, four-point TIL\(^{\text{(Basic)}}\) scale through expert consensus.\(^8\) The TIL scale revised PILOT to integrate additional ICP-directed therapies and to be applicable to adult TBI management. Moreover, TIL\(^{\text{(Basic)}}\) was proposed as a simple, categorical measure to use when full TIL assessment would be infeasible. Since Zuercher et al. reported the validity and reliability of TIL in a two-centre cohort (n=31) in 2016,\(^9\) the scale has become a popular research metric for quantifying ICP treatment intensity.\(^10\)–\(^13\)

However, several critical questions regarding TIL remain unanswered. It is uncertain whether the validity of TIL, reported in a relatively small population, can be generalised across the wide variation of ICP management, monitoring, and data acquisition (i.e., intermittent chart recording or high-resolution storage\(^14\)) strategies practised in contemporary intensive care.\(^11\)\(^\text{12,15,16}\) Moreover, the scoring configuration of TIL has never been tested against alternatives (e.g., TIL\(^{1987}\) and PILOT), and the relative contribution of TIL’s component therapies towards the total score is unknown. It is unclear how TIL\(^{\text{(Basic)}}\) numerically relates to TIL and if the former captures the essential information of the latter. In this work, we aimed to answer these questions by performing a comprehensive assessment of TIL on a large, contemporary population of ICP-monitored TBI patients across European ICUs.

**Materials and Methods**
**Therapy intensity level (TIL) and alternative scales**

TIL refers to the 38-point scale developed by the CDE scheme for TBI. The domain or construct (i.e., targeted concept of a scale) of TIL is the therapeutic intensity of ICP management. The TIL scale has twelve items, each representing a distinct ICP-targeting treatment from one of eight modalities, as defined in Table 1. TIL was developed by an international expert panel which discussed: (1) the relevant ICP-treatment modalities of modern intensive care, (2) the relative risk and efficacy of individual therapies to derive scores, and (3) practical and statistical limitations of previous TIL scores. In this way, TIL is a formative measurement model, in which the construct (i.e., ICP treatment intensity) is not unidimensional but rather defined by the combination of items (i.e., ICP-targeting treatments). TIL was shown to have high interrater and intrarater reliability by Zuercher *et al.* If a decompressive craniectomy was performed as a last resort for refractory intracranial hypertension, its score was included in the day of the operation and in every subsequent day of ICU stay. TIL scores can be calculated as frequently as clinically desired. For our analysis, we calculated the following TIL scores from the first seven days of ICU stay:

- **TIL$_{24}$**, the daily TIL score based on the sum of the highest scores per item per calendar day,
- **TIL$_{max}$**, the maximum TIL$_{24}$ over the first week of a patient’s ICU stay,
- **TIL$_{median}$**, the median TIL$_{24}$ over the first week of a patient’s ICU stay.

We also calculated scores from four other therapeutic intensity scales to compare with TIL scores. The 21-point, unweighted TIL (uwTIL) scale replaces each sub-item score in TIL with its ascending rank index (i.e., 1, 2, 3, …) within each item (Table 1). The four-point TIL$^{(Basic)}$ was also developed by the CDE scheme for TBI and takes the maximum score, from one to four, amongst all included sub-items over the calendar day. We adapted the 38-point PILOT$^7$ and 15-point TIL$^{(1987)}$ scales$^6$ with minor adjustments to fit the items of TIL with a daily assessment frequency. PILOT was also shown to have high interrater and intrarater reliability by Shore *et al.* For the four alternative scales, daily (i.e., uwTIL$_{24}$, TIL$^{(Basic)}$_24, PILOT$_{24}$, and TIL$^{(1987)}$_24), maximum (i.e., uwTIL$_{max}$, TIL$^{(Basic)}$_max, PILOT$_{max}$, and TIL$^{(1987)}$_max), and median (i.e., uwTIL$_{median}$, TIL$^{(Basic)}$_median, PILOT$_{median}$, and TIL$^{(1987)}$_median) scores were calculated the same way as were TIL$_{24}$, TIL$_{max}$, and TIL$_{median}$, respectively.

**Study design and populations**

Our study population was prospectively recruited for the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) core and high-resolution studies. CENTER-TBI is a longitudinal, observational cohort study (NCT02210221) involving 65 medical centres across 18 European countries and Israel. Patients were recruited between 19 December 2014 and 17 December 2017 if they met the following criteria: (1) presentation within 24 hours of a TBI, (2) clinical indication for a CT scan, and (3) no severe pre-existing neurological disorder. In accordance with
relevant laws of the European Union and the local country, ethical approval was obtained for each site, and written informed consent by the patient or legal representative was documented electronically. The list of sites, ethical committees, approval numbers, and approval dates can be found online: [https://www.center-tbi.eu/project/ethical-approval](https://www.center-tbi.eu/project/ethical-approval).

The project objectives and design of CENTER-TBI have been described in detail previously.\(^{18,19}\)

In this work, we applied the following inclusion criteria in addition to those of CENTER-TBI (Figure 1): (1) primary admission to the ICU, (2) at least 16 years old at ICU admission, (3) invasive ICP monitoring, (4) no decision to withdraw life-sustaining therapies (WLST) on the first day of ICU stay, and (5) daily assessment of TIL.

For our sub-studies evaluating the association between TIL and ICP-derived values, we created two sub-populations based on the type of ICP values available. Patients with end-hour ICP (ICP\(_{EH}\)) values, which were recorded by clinicians at the end of every other hour, constituted the TIL-ICP\(_{EH}\) sub-population. Patients with high-resolution ICP values (ICP\(_{HR}\)), which were automatically stored with monitoring software, constituted the TIL-ICP\(_{HR}\) sub-population. All patients in the TIL-ICP\(_{HR}\) sub-population were also members of the TIL-ICP\(_{EH}\) sub-population (Figure 1).

**Data collection**

Data for the CENTER-TBI study was collected through the QuesGen electronic case report form system (QuesGen Systems Inc, Burlingame, CA, USA) hosted on the International Neuroinformatics Coordinating Facility (INCF) platform (INCF, Stockholm, Sweden). All data for the validation populations, except high-resolution signals, were extracted from the CENTER-TBI core study\(^{19}\) (v3.0, ICU stratum) using Opal database software.\(^{20}\)

**ICP management data for TIL calculation**

Since TIL\(_{24}\) was found to be a reliable summary of hourly TIL,\(^9\) clinical data pertinent to the component items of TIL (i.e., ICP-guided treatments, Table 1) were recorded daily through the first week of ICU stay. We extracted all daily TIL item values for our population, and calculated TIL\(_{24}\), uwTIL\(_{24}\), TIL\(_{24}\)\(^{Basic}\), PILOT\(_{24}\), and TIL\(_{24}\)\(^{1987}\)\(_{24}\) as defined in Table 1. For patients who underwent WLST, we only extracted TIL item information from before the documented date of WLST decision.

**ICP\(_{EH}\) and related values**

End-hour ICP (ICP\(_{EH}\)), systolic blood pressure (SBP\(_{EH}\)), and diastolic blood pressure (DBP\(_{EH}\)) were recorded by clinicians every two hours for the TIL-ICP\(_{EH}\) sub-population. Mean arterial pressure (MAP\(_{EH}\)) was calculated as MAP\(_{EH}\) = (SBP\(_{EH}\) + 2DBP\(_{EH}\))/3, and cerebral perfusion pressure (CPP\(_{EH}\)) was calculated as CPP\(_{EH}\) = MAP\(_{EH}\) – ICP\(_{EH}\). From ICP\(_{EH}\) and CPP\(_{EH}\), we calculated the following values:
• ICP\textsubscript{24} or CPP\textsubscript{24}, the mean ICP or CPP value over a calendar day of ICU stay,
• ICP\textsubscript{max} or CPP\textsubscript{min}, the maximum ICP\textsubscript{24} or minimum CPP\textsubscript{24} value over the first week of a patient’s ICU stay,
• ICP\textsubscript{median} or CPP\textsubscript{median}, the median ICP\textsubscript{24} or CPP\textsubscript{24} value over the first week of a patient’s ICU stay.

\textit{ICP\textsubscript{HR} and related values}

High-resolution signals were collected using either ICM+ software (Cambridge Enterprise Ltd, Cambridge, UK; \url{http://icmplus.neurosurg.cam.ac.uk}), Moberg CNS monitor (Moberg Research Inc, Ambler, PA, USA; \url{https://www.moberg.com}), or both. Blood pressure was obtained through arterial lines connected to pressure transducers. High-resolution ICP (ICP\textsubscript{HR}) was acquired from either an intraparenchymal strain gauge probe (Codman ICP MicroSensor, Codman & Shurtleff Inc, Raynham, MA, USA), a parenchymal fibre optic pressure sensor (Camino ICP Monitor, Integra Life Sciences, Plainsboro, NJ, USA; \url{https://www.integralife.com}), or an external ventricular drain. Detailed data collection and pre-processing methods (i.e., artefact cleaning and down-sampling to ten-second averaged time series) applied to high resolution signals in our study have been described previously.\textsuperscript{21} Ten-second mean ICP (ICP\textsubscript{HR\_10sec}) and CPP (CPP\textsubscript{HR\_10sec}) time-series were retrieved for this analysis, and, from ICP\textsubscript{HR\_10sec} and CPP\textsubscript{HR\_10sec}, we calculated ICP\textsubscript{24}/CPP\textsubscript{24}, ICP\textsubscript{max}/CPP\textsubscript{min}, and ICP\textsubscript{median}/CPP\textsubscript{median} as described above.

\textit{Physician impressions}

Attending ICU physicians were asked to record their daily concerns with the patient’s ICP and CPP, separately, on a scale from one (not concerned) to ten (most concerned). Moreover, on each patient’s ICU discharge summary, physicians were asked to record whether the patient experienced refractory intracranial hypertension during his or her ICU stay. Refractory intracranial hypertension was defined as recurrent, sustained (i.e., of at least ten minutes) increases of ICP above 20 mmHg despite medical ICP management. We extracted the daily ICP/CPP concern ratings and refractory intracranial hypertension impressions which coincided with the ICU stays of our population.

\textit{Baseline characteristics, prognosis, and outcome}

We extracted baseline demographic characteristics, Marshall CT classifications,\textsuperscript{22} and Glasgow Coma Scale (GCS)\textsuperscript{23} scores from ICU admission.\textsuperscript{24} We also extracted Glasgow Outcome Scale – Extended (GOSE) functional outcome scores at six months post-injury,\textsuperscript{25} with imputation of missing values as previously described.\textsuperscript{26} Finally, we extracted ordinal functional outcome prognosis scores, calculated from a tokenised embedding of all available clinical information in the first 24 hours of ICU stay, as described previously.\textsuperscript{27}

\textit{Validation}
We appraised the validity of TIL according to recommendations of best practice from clinimetric literature.\textsuperscript{28} Based on the identified domain of TIL, we evaluated the construct and criterion validities of TIL. Our qualitative and quantitative assessments of TIL were performed against those of alternative scoring configurations (Table 1) for comparison.

\textit{Construct validity}

Construct validity is the extent to which a clinical scale matches expectations of associations with parameters within or outside the identified domain. Construct validity is further broken down into convergent validity (i.e., associations with similar constructs), discriminant validity (i.e., associations with divergent constructs), and differentiation by known groups. In this work, statistical associations between study variables were measured with:

- Spearman’s correlation coefficients ($\rho$) for static (i.e., measured once) variables,
- repeated measures correlation coefficients ($r_m$)\textsuperscript{29} – interpreted as within-individual strength of association – for longitudinal (i.e., measured over time) variables,
- linear mixed effects regression (LMER) coefficients ($\beta_{\text{LMER}}$) of daily scale scores (e.g., TIL\textsubscript{24}) when regressing ICP\textsubscript{24} or CPP\textsubscript{24} on daily scale scores and the day of ICU stay (Day\textsubscript{ICU}), accounting for inter-patient variability with random intercepts. Therefore, $\beta_{\text{LMER}}$ were interpreted as the expected difference in ICP\textsubscript{24} or CPP\textsubscript{24} per unit increase of daily scale score, independent of time since ICU admission or inter-patient variation.

For convergent validity, we expected therapeutic intensity to correlate at least mildly (i.e., $|\rho|\geq0.2$, $|r_m|\geq0.2$, $|\beta_{\text{LMER}}|>0$) with markers of injury severity (i.e., baseline GCS and baseline outcome prognoses), functional outcome (i.e., six-month GOSE), clinical concerns of ICP status, and ICP itself. Accordingly, we calculated: (1) $\rho$ values between TIL\textsubscript{max} and GCS, ordinal prognosis scores, GOSE, and ICP\textsubscript{max}, (2) $\rho$ values between TIL\textsubscript{median} and GCS, ordinal prognosis scores, GOSE, and ICP\textsubscript{median}, (3) $r_m$ values between TIL\textsubscript{24} and physician concern of ICP and ICP\textsubscript{24}, and (4) $\beta_{\text{LMER}}$ of TIL\textsubscript{24} when regressing ICP\textsubscript{24} on Day\textsubscript{ICU} and TIL\textsubscript{24} (i.e., ICP\textsubscript{24}~Day\textsubscript{ICU}+TIL\textsubscript{24}), accounting for inter-patient variability with random intercepts.

For discriminant validity, we expected therapeutic intensity to be more strongly correlated with ICP and physician concerns of ICP than with CPP and physician concerns of CPP, respectively. Even though CPP control through fluid loading or vasopressor therapy is a component modality of TIL (Table 1), we expected TIL to capture ICP management (i.e., the construct) more accurately than CPP management. We compared: (1) $\rho$ values of TIL\textsubscript{max} vs. CPP\textsubscript{min} to those of TIL\textsubscript{max} vs. ICP\textsubscript{max}, (2) $\rho$ values of TIL\textsubscript{median} vs. CPP\textsubscript{median} to those of TIL\textsubscript{median} vs. ICP\textsubscript{median}, (3) $r_m$ values of TIL\textsubscript{24} vs. CPP\textsubscript{24} to those of TIL\textsubscript{24} vs. ICP\textsubscript{24}, and (4) the $\beta_{\text{LMER}}$ of TIL\textsubscript{24} when regressing CPP\textsubscript{24}~Day\textsubscript{ICU}+TIL\textsubscript{24} to the $\beta_{\text{LMER}}$ of TIL\textsubscript{24} when regressing ICP\textsubscript{24}~Day\textsubscript{ICU}+TIL\textsubscript{24}.

For differentiation by known groups, we expected TIL\textsubscript{max} and TIL\textsubscript{median} to effectively discriminate patients who experienced refractory intracranial hypertension during ICU stay from those who did not. We calculated the area under the receiver operating
characteristic curve (AUC), which, in our case, was interpreted as the probability of a randomly selected patient with refractory intracranial hypertension having a higher TIL\textsubscript{max} or TIL\textsubscript{median} score than one without it. We also compared the AUCs of TIL\textsubscript{max} and TIL\textsubscript{median} to ICP\textsubscript{max} and ICP\textsubscript{median} and determined the sensitivity and specificity of refractory intracranial hypertension detection at each threshold of TIL\textsubscript{max} and TIL\textsubscript{median}.

**Criterion validity**

Criterion (or concurrent) validity is the degree to which there is an association between a clinical scale and other scales measuring the same construct, particularly a gold standard assessment. Since there is no extant “gold standard” for assessing ICP management intensity, we tested the concurrent criterion validity of TIL by calculating its associations with its predecessors (i.e., PILOT and TIL\textsuperscript{(1987)})\textsubscript{max}, mindful of their limitations as described above. More specifically, we calculated: (1) ρ values between TIL\textsubscript{max} and prior scale maximum scores (i.e., PILOT\textsubscript{max} and TIL\textsuperscript{(1987)}\textsubscript{max}), (2) ρ values between TIL\textsubscript{median} and prior scale median scores (i.e., PILOT\textsubscript{median} and TIL\textsuperscript{(1987)}\textsubscript{median}), and (3) \( r_m \) between TIL\textsubscript{24} and prior scale daily scores (i.e., PILOT\textsubscript{24} and TIL\textsuperscript{(1987)}\textsubscript{24}).

**Component item analysis**

We evaluated inter-item (i.e., inter-treatment) and adjusted item-total associations of TIL\textsubscript{24}, uwTIL\textsubscript{24}, PILOT\textsubscript{24}, and TIL\textsuperscript{(1987)}\textsubscript{24} by calculating \( r_m \) values. Item-total correlations were adjusted by subtracting the tested item score from the total score prior to calculating the correlation. We measured Cronbach’s alpha (\( \alpha \)) to assess internal reliability amongst scale items at each day of ICU stay. Moreover, we calculated the median score contribution of each item per total TIL\textsubscript{24} score. The association between each TIL\textsubscript{24} item score and ICP\textsubscript{24}, CPP\textsubscript{24}, physician concern of ICP, and physician concern of CPP was calculated with \( r_m \) values. Finally, we trained LMER models regressing ICP\textsubscript{24} and CPP\textsubscript{24} on all TIL items (with categorical dummy encoding) and Day\textsubscript{ICU} concurrently. The \( \beta_{\text{LMER}} \) values from these models were interpreted as the average change in ICP\textsubscript{24} or CPP\textsubscript{24} associated with each treatment when accounting for all other ICP-guided treatments, time since ICU admission, and inter-patient variability with random intercepts.

**TIL\textsuperscript{(Basic)} information coverage**

We examined the distributions of TIL\textsuperscript{(Basic)}\textsubscript{24} per TIL\textsubscript{24} and TIL\textsubscript{24} per TIL\textsuperscript{(Basic)}\textsubscript{24} to derive thresholds for categorising TIL\textsubscript{24} into TIL\textsuperscript{(Basic)}\textsubscript{24}. Moreover, we calculated the information coverage (IC) of TIL\textsuperscript{(Basic)} by dividing the mutual information (MI) of TIL\textsuperscript{(Basic)} and TIL by the entropy of TIL. IC was calculated with TIL\textsuperscript{(Basic)}\textsubscript{24} and TIL\textsubscript{24} for days one through seven of ICU stay, with TIL\textsuperscript{(Basic)}\textsubscript{max} and TIL\textsubscript{max}, and with TIL\textsuperscript{(Basic)}\textsubscript{median} and TIL\textsubscript{median}.

**Statistical analysis**
Multiple imputation of missing values

Five of the static study variables had missing values for some of the patients in our study: GCS, GOSE, baseline prognosis scores, Marshall CT classifications, and refractory intracranial hypertension status. We assessed the patterns of missingness (Supplementary Figure S1) and multiply imputed ($m=100$) these variables with independent, stochastic predictive mean matching functions using the mice package\(^{30}\) (v3.9.0). We assumed these variables to be missing-at-random (MAR) (as previously reported on CENTER-TBI data\(^ {31}\)) and supported this assumption by training imputation models on all study measures as well as correlated auxiliary variables (e.g., raised ICP during ICU stay).

For daily longitudinal study variables, we considered a value to be missing if the patient was still in the ICU and WLST had not been decided on or before that day. We assessed the longitudinal patterns of missingness (Supplementary Figure S2) and multiply imputed ($m=100$) these variables with the multivariate, time-series algorithm from the Amelia II package\(^ {32}\) (v1.7.6) over the first week of ICU stay. The algorithm exploits both between-variable and within-variable correlation structures over time to stochastically impute missing time series values in independently trained runs. We validated the MAR assumption by identifying characteristics significantly associated with longitudinal variable missingness (Supplementary Table S1) and included auxiliary information associated with value missingness (e.g., reasons for stopping ICP monitoring) in the imputation model.

Statistical inference

We calculated 95% confidence intervals (CI) for $\rho$, $r_m$, $\beta_{LMER}$, AUC, sensitivity, specificity, $\alpha$, and IC values using bootstrapping with 1,000 resamples of unique patients. For each resample, one of the 100 missing value imputations was randomly chosen. Therefore, confidence intervals represented the uncertainty due to patient resampling and missing value imputation.

Code

All statistical analyses were performed in Python (v3.8.2), and all visualisations were created in R (v4.2.3). All scripts used in this study are publicly available on GitHub: https://github.com/sbhattacharyay/CENTER-TBI_TIL.

Results

Study population

Of the 4,509 patients available for analysis in the CENTER-TBI core study, 873 patients from 52 ICUs met the additional inclusion criteria of this work. Amongst them, 837
constituted the TIL-ICP\textsubscript{EH} sub-population and 259 constituted the TIL-ICP\textsubscript{HR} sub-population (Figure 1). Summary characteristics of the overall population as well as those of the TIL-ICP\textsubscript{EH} and TIL-ICP\textsubscript{HR} sub-populations are detailed in Table 2. Apart from two of the prognosis scores pertaining to the probability of returning to pre-injury life roles (i.e., Pr(GOSE>5) and Pr(GOSE>6)), none of the tested characteristics were significantly different between patients in the TIL-ICP\textsubscript{HR} sub-population and those outside of it (Table 2).

The median ICU stay duration of our population was 14 days (IQR: 7.8–23 days), and 83\% (n=726) stayed through at least seven calendar days. At each day of ICU stay, less than 2.4\% of the expected TIL scores were missing (Supplementary Figure S2). Each TIL component item (Table 1) is represented by at least 17\% (n=147, intracranial surgery) and each sub-item is represented by at least 4.9\% (n=43, high-dose mannitol) of the population (Supplementary Table S2). The distributions of TIL\textsubscript{max}, TIL\textsubscript{median}, and TIL\textsubscript{24}, juxtaposed against the scores of alternative scales (Table 1), are displayed in Figure 2. The distributions of TIL and PILOT were visually similar, and TIL\textsubscript{(Basic)}\textsubscript{max} had a strong ceiling effect (i.e., 57\% of the population had the maximum score). Whilst there was no significant difference in TIL\textsubscript{24} distribution over the first seven days, most patients had their highest TIL\textsubscript{24} (i.e., TIL\textsubscript{max}) soon after ICU admission (median: day two, IQR: days one–three). The Spearman’s rank correlation coefficient (\rho) between TIL\textsubscript{max} and TIL\textsubscript{median} was 0.80 (95\% CI: 0.77–0.82), and the median TIL\textsubscript{median}.TIL\textsubscript{max} ratio was 0.65 (IQR: 0.45–0.80).

Validation of TIL

The 95\% CIs of \rho values, repeated measures correlation coefficients (\textit{r}_m), and linear mixed effect regression coefficients (\beta\textsubscript{LMER}) of TIL with other study measures are visualised in Figure 3. Both TIL\textsubscript{max} and TIL\textsubscript{median} had mildly negative correlations (-0.26<\rho\textsubscript{mean}<-0.19) with baseline GCS, six-month GOSE, and functional outcome prognoses (Figure 3A–B). The within-individual association of TIL\textsubscript{24} with physician concerns of ICP was moderately positive (\textit{r}_m=0.35 [95\% CI: 0.31–0.38]) and significantly higher than that of TIL\textsubscript{(Basic)}\textsubscript{24} (Figure 3C). The association between ICP\textsubscript{median} and TIL\textsubscript{median} was moderately positive (0.35<\rho\textsubscript{mean}<-0.45) with both ICP\textsubscript{EH} and ICP\textsubscript{HR} values, and the association between ICP\textsubscript{max} and TIL\textsubscript{max} was moderately positive (\rho=0.41 [95\% CI: 0.33–0.46]) with ICP\textsubscript{EH} values. The ICP\textsubscript{max} vs. TIL\textsubscript{max} correlation was not significant (\rho=0.01 [95\% CI: -0.16–0.17]) with ICP\textsubscript{HR} values; however, without imputing missing ICP\textsubscript{HR} values, the \rho was 0.43 (95\% CI: 0.35–0.50). This suggests that the longitudinal missingness of ICP\textsubscript{HR} (Supplementary Figure S2) for our sample size made the ICP\textsubscript{max} estimation significantly imprecise. Moreover, the within-individual association with ICP\textsubscript{24} was either weak or not significant for any daily scale score according to \textit{r}_m (Figure 3C) and \beta\textsubscript{LMER} (Figure 3D) values. On average, a single point increase in TIL\textsubscript{24} was associated with a 0.22 (95\% CI: 0.15–0.30) mmHg increase in daily mean ICP\textsubscript{EH} and a 0.19 (95\% CI: -0.06–0.43) mmHg increase in daily mean ICP\textsubscript{HR}. These results mostly affirm the convergent validity of TIL but highlight the broad intra-patient variability between ICP and therapeutic intensity. From the distribution of ICP\textsubscript{24} values at each TIL\textsubscript{24} score (Figure
4A), we observed both considerable ICP$_{24}$ overlap across each TIL$_{24}$ score and an overall positive relationship between TIL$_{24}$ and ICP$_{24}$, particularly for TIL$_{24}$$\geq$8.

The correlation between TIL and both prior scales (i.e., PILOT and TIL$^{(1987)}$) was positively strong for maximum, median, and daily scores (Supplementary Figure S3), establishing the criterion validity of TIL. According to 95% CIs, the association of TIL with prior scales was stronger than that of uwTIL or TIL$^{(Basic)}$ (Supplementary Figure S3).

According to $\rho$, $r_{rm}$, and $\beta_{LMER}$ values (Figure 3), the associations of TIL with CPP and of TIL with physician concerns of CPP were weaker than or not significantly different from the corresponding associations with ICP. Moreover, the trend of CPP$_{24}$ distributions over different TIL$_{24}$ scores is not as visually apparent as that of ICP$_{24}$ distributions over different TIL$_{24}$ scores (Figure 4B). These results support the discriminant validity of TIL.

In our population, 157 patients (18% of 864 assessed) were reported to experience refractory intracranial hypertension during ICU stay. TIL$_{max}$ correctly discriminated these patients from the others 81% (95% CI: 78–84%) of the time (Figure 5A), and TIL$_{median}$ did so 83% (95% CI: 80–86%) of the time (Figure 5B). This performance of TIL was significantly greater than or similar to that of all alternative scales (Figure 5A–B). Additionally, TIL$_{median}$ had significantly greater discrimination performance than ICP$_{max}$ (Figure 5C) and ICP$_{median}$ (Figure 5D), respectively. The sensitivity and specificity of refractory intracranial hypertension detection at each threshold of TIL$_{max}$, TIL$_{median}$, TIL$_{max}^{(Basic)}$, and TIL$_{median}^{(Basic)}$ are listed in Supplementary Table S3 and visualised in Figure 5C–D. The thresholds which maximised the sum of sensitivity and specificity were TIL$_{max}$$\geq$14 (sensitivity: 68% [95% CI: 62–74%], specificity: 79% [95% CI: 77–81%]) and TIL$_{median}$$\geq$7.5 (sensitivity: 81% [95% CI: 77–87%], specificity: 72% [95% CI: 70–75%]) (Table 3).

**TIL component items**

Whilst there was wide variation in item combinations per TIL$_{24}$ score (i.e., sum of median scores was often under diagonal line in Figure 6A), the average order of therapeutic escalation was fairly consistent: position, sedation, CPP management, ventilatory management, neuromuscular blockade, hyperosmolar therapy, temperature control, and then surgery for refractory ICP. Surgical control of ICP occurred in over 50% of reported cases at each TIL$_{24}$ above 18 (Figure 6A), but the threshold which maximised the sum of sensitivity and specificity in detecting surgical ICP control was TIL$_{24}$$\geq$9 (Table 3, performance at each threshold is listed in Supplementary Table S4). The inter-item $r_{rm}$ values of TIL$_{24}$ (Supplementary Figure S4) were mostly positive except for cerebrospinal fluid (CSF) drainage, which did not correlate significantly with most other items, and decompressive craniectomy, which did not correlate significantly with CSF, ventilatory, or temperature control. Consistent with Figure 6A, this result suggested that CSF drainage and decompressive craniectomy were the most variably applied therapies across study ICUs. The Cronbach’s alpha ($\alpha$) value of TIL$_{24}$ was, at best, 0.65 (95% CI: 0.62–0.68) and lower (albeit, not significantly) than that of uwTIL$_{24}$ at each day of ICU stay (Supplementary Figure S5). However, since TIL is a formative scale (i.e., the construct is...
multidimensional and defined by the items), high inter-item correlation and α values are not necessary for item validation.\textsuperscript{17} Amongst all TIL\textsubscript{24} items, sedation was most strongly correlated with adjusted TIL\textsubscript{24} scores and physician concerns of ICP (Figure 6B). From 10≤TIL\textsubscript{24}≤20, a plateau effect of high-dose sedation combined with neuromuscular blockade was observed in most cases (Figure 6A). When accounting for all other TIL\textsubscript{24} sub-items, time since ICU admission, as well as inter-patient variability, ventilation, mannitol administration, and hypertonic saline administration were most strongly associated with ICP\textsubscript{24} and vasopressors were most strongly associated with CPP\textsubscript{24} (Figure 6C).

\textit{TIL}\textsuperscript{(Basic)}

Based on the median TIL\textsuperscript{(Basic)}\textsubscript{24} score at each TIL\textsubscript{24} score (Figure 7A), we derived the ranges for mapping TIL\textsubscript{24} onto TIL\textsuperscript{(Basic)}\textsubscript{24} in Table 3. There is, however, considerable overlap of TIL\textsubscript{24} scores across TIL\textsuperscript{(Basic)}\textsubscript{24} scores (Figure 7B), particularly in the range of 6≤TIL\textsubscript{24}≤10, and at no TIL\textsubscript{24} score was TIL\textsuperscript{(Basic)}\textsubscript{24}=3 the most represented score (Figure 7A). TIL\textsuperscript{(Basic)}\textsubscript{24} covered up to 33% (95% CI: 31–34%) of the information (i.e., entropy) in TIL\textsubscript{24}, and TIL\textsuperscript{(Basic)\textsubscript{median}} covered up to 28% (95% CI: 27–30%) of the information in TIL\textsubscript{median} (Figure 7C). TIL\textsuperscript{(Basic)\textsubscript{max}} only covered 17% (95% CI: 16–18%) of the information in TIL\textsubscript{max} (Figure 7C).

Discussion

In this work, we performed a large-scale (n=873), multicentre (52 ICUs, 19 countries), and prospective validation study of TIL and TIL\textsuperscript{(Basic)} against alternative scales. The CENTER-TBI data not only reflect the modern variation in ICP-directed therapeutic intensity (Figures 2 and 6A) but also illustrate the practical feasibility of daily TIL assessment: out of 885 eligible patients, 873 (99%) had daily TIL scores (Figure 1) with less than 2.4% daily missingness (Supplementary Figure S2).

Our findings support the validity of TIL as a metric for scoring ICP-directed therapeutic intensity and for marking pathophysiological severity. The statistical construct and criterion validity measures of TIL were significantly greater or similar to those of alternative scales (Figures 3 and 5), and TIL integrated the widest range of modern ICP treatments (Table 1). Our analysis yielded empirical ranges for interpreting TIL in terms of refractory intracranial hypertension, surgical intervention, and the condensed, TIL\textsuperscript{(Basic)} scores (Table 3). On a component level (Figure 6A), TIL\textsubscript{24} reflected a pattern of treatment intensity escalation consistent with clinical algorithms\textsuperscript{2,3,5} as well as a wide variation in treatment combinations, particularly in the use of CSF drainage and decompressive craniectomy. These results support the use of TIL as an intermediate outcome for treatment effect, as done in previous studies.\textsuperscript{33,34}

Due to a strong ceiling effect (Figures 2A and 5A), TIL\textsuperscript{(Basic)} should not be used instead of TIL for rating maximum treatment intensity. TIL\textsuperscript{(Basic)\textsubscript{24}} and TIL\textsubscript{median} covered up to 33% of the information in TIL\textsubscript{24} (Figure 7C), but the TIL\textsuperscript{(Basic)\textsubscript{24}} associations with physician
concerns of ICP were significantly worse than those of TIL_{24} (Figure 3C). TIL should always be preferred to TIL^{Basic}, but we believe daily or median TIL^{Basic} can be a suitable alternative when daily or median TIL assessment is infeasible.

Moreover, we evaluated TIL with both end-hour (ICP_{EH}) and high-resolution (ICP_{HR}) ICP values. ICP_{HR} is the gold standard, and neuromonitoring-related results from the ICP_{HR} population should generally take precedence. However, 67% of expected ICP_{HR} values were missing on day one of ICU stay (Supplementary Figure S2), likely due to the time required to arrange high-resolution data collection. Consequently, estimates of high-resolution ICP_{max} were significantly affected by missing value imputation and became imprecise at our sample size (Figure 3A). In these cases, results from the ICP_{EH} population served as a valuable reference on a substantially larger sample size (Table 2) since ICP_{EH} and CPP_{EH} have been shown to be fair end-hour representations of ICP_{HR} and CPP_{HR}, respectively, in CENTER-TBI. The considerable overlap of ICP_{24} values across TIL_{24} scores (Figure 4A) and the insignificant-to-weak, within-individual association between ICP_{24} and TIL_{24} (Figure 3C–D) highlight the need to account for therapeutic intensity when interpreting ICP. Additionally, the higher median ICP_{24} values for TIL_{24}≥8 (Figure 4A) may suggest that clinicians accept a slightly higher ICP when balancing the risks of elevating therapeutic intensity against those of intracranial hypertension.

We see three main opportunities to improve TIL. First, the item scores of TIL and its predecessors (i.e., PILOT and TIL^{1987}) were not derived empirically. Data-driven techniques, such as confirmatory factor analysis, can be used to derive scoring configurations which optimise a defined objective (e.g., maximal separation of patients). However, data-driven scores do not necessarily reflect the intended construct (i.e., treatment risk and complexity), and, in general, item scoring does not have an appreciable impact on overall scale performance. Second, the items of TIL must evolve as therapeutic approaches to ICP management evolve. TIL discriminated refractory intracranial hypertension status significantly better than TIL^{1987} (Figure 5A–B) because TIL updated TIL^{1987} with six additional items (Table 1). We recommend updating and re-evaluating TIL each time ICP-treatment modalities or their perceived risks change. Finally, the development of TIL was largely informed by the perspective of ICU practices in high-income countries. Likewise, this assessment was performed in a cohort of patients across Europe and Israel. Especially given the disproportionately higher burden of TBI in low- and middle-income countries, it is imperative to test and, if necessary, adapt TIL to a more inclusive, global population of TBI.

We recognise several limitations of our analysis. Whilst numerous investigators assessed TIL across the study ICUs, each TIL score was only assessed once. Therefore, we could not evaluate the interrater reliability of TIL. Similarly, data needed to calculate the full TIL score was only recorded once a day, so we could not determine if a daily assessment frequency was sufficient. Since the prior TIL validation study reported a high interrater reliability and recommended a daily assessment frequency, we assumed both to be true. The results from the Randomised Evaluation of Surgery with Craniectomy for Uncontrollable Elevation of Intracranial Pressure (RESCUEicp) trial – published amidst...
CENTER-TBI patient recruitment in 2016 – have likely changed the global frequency and perceived intensity of decompressive craniectomy for TBI. Therefore, we recognise the potentially confounding effect of the trial results on treatment decision making for some patients in the CENTER-TBI population and encourage a potential reappraisal of the therapeutic intensity of decompressive craniectomy through expert discussion and statistical validation. The physician impressions (i.e., physician concerns of ICP and CPP and refractory intracranial hypertension status) were subjective, and we did not have enough information to account for interrater variability. Therefore, these scores and labels should be considered unrefined. Finally, because of limited dosage data for numerical treatments (i.e., CSF drainage, ventilation, hyperosmolar therapy, and temperature control), we did not test alternative sub-item categorisations.

Conclusion

TIL is a valid, generalisable measurement of ICP management amongst neuro-monitored TBI patients in the ICU. On all validation metrics, TIL performs at least as well as its alternatives and considers the widest range of modern treatment strategies. TIL’s component scores over increasing TIL reflect a clinically credible order of treatment escalation, from head positioning to ICP-directed surgery. TIL(Basic) is not suitable for evaluating maximum treatment intensity, but daily TIL(Basic) and median TIL(Basic) can cover up to a third of the information in TIL. In the setting of clinical ICP management, TIL is a more sensitive marker of pathophysiological severity than ICP and can be considered an intermediate outcome after TBI.

Transparency, Rigor and Reproducibility Summary

The CENTER-TBI study was pre-registered at clinicaltrials.gov (NCT02210221, https://clinicaltrials.gov/ct2/show/NCT02210221). The analysis plan was registered after beginning data collection but before data analysis at https://www.center-tbi.eu/data/approved-proposals (#491), and the lead author with primary responsibility for the analysis certifies that the analysis plan was pre-specified. A sample size of 903 patients was planned based on availability of critically ill, ICP-monitored, adult TBI patients recruited for CENTER-TBI. Actual sample size was 873, as 18 patients had a documented decision to WLST on the first day of ICU stay and 12 additional patients did not have daily TIL scores assessed. A patient inclusion diagram is provided (Figure 1). TIL scoring and clinical data entry was performed by investigators who were aware of relevant characteristics of the participants. Participants were recruited between 19 December 2014 and 17 December 2017, and data (including follow-up results) were collected until 31 March 2021. High-resolution waveforms were stored directly from bedside monitoring software, as described in the Methods and Materials. Variability amongst different TIL assessors is not expected to be significant based on the established high interrater reliability of TIL. All equipment and software used to perform imaging and preprocessing are widely available from commercial sources or open source repositories. The clinimetric validation procedure and the primary clinical metric (TIL) are established standards in the field, based on previously published results and this study. The
assumption of bootstrapping-derived confidence intervals is that the sample is representative of the population. This study is, itself, an external validation, and internal replication by the study group was performed. Individual participant data are available online, conditional to approved online study proposal, with no end date at https://www.center-tbi.eu/data. Signed confirmation of a data access agreement is required, and all access must comply with regulatory restrictions imposed on the original study. All analytic code used to perform the statistical analyses are publicly available online at: https://github.com/sbhattacharyay/CENTER-TBI_TIL. This paper will be published under a Creative Commons Open Access license, and upon publication, will be freely available at https://www.liebertpub.com/loi/neu.

Acknowledgments

This research was supported by the National Institute for Health Research (NIHR) Brain Injury MedTech Co-operative. CENTER-TBI was supported by the European Union 7th Framework programme (EC grant 602150). Additional funding was obtained from the Hannelore Kohl Stiftung (Germany), from OneMind (USA), from Integra LifeSciences Corporation (USA), and from NeuroTrauma Sciences (USA). CENTER-TBI also acknowledges interactions and support from the International Initiative for TBI Research (INtTBIR) investigators. S.B. is funded by a Gates Cambridge Scholarship. E.B. is funded by the Medical Research Council (MR N013433-1) and by a Gates Cambridge Scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

We are grateful to the patients and families of our study for making our efforts to improve TBI care possible. S.B. would like to thank Kathleen Mitchell-Fox (Princeton University) for offering comments on the manuscript.

The CENTER-TBI investigators and participants

The co-lead investigators of CENTER-TBI are designated with an asterisk (*), and their contact email addresses are listed below.

Cecilia Åkerlund¹, Krisztina Amrein², Nada Andelic³, Lasse Andreassen⁴, Audny Anke⁵, Anna Antoni⁶, Gérard Audibert⁷, Philippe Azouvi⁸, Maria Luisa Azzolini⁹, Ronald Bartels¹⁰, Pál Barzó¹¹, Romuald Beauvais¹², Ronny Beer¹³, Bo-Michael Bellander¹⁴, Antonio Belli¹⁵, Habib Benali¹⁶, Maurizio Berardino¹⁷, Luigi Beretta⁹, Morten Blaabjerg¹⁸, Peter Bragge¹⁹, Alexandra Brazinova²⁰, Vibeke Brinck²¹, Joanne Brooker²², Camilla Brorsson²³, Andreas Buki²⁴, Monika Bullinger²⁵, Manuel Cabeleira²⁶, Alessio Caccioppola²⁷, Emiliana Calappi²⁷, Maria Rosa Calvi²⁸, Peter Cameron²⁸, Guillermo Carbaylo Lozano²⁹, Marco Carbonara²⁷, Simona Cavallo¹⁷, Giorgio Chevallard³⁰, Arturo Chiergato³⁰, Giuseppe Citerio³¹,³², Hans Clusmann³³, Mark Coburn³⁴, Jonathan Coles³⁵, Jamie D. Cooper³⁶, Marta Correia³⁷, Amra Ćović³⁸, Nicola Cury³⁹, Endre Czeiter²⁴, Marek Czosnyka²⁶, Claire Dahyot-Fizelier⁴⁰, Paul Dark⁴¹, Helen Dawes⁴², Véronique De Keyser⁴³, Vincent Degos¹⁶, Francesco Della Corte⁴⁴, Hugo den Boogert¹⁰, Bart Depreitere⁴⁵, Dula Đilvesi⁴⁶, Abhishek...
1Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
2János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
3Division of Surgery and Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
4Department of Neurosurgery, University Hospital Northern Norway, Tromso, Norway
5Department of Physical Medicine and Rehabilitation, University Hospital Northern Norway, Tromso, Norway
6Trauma Surgery, Medical University Vienna, Vienna, Austria
7Department of Anesthesiology & Intensive Care, University Hospital Nancy, Nancy, France
8Raymond Poincare hospital, Assistance Publique – Hopitaux de Paris, Paris, France
9Department of Anesthesiology & Intensive Care, S Raffaele University Hospital, Milan, Italy
10Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
11Department of Neurosurgery, University of Szeged, Szeged, Hungary
12International Projects Management, ARTTIC, Munchen, Germany
13Department of Neurology, Neurological Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria
14Department of Neurosurgery & Anesthesia & intensive care medicine, Karolinska University Hospital, Stockholm, Sweden
15NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK
16Anesthesie-Réanimation, Assistance Publique – Hopitaux de Paris, Paris, France
17Department of Anesthesia & ICU, AOU Città della Salute e della Scienza di Torino - Orthopedic and Trauma Center, Torino, Italy
18Department of Neurology, Odense University Hospital, Odense, Denmark
19BehaviourWorks Australia, Monash Sustainability Institute, Monash University, Victoria, Australia
20Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
21Quesgen Systems Inc., Burlingame, California, USA
22Australian & New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
23Department of Surgery and Perioperative Science, Umeå University, Umeå, Sweden
24Department of Neurosurgery, Medical School, University of Pécs, Hungary and Neurotrauma Research Group, János Szentágothai Research Centre, University of Pécs, Hungary
25Department of Medical Psychology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
26Brain Physics Lab, Division of Neurosurgery, Dept of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
27Neuro ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
28ANZIC Research Centre, Monash University, Department of Epidemiology and Preventive Medicine, Melbourne, Victoria, Australia
29 Department of Neurosurgery, Hospital of Cruces, Bilbao, Spain
30 NeuroIntensive Care, Niguarda Hospital, Milan, Italy
31 School of Medicine and Surgery, Università Milano Bicocca, Milano, Italy
32 NeuroIntensive Care, ASST di Monza, Monza, Italy
33 Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
34 Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
35 Department of Anesthesia & Neurointensive Care, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
36 School of Public Health & PM, Monash University and The Alfred Hospital, Melbourne, Victoria, Australia
37 Radiology/MRI department, MRC Cognition and Brain Sciences Unit, Cambridge, UK
38 Institute of Medical Psychology and Medical Sociology, Universitätmedizin Göttingen, Göttingen, Germany
39 Oxford University Hospitals NHS Trust, Oxford, UK
40 Intensive Care Unit, CHU Poitiers, Poitiers, France
41 University of Manchester NIHR Biomedical Research Centre, Critical Care Directorate, Salford Royal Hospital NHS Foundation Trust, Salford, UK
42 Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
43 Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
44 Department of Anesthesia & Intensive Care, Maggiore Della Carità Hospital, Novara, Italy
45 Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
46 Department of Neurosurgery, Clinical centre of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
47 Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
48 Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
49 Intensive Care Unit, CHR Citadelle, Liège, Belgium
50 Department of Anaesthesiology and Intensive Therapy, University of Pécs, Pécs, Hungary
51 Departments of Neurology, Clinical Neurophysiology and Neuroanesthesiology, Region Hovedstaden Rigshospitalet, Copenhagen, Denmark
52 National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand
53 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
54 Department of Anesthesiology and Intensive care, University Hospital Northern Norway, Tromso, Norway
55 Department of Neurosurgery, Hadassah-hebrew University Medical center, Jerusalem, Israel
56 Fundación Instituto Valenciano de Neurorrehabilitación (FIVAN), Valencia, Spain
Department of Neurosurgery, Shanghai Renji hospital, Shanghai Jiaotong University/school of medicine, Shanghai, China
Karolinska Institutet, INCF International Neuroinformatics Coordinating Facility, Stockholm, Sweden
Emergency Department, CHU, Liège, Belgium
Neurosurgery clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia
Department of Computing, Imperial College London, London, UK
Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain
Department of Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Austria
Department of Public Health, Erasmus Medical Center-University Medical Center, Rotterdam, The Netherlands
College of Health and Medicine, Australian National University, Canberra, Australia
Department of Neurosurgery, Neurosciences Centre & JPN Apex trauma centre, All India Institute of Medical Sciences, New Delhi-110029, India
Department of Neurosurgery, Erasmus MC, Rotterdam, the Netherlands
Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
Division of Psychology, University of Stirling, Stirling, UK
Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital & University of Cambridge, Cambridge, UK
Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
Neurointensive Care, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
Salford Royal Hospital NHS Foundation Trust Acute Research Delivery Team, Salford, UK
Department of Intensive Care and Department of Ethics and Philosophy of Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
Department of Clinical Neuroscience, Neurosurgery, Umeå University, Umeå, Sweden
Hungarian Brain Research Program - Grant No. KTIA_13_Not ApplicableP-A-II/8, University of Péc, Pécs, Hungary
Department of Anaesthesiology, University Hospital of Aachen, Aachen, Germany
Cyclotron Research Center, University of Liège, Liège, Belgium
Centre for Urgent and Emergency Care Research (CURE), Health Services Research Section, School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
Emergency Department, Salford Royal Hospital, Salford UK
Institute of Research in Operative Medicine (IFOM), Witten/Herdecke University, Cologne, Germany
VP Global Project Management CNS, ICON, Paris, France
Department of Anesthesiology-Intensive Care, Lille University Hospital, Lille, France
Department of Neurosurgery, Rambam Medical Center, Haifa, Israel
Department of Anesthesiology & Intensive Care, University Hospitals Southampton NHS Trust, Southampton, UK
Cologne-Merheim Medical Center (CMMC), Department of Traumatology, Orthopedic Surgery and Sportmedicine, Witten/Herdecke University, Cologne, Germany
Intensive Care Unit, Southmead Hospital, Bristol, Bristol, UK
Department of Neurological Surgery, University of California, San Francisco, California, USA
Department of Anesthesia & Intensive Care, M. Bufalini Hospital, Cesena, Italy
Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
Department of Neurosurgery, The Walton centre NHS Foundation Trust, Liverpool, UK
Department of Medical Genetics, University of Pécs, Pécs, Hungary
Department of Neurosurgery, Emergency County Hospital Timisoara, Timisoara, Romania
School of Medical Sciences, Örebro University, Örebro, Sweden
Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
Analytic and Translational Genetics Unit, Department of Medicine; Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
Program in Medical and Population Genetics; The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
Department of Radiology, University of Antwerp, Edegem, Belgium
Department of Anesthesiology & Intensive Care, University Hospital of Grenoble, Grenoble, France
Department of Anesthesia & Intensive Care, Azienda Ospedaliera Università di Padova, Padova, Italy
Dept. of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands and Dept. of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands
Department of Neurosurgery, Helsinki University Central Hospital
Division of Clinical Neurosciences, Department of Neurosurgery and Turku Brain Injury Centre, Turku University Hospital and University of Turku, Turku, Finland
Department of Anesthesiology and Critical Care, Pitié -Salpêtrière Teaching Hospital, Assistance Publique, Hôpitaux de Paris and University Pierre et Marie Curie, Paris, France
Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Barcelona, Spain
Department of Neurosurgery, Kaunas University of technology and Vilnius University, Vilnius, Lithuania
Department of Neurosurgery, Rezekne Hospital, Latvia
Department of Anaesthesia, Critical Care & Pain Medicine NHS Lothian & University of Edinburg, Edinburgh, UK
Director, MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
Department of Physical Medicine and Rehabilitation, Oslo University Hospital/University of Oslo, Oslo, Norway
Division of Orthopedics, Oslo University Hospital, Oslo, Norway
Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
Broad Institute, Cambridge MA Harvard Medical School, Boston MA, Massachusetts General Hospital, Boston MA, USA
National Trauma Research Institute, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
Department of Neurosurgery, Odense University Hospital, Odense, Denmark
International Neurotrauma Research Organisation, Vienna, Austria
Klinik für Neurochirurgie, Klinikum Ludwigsburg, Ludwigsburg, Germany
Division of Biostatistics and Epidemiology, Department of Preventive Medicine, University of Debrecen, Debrecen, Hungary
Department Health and Prevention, University Greifswald, Greifswald, Germany
Department of Anaesthesiology and Intensive Care, AUVA Trauma Hospital, Salzburg, Austria
Department of Neurology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, the Netherlands
Department of Neuroanesthesia and Neurointensive Care, Odense University Hospital, Odense, Denmark
Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
Department of Physical Medicine and Rehabilitation, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
Department of Neurosurgery, University of Pécs, Pécs, Hungary
Division of Neuroscience Critical Care, Johns Hopkins University School of Medicine, Baltimore, USA
Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK
Dept. of Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
Department of Pathophysiology and Transplantation, Milan University, and Neuroscience ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
Department of Neurosurgery, Kaunas University of Health Sciences, Kaunas, Lithuania
Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands
Department of Neurosurgery, Kings college London, London, UK
Neurologie, Neurochirurgie und Psychiatrie, Charité – Universitätsmedizin Berlin, Berlin, Germany
Department of Intensive Care Adults, Erasmus MC– University Medical Center Rotterdam, Rotterdam, the Netherlands
icoMetrix NV, Leuven, Belgium
Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
Psychology Department, Antwerp University Hospital, Edegem, Belgium
Director of Neurocritical Care, University of California, Los Angeles, USA
Department of Neurosurgery, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
References


CENTER-TBI recruitment criteria at time of enrolment:
- Admission to the hospital within 24 hours of TBI
- Indication for computerised tomography (CT) scanning
- No severe pre-existing neurological disorder
- Informed consent according to local and national policy

CENTER-TBI core study dataset available for analysis (n=4,509)

Not admitted to the ICU (n=2,371)

Less than 16 years old (n=82)

ICP not monitored in ICU (n=1,153)

Decision of WLST made on first day of ICU stay (n=18)

TIL score not assessed (n=12)

TIL validation population (n=873)

ICP values not recorded in dataset (n=36)

Only end-hour ICP values (n=578)

Both end-hour and high-resolution ICP values (n=259)

TIL validation population (n=873)

Fig. 1. Flow diagram for patient enrolment and validation population assignment. Abbreviations: CENTER-TBI=Collaborative European NeuroTrauma Effectiveness Research in TBI, ICP=intracranial pressure, ICP<sub>EH</sub>=end-hour ICP, ICP<sub>HR</sub>=high-resolution ICP, ICU=intensive care unit, TBI=traumatic brain injury, TIL=Therapy Intensity Level scale, WLST=withdrawal of life-sustaining therapies.
Fig. 2. Distributions of TIL and alternative scales. Abbreviations: ICU=intensive care unit, PILOT=Paediatric Intensity Level of Therapy scale, TIL=Therapy Intensity Level scale, TIL(1987)=original Therapy Intensity Level scale published in 1987, TIL(Basic)=condensed TIL scale, uwTIL=unweighted TIL scale in which sub-item scores are replaced by the ascending rank index within the item. The numeric definition of each scale is listed in Table 1. (A) Distributions of maximum scores of TIL (i.e., TIL_max) and alternative scales (i.e., uwTIL_max, TIL(Basic)_max, PILOT_max, and TIL(1987)_max) over the first week of ICU stay. (B) Distribution of median scores of TIL (i.e., TIL_median) and alternative scales (i.e., uwTIL_median, TIL(Basic)_median, PILOT_median, and TIL(1987)_median) over the first week of ICU stay. (C) Distributions of daily scores of TIL (i.e., TIL_24) and alternative scales (i.e., uwTIL_24, TIL(Basic)_24, PILOT_24, and TIL(1987)_24) over the first week of ICU stay.
Fig. 3. Associations of TIL and alternative scales with other clinical measures. Abbreviations: Day_{ICU}=variable representing day (from 1 to 7) of ICU stay, EH=end-hour, CPP=cerebral perfusion pressure, GCS=Glasgow Coma Scale at ICU admission, GOSE=Glasgow Outcome Scale–Extended at six months post-injury, HR=high-resolution, ICP=intracranial pressure, ICU=intensive care unit, PILOT=Paediatric Intensity Level of Therapy scale, \( \Pr(\text{GOSE} > \bullet) = \text{“probability of GOSE greater than \( \bullet \) at six months post-injury” as previously calculated from the first 24 hours of admission} \), \( \text{TIL} = \text{Therapy Intensity Level scale} \), \( \text{TIL(1987)} = \text{original Therapy Intensity Level scale published in 1987} \), \( \text{TIL(Basic)} = \text{condensed TIL scale} \), \( \text{uwTIL} = \text{unweighted TIL scale in which sub-item scores are replaced by the ascending rank index} \).
within the item. The numeric definition of each scale is listed in Table 1, and the calculation of daily (e.g., TIL_{24}), maximum (e.g., TIL_{max}), and median (e.g., TIL_{median}) scores are described in the Methods. The bars represent 95% confidence intervals derived from bootstrapping with 1,000 resamples of unique patients over 100 missing value imputations. (A) Spearman’s correlation coefficients (\( \rho \)) between maximum scale scores over first week of ICU stay (i.e., TIL_{max}, uwTIL_{max}, TIL^{(Basic)}_{max}, PILOT_{max}, and TIL^{(1987)}_{max}) and other clinical measures. (B) Spearman’s correlation coefficients (\( \rho \)) between median scale scores over first week of ICU stay (i.e., TIL_{median}, uwTIL_{median}, TIL^{(Basic)}_{median}, PILOT_{median}, and TIL^{(1987)}_{median}) and other clinical measures. (C) Repeated measures correlation coefficients (\( r_{rm} \), from -1 to 1) are interpreted as the strength and direction of association between two variables after accounting for inter-patient variation. (D) Linear mixed effects model coefficients (\( \beta_{LMER} \)) are interpreted as the expected difference in dependent variable (e.g., EH ICP_{24}) per unit increase of daily scale score (e.g., TIL_{24}) after accounting for time since ICU admission (i.e., Day_{ICU}) and inter-patient variation.
Fig 4. Distributions of daily intracranial pressure and cerebral perfusion pressure means per daily TIL score. Abbreviations: CPP=cerebral perfusion pressure, CPP$_{24}$=mean CPP over calendar day, Day$_{ICU}$=variable representing day (from 1 to 7) of ICU stay, EH=end-hour, HR=high-resolution, ICP=intracranial pressure, ICP$_{24}$=mean ICP over calendar day, TIL=Therapy Intensity Level scale, TIL$_{24}$=TIL score of calendar day, TIL-ICP$_{EH}$=end-hour ICP sub-population, TIL-ICP$_{HR}$=high-resolution ICP sub-population. The values in each panel are the linear mixed effects model coefficients ($\beta_{LMER}$) of TIL$_{24}$ with 95% confidence intervals derived from bootstrapping with 1,000 resamples of unique patients over 100 missing value imputations. The width of violin plots is scaled for each population, but the width of the points inside them demonstrates relative frequency across the populations. The violin plots do not encompass outliers based on 1.5 times the interquartile range. (A) Distributions of ICP$_{24}$ vs. TIL$_{24}$ for both sub-populations. (B) Distributions of CPP$_{24}$ vs. TIL$_{24}$ for both sub-populations.
Fig 5. Discrimination of refractory intracranial hypertension status by TIL and alternative scale summary scores. Abbreviations: AUC=area under the receiver operating characteristic curve, EH=end-hour, HR=high-resolution, ICP=intracranial pressure, ICP_{max}=maximum calendar day mean of ICP over first week of ICU stay, ICP_{median}=median calendar day mean of ICP over first week of ICU stay, ICU=intensive care unit, PILOT=Paediatric Intensity Level of Therapy scale, TIL=Therapy Intensity Level scale, TIL_{max}=original Therapy Intensity Level scale published in 1987, TIL_{(Basic)}=condensed TIL scale, uwTIL=unweighted TIL scale in which sub-item scores are replaced by the ascending rank index within the item. The 95% confidence intervals of AUC were derived from bootstrapping with 1,000 resamples of unique patients over 100 missing value imputations. (A) Distributions of maximum scores of TIL (i.e., TIL_{max}) and alternative scales (i.e., uwTIL_{max}, TIL_{(Basic)}_{max}, PILOT_{max}, and TIL_{(1987)}_{max}) stratified by refractory intracranial hypertension status. The horizontal black line segments represent the thresholds which maximised the sum of sensitivity and specificity for each scale. (B) Distributions of median scores of TIL (i.e., TIL_{median}) and alternative scales (i.e., uwTIL_{median}, TIL_{(Basic)}_{median}, PILOT_{median}, and TIL_{(1987)}_{median}) stratified by refractory intracranial hypertension status. The horizontal black line segments represent the thresholds which maximised the sum of sensitivity and specificity for each scale. (C) Receiver operating characteristic curve of refractory intracranial hypertension detection with TIL_{max}. The threshold which maximised the sum of sensitivity and specificity is highlighted with the dark red circle. (D) Receiver operating characteristic curve of refractory intracranial hypertension detection with TIL_{median}. The threshold which maximised the sum of sensitivity and specificity is highlighted with the dark red circle.
Fig 6. Association of TIL component items with TIL\textsubscript{24} and other study measures. Abbreviations: CPP=cerebral perfusion pressure, CPP\textsubscript{24}=mean CPP over calendar day, CSF=cerebrospinal fluid, EH=end-hour, HR=high-resolution, ICP=intracranial pressure, ICP\textsubscript{24}=mean ICP over calendar day, ICU=intensive care unit, TIL=Therapy Intensity Level scale, TIL\textsubscript{24}=TIL score of calendar day. The 95% confidence intervals of $r_m$ and $\beta_{LMER}$ values were derived from bootstrapping with 1,000 resamples of unique patients over 100 missing value.
imputations. (A) Median component score of each ICP-treatment modality (Table 1) per each TIL$_{24}$ score. The histogram under the x-axis represents the relative frequency and count of each TIL$_{24}$ score in the population, and diagonal dashed line represents the TIL$_{24}$ score on both axes. If the sum of median item scores does not equal the corresponding TIL$_{24}$ score, this can be interpreted as high variability in the combination of simultaneously applied therapies at that TIL$_{24}$ score. (B) The repeated measures correlation coefficients ($r_{rm}$, from -1 to 1) are interpreted as the strength and direction of association between two variables after accounting for inter-patient variation. The component score of each item (Table 1, x-axis) was subtracted from the TIL$_{24}$ score (top row on y-axis) before calculating their $r_{rm}$ values. (C) Linear mixed effects model coefficients ($\beta_{LMER}$) are interpreted as the expected difference in the dependent variable (y-axis) associated with the given TIL$_{24}$ sub-item treatment (Table 1) after accounting for all other TIL$_{24}$ sub-items, time since ICU admission, and inter-patient variation.
Fig 7. Relationship between TIL and TIL^{Basic}. Abbreviations: AUC=area under the receiver operating characteristic curve, ICU=intensive care unit, TIL=Therapy Intensity Level scale, TIL^{Basic}=condensed TIL scale. The numeric definition of each scale is listed in Table 1, and the calculation of daily (e.g., TIL^{24}), maximum (e.g., TIL^{max}), and median (e.g., TIL^{median}) scores are described in the Methods. The 95% confidence intervals of information coverage were derived from bootstrapping with 1,000 resamples of unique patients over 100 missing value imputations.

(A) Distribution of corresponding TIL^{Basic}^{24} scores per each TIL^{24} score. The values in each cell represent the percent of assessments at a given TIL^{24} score (i.e., column) corresponding to a TIL^{Basic}^{24} score (i.e., row). The vertical, dark red lines represent cut-offs across which the median corresponding TIL^{Basic}^{24} score per TIL^{24} score changes. (B) Distribution of corresponding TIL^{24} scores per each TIL^{Basic}^{24} score. The width of violin plots is scaled for each TIL^{Basic}^{24} score, but the width of the points inside them demonstrates relative frequency across the TIL^{Basic}^{24} scores. The grey, shaded zones represent the range of TIL^{24} scores with corresponding median TIL^{Basic}^{24} scores on the x-axis, as determined in panel (A). (C) The information of TIL^{24}, TIL^{max}, and TIL^{median} covered by TIL^{Basic}^{24}, TIL^{Basic}^{max}, and TIL^{Basic}^{median}, respectively. Information coverage is defined as the mutual information of TIL^{24} and TIL^{Basic}^{24} (or TIL^{max} and TIL^{Basic}^{max} or TIL^{median} and TIL^{Basic}^{median}) divided by the entropy of TIL^{24} (or TIL^{max} or TIL^{median}).
<table>
<thead>
<tr>
<th>ICP-treatment modality</th>
<th>Item</th>
<th>Sub-item</th>
<th>Score</th>
<th>Max</th>
<th>uwTIL</th>
<th>TIL&lt;sub&gt;basic&lt;/sub&gt;</th>
<th>PILOT&lt;sup&gt;†&lt;/sup&gt;</th>
<th>TIL&lt;sup&gt;[1987]&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Positioning</strong></td>
<td>Head elevation for ICP control or nursed flat (180°) for CPP management</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td><strong>Sedation and neuromuscular blockade</strong></td>
<td><strong>Sedation</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low dose sedation (as required for mechanical ventilation)</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Higher dose sedation for ICP control (but not aiming for burst suppression)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High dose propofol or barbiturates for ICP control (metabolic suppression)</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neuromuscular blockade (paralysis)</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td><strong>CSF drainage</strong></td>
<td>CSF drainage volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low (&lt;120 ml/24h)</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High (≥120 ml/24h)</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td><strong>CPP management</strong></td>
<td>Fluid loading for maintenance of cerebral perfusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vasopressor therapy required for management of cerebral perfusion</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td><strong>Ventilatory management</strong></td>
<td>Hypocapnia for ICP control (&lt;P&lt;sub&gt;a&lt;/sub&gt;CO&lt;sub&gt;2&lt;/sub&gt; [mmHg])</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mild (35&lt;P&lt;sub&gt;a&lt;/sub&gt;CO&lt;sub&gt;2&lt;/sub&gt;&lt;40)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate (30&lt;P&lt;sub&gt;a&lt;/sub&gt;CO&lt;sub&gt;2&lt;/sub&gt;&lt;35)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intensive (P&lt;sub&gt;a&lt;/sub&gt;CO&lt;sub&gt;2&lt;/sub&gt;&lt;30)</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Hyperosmolar therapy</strong></td>
<td>Mannitol administration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤2g/kg/24h</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt;2g/kg/24h</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypertonic saline administration ≤0.3g/kg/24h</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt;0.3g/kg/24h</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Temperature control</strong></td>
<td>Temperature control (T [°C])</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fever control (&gt;38 or spontaneous &lt;34.5)</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cooling for ICP control (≥35)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypothermia (&lt;35)</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surgery for intracranial hypertension

| Intracranial operation for progressive mass lesion, NOT scheduled on admission Decompressive craniectomy | 4 | 4 | 1 | 1 | 4 | 4 | 4 | 4 | − | − |
| Maximum total possible score | 38 | 21 | 4 | 4 | 38 | 15 |

Abbreviations: CPP = cerebral perfusion pressure, CSF = cerebrospinal fluid, ICP = intracranial pressure, \( P_a \) \( \text{CO}_2 \) = partial pressure of carbon dioxide in arterial blood, PILOT = Paediatric Intensity Level of Therapy scale, \( T \) = body temperature in degrees Celsius, TIL = Therapy Intensity Level scale, \( \text{TIL}^{(1987)} \) = original Therapy Intensity Level scale published in 1987, \( \text{TIL}^{(\text{Basic})} \) = condensed TIL scale, \( \text{uwTIL} \) = unweighted TIL scale in which sub-item scores are replaced by the ascending rank index within the item.

The TIL scale was developed by Maas et al.\(^6\) For each calendar day, the highest score for each item was summed to derive the TIL score.

\( \text{TIL}^{(\text{Basic})} \) is the maximum score (from 1 to 4) among all included sub-items over the calendar day.

\( \uparrow \) PILOT scale\(^7\) and TIL\(^{(1987)} \) scale\(^8\) scoring configurations have been adapted with minor adjustments to fit the items of TIL with a daily assessment frequency.
Table 2. Summary characteristics of study validation populations

<table>
<thead>
<tr>
<th>Summary characteristic</th>
<th>TIL validation population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall (n=873, 52 centres)</td>
</tr>
<tr>
<td>Age [years]</td>
<td>47 (29–62)</td>
</tr>
<tr>
<td>Sex: Female</td>
<td>222 (25%)</td>
</tr>
<tr>
<td>Baseline GCS (n=822)</td>
<td></td>
</tr>
<tr>
<td>Mild [13–15]</td>
<td>122 (15%)</td>
</tr>
<tr>
<td>Moderate [9–12]</td>
<td>139 (17%)</td>
</tr>
<tr>
<td>Severe [3–8]</td>
<td>561 (68%)</td>
</tr>
<tr>
<td>Marshall CT (n=710)</td>
<td></td>
</tr>
<tr>
<td>No visible pathology (I)</td>
<td>17 (2%)</td>
</tr>
<tr>
<td>Diffuse injury II</td>
<td>264 (37%)</td>
</tr>
<tr>
<td>Diffuse injury III</td>
<td>93 (13%)</td>
</tr>
<tr>
<td>Diffuse injury IV</td>
<td>16 (2%)</td>
</tr>
<tr>
<td>Mass lesion (V &amp; VI)</td>
<td>320 (45%)</td>
</tr>
<tr>
<td>Six-month GOSE (n=761)</td>
<td></td>
</tr>
<tr>
<td>(1) Death</td>
<td>199 (26%)</td>
</tr>
<tr>
<td>(2 or 3) Vegetative or lower SD</td>
<td>182 (24%)</td>
</tr>
<tr>
<td>(4) Upper SD</td>
<td>70 (9%)</td>
</tr>
<tr>
<td>(5) Lower MD</td>
<td>122 (16%)</td>
</tr>
<tr>
<td>(6) Upper MD</td>
<td>74 (10%)</td>
</tr>
<tr>
<td>(7) Lower GR</td>
<td>56 (7%)</td>
</tr>
<tr>
<td>(8) Upper GR</td>
<td>58 (8%)</td>
</tr>
<tr>
<td>Baseline functional prognosis† [%] (n=749)</td>
<td></td>
</tr>
<tr>
<td>Pr(GOSE=1)</td>
<td>84.7 (63.5–94.9)</td>
</tr>
<tr>
<td>Pr(GOSE=3)</td>
<td>53.9 (29.9–76.0)</td>
</tr>
<tr>
<td>Pr(GOSE=4)</td>
<td>39.6 (20.6–59.6)</td>
</tr>
<tr>
<td>Pr(GOSE=5)</td>
<td>21.1 (10.2–36.8)</td>
</tr>
<tr>
<td>Pr(GOSE=6)</td>
<td>12.4 (5.9–20.8)</td>
</tr>
<tr>
<td>Pr(GOSE=7)</td>
<td>4.8 (2.2–9.2)</td>
</tr>
<tr>
<td>TIL&lt;sub&gt;max&lt;/sub&gt;</td>
<td>10 (6–14)</td>
</tr>
<tr>
<td>TIL&lt;sub&gt;median&lt;/sub&gt;</td>
<td>5 (3–10)</td>
</tr>
<tr>
<td>TIL&lt;sub&gt;24&lt;/sub&gt; scores</td>
<td></td>
</tr>
<tr>
<td>Day 1 (n=852)</td>
<td>7 (4–11)</td>
</tr>
<tr>
<td>Day 2 (n=839)</td>
<td>6 (4–10)</td>
</tr>
<tr>
<td>Day 3 (n=819)</td>
<td>6 (3–9)</td>
</tr>
<tr>
<td>Day 4 (n=787)</td>
<td>6 (3–10)</td>
</tr>
<tr>
<td>Day 5 (n=761)</td>
<td>5 (3–10)</td>
</tr>
<tr>
<td>Day 6 (n=733)</td>
<td>5 (2–9)</td>
</tr>
<tr>
<td>Day 7 (n=709)</td>
<td>5 (2–9)</td>
</tr>
</tbody>
</table>

Abbreviations: Baseline GCS=Glascow Coma Scale at ICU admission, from 3 to 15, GOSE=GOS–Extended, GR=good recovery, ICP=intracranial pressure, ICP<sub>EH</sub>=end-hour ICP, ICP<sub>HR</sub>=high-resolution ICP, Marshall CT=Marshall computerised tomography classification, MD=moderate disability, Pr(GOSE>•)=“probability of GOSE greater than • at six months post-injury” as previously calculated from the first 24 hours of admission; SD=severe disability, TIL=Therapy Intensity Level scale, TIL<sub>24</sub>=TIL score of calendar day in ICU, TIL<sub>max</sub>=maximum TIL<sub>24</sub> over first week of ICU stay, TIL<sub>median</sub>=median TIL<sub>24</sub> over first week of ICU stay. Data are median (IQR) for numeric characteristics and n (%) of column group for categorical characteristics, unless otherwise specified.
otherwise indicated. Units or numerical definitions of characteristics are provided in square 
brackets.
*Limited sample size of non-missing values for characteristic.
†Ordinal functional outcome prognostic scores were calculated through tokenised embedding of 
all clinical information in the first 24 hours of ICU stay, as described previously.²⁷
‡p-values, comparing patients in TIL-ICP<sub>HR</sub> sub-population to those not in TIL-ICP<sub>HR</sub> sub-
population, are derived from with Welch’s t-test for numeric variables and χ² contingency table 
test for categorical variables.
### Table 3. Optimised ranges for TIL categorisation

<table>
<thead>
<tr>
<th>Category</th>
<th>Derived ranges</th>
<th>Performance (95% confidence intervals)</th>
<th>Case counts</th>
<th>Previously proposed ranges§</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sensitivity</td>
<td>Specificity</td>
<td>Accuracy</td>
</tr>
<tr>
<td>Refractory intracranial hypertension*</td>
<td>TIL&lt;sub&gt;max&lt;/sub&gt;≥14</td>
<td>68% (62–74%)</td>
<td>79% (77–81%)</td>
<td>77% (75–79%)</td>
</tr>
<tr>
<td></td>
<td>TIL&lt;sub&gt;median&lt;/sub&gt;≥7.5</td>
<td>81% (77–87%)</td>
<td>72% (70–75%)</td>
<td>74% (72–76%)</td>
</tr>
<tr>
<td>Day of surgical ICP control†</td>
<td>TIL&lt;sub&gt;24&lt;/sub&gt;≥9</td>
<td>87% (83–91%)</td>
<td>74% (72–76%)</td>
<td>76% (74–77%)</td>
</tr>
<tr>
<td>TIL&lt;sub&gt;(Basic)24&lt;/sub&gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Basic ICU care</td>
<td>1≤TIL&lt;sub&gt;24&lt;/sub&gt;≤2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Mild</td>
<td>3≤TIL&lt;sub&gt;24&lt;/sub&gt;≤6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Moderate</td>
<td>7≤TIL&lt;sub&gt;24&lt;/sub&gt;≤8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Extreme</td>
<td>TIL&lt;sub&gt;24&lt;/sub&gt;≥9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ICP=intracranial pressure, ICU=intensive care unit, TIL=Therapy Intensity Level scale, TIL<sup>(Basic)</sup>=condensed TIL scale. The numeric definition of each scale is listed in Table 1, and the calculation of daily (e.g., TIL<sub>24</sub>), maximum (e.g., TIL<sub>max</sub>), and median (e.g., TIL<sub>median</sub>) scores is described in the Methods. The 95% confidence intervals of performance metrics were derived from bootstrapping with 1,000 resamples of unique patients over 100 missing value imputations.

*Refractory intracranial hypertension was defined as recurrent, sustained (i.e., of at least ten minutes) increases of ICP above 20 mmHg despite medical ICP management during ICU stay. This information was recorded by attending physicians in patient discharge summaries.

†If a decompressive craniectomy was performed as a last resort for refractory intracranial hypertension, each of the days following the operation were also considered days of surgical ICP control.

‡For refractory intracranial hypertension, case counts represent the number of patients (with non-missing values) without (i.e., No) and with (i.e., Yes) refractory intracranial hypertension. For day of surgical ICP control and TIL<sub>(Basic)24</sub>, case counts represent the number of non-missing TIL assessments not in (i.e., No) and in (i.e., Yes) the given category.

§Thresholds were previously proposed by the interagency panel which developed TIL based on expert opinion.