Strong protective effect of the \textit{APOL1} p.N264K variant against G2-associated focal segmental glomerulosclerosis and kidney disease

Yask Gupta1, David J. Friedman2,3, Michelle McNulty4,5, Atlas Khan1, Brandon Lane6, Chen Wang1, Juntao Ke1, Gina Jin1, Benjamin Wooden1, Andrea L. Knob2,3, Tze Y. Lim1, Gerald B. Appel1, Kinsie Huggins6, Lili Liu1, Adele Mitrotti7, Megan C. Stangl6, Andrew Bomback1, Rik Westland8, Monica Bodria9,10, Maddalena Marasa1, Ning Shang1, David J. Cohen1, Russell J. Crew1, William Morello11, Pietro Canetta1, Jai Radhakrishnan1, Jeremiah Martino1, Qingxue Liu1, Wendy K. Chung12, Angelica Espinoza13, Yuan Luo13, Wei-Qi Wei14, Qiping Feng14, Chunhua Weng15, Yilu Fang15, Iftikhar J. Kullo16, Mohammadreza Naderian16, Nita Limdi17, Marguerite R. Irvin18, Hemant Tiwari19, Sumit Mohan1,20, Maya Rao1, Geoffrey Dube1, Ninad S. Chaudhary18, Orlando M. Gutiérrez18,21, Suzanne E. Judd19, Mary Cushman22, Leslie A. Lange23, Ethan M. Lange23, Daniel L. Bivona1, Miguel Verbitsky1, Cheryl A. Winkler24, Jeffrey B. Kopp25, Dominick Santoriello26, Ibrahim Batal26, Sérgio Veloso Brant Pinheiro27, Eduardo Araújo Oliveira27, Ana Cristina Simoes e Silva27, Isabella Pisani28, Enrico Fiaccadori28, Fangming Lin29, Loreto Gesualdo7, Antonio Amoroso30, Gian Marco Ghiggeri9,10, Vivette D. D'Agati26, Riccardo Magistroni31, Eimear E. Kenny32,33, Ruth J.F. Loos34,35, Giovanni Montini11,36, Friedhelm Hildebrandt3,4, Dirk S. Paul37, Slavé Petrovski37, David B. Goldstein38, Matthias Kretzler29, Rasheed Gbadegesin6, Ali G. Gharavi1, Krzysztof Kiryluk1, Matthew G. Sampson3,4,5, Martin R. Pollak2, and Simone Sanna-Cherchi1

1Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
2Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
3Harvard Medical School, Boston, MA, USA.

\textit{NOTE:} This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA.

Kidney Disease Initiative and Medical and Population Genetics Program, Broad Institute, Boston, MA, USA.

Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC.

Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy.

Department of Pediatric Nephrology, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands

Division of Nephrology and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genoa, Italy

Laboratory on Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy

Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milano, Italy.

Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY, USA.

Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.

Atherosclerosis and Lipid Genomics Laboratory, Mayo Clinic, Rochester, MN, USA

Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.

Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.

Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.

Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.

Department of Medicine and Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA.

Division of Biomedical Informatics and Personalized Medicine, Department of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO.

Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health and Basic Research Program, Frederick National Laboratory, Frederick, MD, USA.

Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.

Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.

Universidade Federal de Minas Gerais (UFMG), Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, Departamento de Pediatria, Unidade de Nefrologia Pediátrica, Belo Horizonte, MG, Brazil.

Nephrology Unit, Parma University Hospital, and Department of Medicine and Surgery, University of Parma, Parma, Italy.

Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, NY, USA.

Immunogenetics and Transplant Biology Service, University Hospital "Città della Salute e della Scienza di Torino", Department of Medical Sciences, University of Turin, Turin, Italy.
ADDRESS CORRESPONDENCE TO:

Simone Sanna-Cherchi, M.D., Division of Nephrology, Columbia University Vagelos College of Physicians and Surgeons, 1150 Street Nicholas Avenue, Russ Berrie Pavilion #412D, New York, New York 10032, USA. E-mail: ss2517@cumc.columbia.edu.
ABSTRACT

Black Americans have a significantly higher risk of developing chronic kidney disease (CKD), especially focal segmental glomerulosclerosis (FSGS), than European Americans. Two coding variants (G1 and G2) in the *APOL1* gene play a major role in this disparity. While 13% of Black Americans carry the high-risk recessive genotypes, only a fraction of these individuals develop FSGS or kidney failure, indicating the involvement of additional disease modifiers.

Here, we show that the presence of the *APOL1* p.N264K missense variant, when co-inherited with the G2 *APOL1* risk allele, substantially reduces the penetrance of the G1G2 and G2G2 high-risk genotypes by rendering these genotypes low-risk. These results align with prior functional evidence showing that the p.N264K variant reduces the toxicity of the *APOL1* high-risk alleles. These findings have important implications for our understanding of the mechanisms of *APOL1*-associated nephropathy, as well as for the clinical management of individuals with high-risk genotypes that include the G2 allele.
Black Americans develop kidney disease at a rate five times higher than European Americans\(^1\). Two African ancestry-associated variants (G1 and G2) in the apolipoprotein L1 (\textit{APOL1}) gene constitute major contributors to this disparity. \textit{APOL1} is a component of the innate immune system targeting African trypanosomes, and the G1 and G2 variants likely rose to high population frequency by conferring resistance to \textit{Trypanosoma brucei rhodesiense} (particularly G2) and \textit{Trypanosoma brucei gambiense} (exclusively G1)\(^2,3\). However, the putative evolutionary benefits come at a cost of increased lifetime risk for kidney disease in individuals with two copies of these variants (i.e., G1/G1, G2/G2, or G1/G2). This is thought to be mediated by the ability of G1 and G2 variants to form cation-selective channels in podocytes resulting in subsequent activation of cytotoxic pathways\(^4-6\). This predisposes to progressive kidney disease, with odds ratios for hypertension-associated end stage kidney disease (ESKD), focal segmental glomerulosclerosis (FSGS), and HIV-associated nephropathy exceeding 7, 17, and 30, respectively, when comparing \textit{APOL1} high-risk (\textit{APOL1-HR}) to low-risk (\textit{APOL1-LR}) genotypes\(^3,7\).

The number of at-risk individuals for \textit{APOL1}-associated FSGS and kidney disease is considerable. In the United States, it is estimated that 13\% of Black Americans carry two high-risk alleles\(^8\), and in certain West African populations, the rate of high-risk genotypes may be as high as 20-25\%\(^8,9\). Approximately 15\% of individuals with an \textit{APOL1} high-risk genotype will develop ESKD, and a smaller fraction, estimated at 5%-8\%, will develop FSGS\(^8\). Due to the high frequency of these genotypes, we estimate that at least 200,000 individuals in the US have \textit{APOL1}-associated FSGS. The incomplete penetrance of \textit{APOL1} high-risk genotypes is thought to reflect the requirement for disease modifiers that potentiate \textit{APOL1} cytotoxicity. A number of “second hits” have been proposed, with the most commonly recognized being high-interferon states (which result in increased \textit{APOL1} expression), either due to direct interferon administration, or caused by viral infections (e.g., HIV, SARS-CoV-2)\(^10,11\). Genetic modifiers have been suggested but, to date, the identification of modifier
genetic variants for APOL1-mediated kidney disease and, particularly, FSGS, remains elusive. The few reported in the literature still require validation12,13.

In 2019, we studied the cytotoxic effect of multiple naturally and non-naturally occurring APOL1 haplotypes in experimental cell-based systems. We found that the toxicity of G1 and G2 alleles was substantially reduced when expressed on the haplotype defined by the APOL1 missense variant p.N264K (chr22:36265628 C>A; rs73885316)14, also associated with a partial loss of trypanolytic function15. These data suggested, at a functional level, a protective effect for this variant against the deleterious cellular effects of the G1 and G2 APOL1 risk variants. The p.N264K defines one of the common G0 (non-risk) APOL1 haplotypes, which is more frequent in individuals of European ancestry, but it is also present on a small fraction of G2 haplotypes in absence of G0, indicating two independent mutational events during evolution only on these two haplotypes. The p.N264K is therefore expected to be mutually exclusive with the APOL1 G1 allele.

To test the hypothesis that the G2-p.N264K haplotype differs in its genetic impact from the more common G2 risk allele without the p.N264K variant, we sought to compare its frequency in APOL1-HR subjects with FSGS to APOL1-HR controls without kidney disease (Figure 1A). First, to eliminate potential confounding by the p.N264K haplotype defined by the more common APOL1 non-risk G0 allele, we excluded all individuals with non-risk, G0-containing genotypes, i.e., G0/G0, G0/G1, and G0/G2. We studied two case-control FSGS discovery cohorts: the first consisted of 434 APOL1-HR FSGS cases and 2,398 genetically matched APOL1-HR population controls subjected to Illumina DNA microarray genotyping and imputation; the second included 94 APOL1-HR FSGS cases and 208 genetically matched APOL1-HR controls with whole genome sequencing data (Supplementary Figure S1), for a total of 528 FSGS cases and 2,606 population controls with no known kidney disease. Next, in order to investigate the impact of the p.N264K variant, we conducted a comprehensive analysis only on APOL1 high-risk individuals, employing categorical approaches (based on allelic frequency) and, as sensitivity analysis, regression-based (based on genotypes) statistical tests. The primary analysis was conducted on categorical variables using a Cochran–
Mantel–Haenszel (CMH) test and considering potential confounding factors such as sex and array-based vs sequence-based genotyping. We then conducted a set of sensitivity analyses: first, we used Firth’s regression test and also incorporated principal components (PCs) as covariates in order to account for potential residual population stratification; second we conducted haplotype-of-origin analysis using Tractor16.

In our \textit{APOL1}-HR FSGS cohorts, we observed a strong protective effect for the p.N264K minor allele ‘A’ (MAF cases = 0.19 % and MAF controls = 2.7%, OR=0.07, 95%CI = 0.01-0.25, CMH test $P=3.4\times10^{-9}$) as compared to \textit{APOL1}-HR controls. Stratifying the cohort for the three \textit{APOL1} high-risk genotypes showed that this variant was only observed within \textit{APOL1}-HR individuals carrying the G2 allele (i.e., G1/G2 and G2/G2) and, as expected, never in G1/G1 subjects (Figure 1, Supplementary Figure S2). These findings support a protective effect of the p.N264K variant only in the context of G2-containing \textit{APOL1}-HR genotypes. In fact, the p.N264K variant seemed to confer complete protection against FSGS as it was never observed in cases in the presence of the G2/G2 genotype: OR=0, 95%CI 0-0.41; CMH test $P=4.4\times10^{-4}$. A strong and significant protective effect was also observed for the G1/G2 genotype with a p.N264K MAF of 3.57% in controls as compared to 0.49% in cases (OR=0.14, 95%CI:0.16-0.52; CMH test $P=4.0\times10^{-4}$). Consistent with these findings, analyzing individuals with G1/G2 or G2/G2 genotypes combined increased the level of statistical significance for the p.N264K protective effect (OR=0.08, 95%CI 0.01-0.3, CMH test $P=2\times10^{-7}$).

The FSGS case-control samples were well-matched on principal component analysis (PCA) (Supplementary Figure S1). In fact, in our sensitivity analyses that additionally adjust for population structure confirmed the results obtained by CMH, as Firth’s regression tests confirmed the strong protective effect of the p.N264K variant against FSGS with comparable effect sizes (Supplementary Figure S2).

As expected from population distribution of haplotypes, in the context of \textit{APOL1}-HR genotypes, the p.N264K is limited to G2-containing genotypes (i.e., G1/G2 or G2/G2). Nevertheless, a recombination event between the p.N264K and the G1 or G2 alleles (although very unlikely given
the proximity of these APOL1 alleles), could result in contamination from the European G0-p.N264K haplotype due to local ancestry admixture. To finally exclude this scenario, in our final sensitivity analysis we conducted haplotype-of-origin analysis in the discovery cohort using Tractor16, a statistical framework that deconvolutes the local haplotypes into ancestral (in this case European and African) haplotypes. This confirmatory analysis showed a significant protective effect of the p.N264K variant exclusively originating from the African haplotype (OR=0.10, 95%CI=0.02-0.29, \(P=1.3\times10^{-7} \)), while the European haplotype was non-significant (OR(ADJ)=0.74, 95%CI= 0.00-11.37, \(P=0.85 \)) despite larger sample size (Supplementary Figure S3). Again, stratifying for G1/G2 or G2/G2 further validated the G2-specific protective effect of the p.N264K variant for the African haplotype (OR=0.12, 95%CI=0.02-0.35, \(P=3.53\times10^{-6} \)) but not for the European haplotype (OR(ADJ)=0.76, CI=0.00-12.75, \(P=0.86 \)).

Overall, these results support a strong protective effect of the \(\text{APOL1} \) p.N264K missense variant against \(\text{APOL1} \)-associated FSGS, but this effect occurs exclusively on G2-containing \(\text{APOL1} \) high-risk genotypes of African origin. In practical terms, based on these analyses, \(\text{APOL1-HR} \) individuals are at least 8.3 times less likely to develop FSGS if they carry one copy of the p.N264K missense variant.

Finally, to test the generalizability of these findings to milder forms of \(\text{APOL1} \)-associated kidney disease, we investigated the protective effect of the \(\text{APOL1} \) p.N264K in individuals from the REasons for Geographic and Racial Differences in Stroke (REGARDS)\(^{17} \) and Electronic Medical Records and Genomics Phase III (eMERGE-III)\(^{18} \) studies. In aggregate, these cohorts included 1,573 \(\text{APOL1-HR} \) individuals with available kidney function data. Of these, 276 had CKD stage 3 or worse (considered as cases), and 1,297 genetically-matched \(\text{APOL1-HR} \) controls with estimated glomerular filtration rate (eGFR) >60ml/min/1.73m\(^2 \) (Supplementary Figure S4). Despite the smaller sample size, milder form of \(\text{APOL1} \)-associated kidney disease, and incomplete clinical data to classify and exclude unrelated causes for CKD in these cohorts, the findings revealed a direction-consistent protective effect for the p.N264K variant among individuals with the \(G2-\text{APOL1-HR} \) genotypes, by
which p.N264K carriers were 3.3 times less likely to have CKD3 or worse (OR=0.30, 95%CI: 0.11-0.83, CMH $P=0.023$, Supplementary Table S2), with this likely representing an underestimation due to confounders as mentioned above.

In conclusion, here we report on the strong protective effect of the $APOL1$ p.N264K missense variant against G2-mediated FSGS and kidney disease. These results have immediate and broad implications for translational research and clinical practice. First, from the genetic standpoint, it is important to note that we observed a very large effect of p.N264K on mitigating the consequences of the G2 risk allele but saw no evidence of this variant on the more common G1 risk allele. As consequence, because p.N264K and G1 alleles are mutually exclusive, this finding raises the possibility of additional genetic modifiers specific to G1 and, in general, identifiable by considering genotype-specific $APOL1$ studies. In addition to studies of the $APOL1$ high-risk genotype as a single genetic driver, analyses conducted by partitioning cohorts into the three specific $APOL1$ high-risk genotypes, although might require larger sample sizes, are likely to provide significant additional insight into the genetics and underlying biology of $APOL1$-associated FSGS and kidney disease. Second, our genetic observations are in agreement with our previous functional studies showing that the p.N264K variant is able to reverse the cytotoxic effect of both G1 and G2 risk variants in cell-based assays14.

Taken together, these data support the hypothesis that the p.N264K missense variant negates the toxic effect of the G2 allele, and will allow the reclassification of a fraction of $APOL1$ G1/G2 or G2/G2 high-risk individuals as having a non-high-risk genotype if p.N264K is also present. This discovery has substantial, immediate, and clinically-relevant implications. First, individuals affected by CKD or ESKD with $APOL1$ G1/G2 or G2/2 high-risk genotypes but with the p.N264K missense variant are unlikely to have APOL1-associated FSGS, and therefore an additional cause (immune, toxic, structural, or others) should be investigated because this will likely result in a different therapeutic approach. Second, importantly, in kidney transplant settings, these results can significantly affect donor selection and both donor kidney, and recipient graft, outcome. In fact, $APOL1$ G2-HR donors
who are p.N264K positive will likely have kidney outcomes similar to any of the G1G0, G2G0, and G0G0 low-risk donors, thus expanding donors’ pool; kidney transplant recipients of a APOL1-HR-p.N264K kidney will likely have low risk for developing de novo FSGS on the graft or graft failure from APOL1-associated kidney disease. Third, incorporation of this knowledge will allow more accurate study design for new intervention trials by which individuals with APOL1-HR-p.N264K genotypes should not be included in the intervention arm as cases since this genotype is genetically and functionally a low-risk genotype. Finally, the knowledge presented here will affect family risk stratification and planning, and, in general, CKD risk ascertainment at the population level.

ACKNOWLEDGEMENTS

We thank the patients and their family members for participating in this study.

DISCLOSURES

M.R.P. and D.J.F. report research support from Vertex. E.E.K. has received personal fees from Regeneron Pharmaceuticals, 23&Me, Allelica, and Illumina; has received research support from Allelica; and serves on the advisory boards for Encompass Biosciences, Overtone, and Galatea Bio Inc. Bio. D.S.P. and S.P. are current employees and stockholders of AstraZeneca. W.K.C. is on the Board of Directors of Prime Medicine and RallyBio. D.B.G. is the Co-founder and CEO of Actio Biosciences. A.G.G. receives a research grant from Natera and has served on advisory boards for Natera through a service agreement with Columbia University. A.G.G. has served on advisory boards for Actio Biosciences, Novartis, Travere, and Alnylam and has stock options for Actio Biosciences.

FUNDING

This research was supported by the Department of Defense (W81XWH-16-1-0451, W81XWH-22-1-0966) and by the National Center for Advancing Translational Sciences, National Institutes of Health (Grant Number UL1TR001873), to S.S-C., by the National Institute of Health Grant RC2-DK122397, to S.S-C, M.R.P., F.H., and M.G.S, by the National Institute of Health Grant R01-DK007092 to M.R.P. and D.J.F., and by the National Institute of Health Grant RC2-DK116690 to K.K. and M.K. M.G.S is also supported by R01-DK119380 and the Pura Vida Kidney Foundation. J.B.K. is supported by the Intramural Research Program, NIDDK, NIH. A.G.G. is supported by NIDDK 1U01-DK100876 and
K.K. is additionally supported by R01-DK105124, R01-DK136765, R01-LM013061, 2U01-HG008680, U01-AI152960, and 5UL1-TR001873. R.G. is supported by 1R01-DK134347-01, NIH/NICHD 1R21-HD104176-01. F.H. is supported by R01-DK076683. The eMERGE Network was initiated and funded by NHGRI through the following grants: Phase IV: U01HG011172 (Cincinnati Children’s Hospital Medical Center); U01HG011175 (Children’s Hospital of Philadelphia); U01HG008680 (Columbia University); U01HG011176 (Icahn School of Medicine at Mount Sinai); U01HG008685 (Mass General Brigham); U01HG006379 (Mayo Clinic); U01HG011169 (Northwestern University); U01HG011167 (University of Alabama at Birmingham); U01HG008657 (University of Washington); U01HG011181 (Vanderbilt University Medical Center); U01HG011166 (Vanderbilt University Medical Center serving as the Coordinating Center); Phase III: U01HG8657 (Group Health Cooperative/University of Washington); U01HG8685 (Brigham and Women’s Hospital); U01HG8672 (Vanderbilt University Medical Center); U01HG8666 (Cincinnati Children’s Hospital Medical Center); U01HG6379 (Mayo Clinic); U01HG8679 (Geisinger Clinic); U01HG8680 (Columbia University Health Sciences); U01HG8684 (Children’s Hospital of Philadelphia); U01HG8673 (Northwestern University); U01HG8701 (Vanderbilt University Medical Center serving as the Coordinating Center); U01HG8676 (Partners Healthcare/Broad Institute); and U01HG8664 (Baylor College of Medicine); Phase I-II: U01HG006828 (Cincinnati Children’s Hospital Medical Center/Boston Children’s Hospital); U01HG006830 (Children’s Hospital of Philadelphia); U01HG006389 (Essentia Institute of Rural Health, Marshfield Clinic Research Foundation and Pennsylvania State University); U01-HG006382 (Geisinger Clinic); U01-HG006375 (Group Health Cooperative/University of Washington); U01-HG006379 (Mayo Clinic); U01-HG006380 (Icahn School of Medicine at Mount Sinai); U01HG006388 (Northwestern University); U01-HG006378 (Vanderbilt University Medical Center); U01-HG006385 (Vanderbilt University Medical Center serving as the Coordinating Center); U01HG004438 (CIDR) and U01HG004424 (the Broad Institute) were serving as phase I Genotyping Centers. The CureGN Study is supported by the National Institute of Health grants 2U01-DK100876. The Nephrotic Syndrome Study Network (NEPTUNE) is part of the Rare Diseases Clinical Research Network (RDCRN), which is funded by the National Institutes of Health (NIH) and led by the National Center for Advancing Translational Sciences (NCATS) through its Division of Rare Diseases Research Innovation (DRDRI). NEPTUNE is funded under grant number U54DK083912 as a collaboration between NCATS and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Additional funding and/or programmatic support is provided by the University of Michigan, NephCure Kidney International, Alport Syndrome Foundation, and the Halpin Foundation. RDCRN consortia are supported by the RDCRN Data Management and Coordinating Center (DMCC), funded by NCATS and the National Institute of Neurological Disorders and Stroke (NINDS) under U2CTR002818. The REGARDS study is supported by cooperative agreement U01 NS041588 co-funded by the National
Institute of Neurological Disorders and Stroke (NINDS) and the National Institute on Aging (NIA), National Institutes of Health, Department of Health and Human Service. Representatives of the NINDS were involved in the review of the manuscript but were not directly involved in the collection, management, analysis or interpretation of the data. The authors thank the other investigators, the staff, and the participants of the REGARDS study for their valuable contributions. A full list of participating REGARDS investigators and institutions can be found at: https://www.uab.edu/soph/regardsstudy/.

N.A.L. is supported by the NIH Grant U01-HG011167. Y.G. is supported by the NEPTUNE Fellowship UMINCH-SUBK00018902. A.M. received support from the American Society of Nephrology KidneyCure Ben J. Lipps Research Fellowship. A.M., L.G, W.M., and G.M. are members of the European Reference Network for Rare Kidney Diseases (ERKNet). A.K. is supported by the NIDDK grant 5K25-DK128563-03. The generation of the whole-genome sequencing data in the CureGN Study was supported by AstraZeneca. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

LEGEND TO FIGURES

Figure 1. Protective effect of the APOL1 p.N264K missense variant against G2-associated FSGS

A) Graphical representation of the study design, cohorts and main results of the study.

Stratified association analysis of the combined cohort of 528 APOL1 high-risk FSGS and 2,606 genetically-matched APOL1 high-risk controls: B) stacked bar plot for the p.N264K MAF across APOL1-HR genotypes in cases and controls; the Allele C is the reference allele encoding for the p.N264; the Allele A is the minor allele resulting the p.K264 variant aminoacid; C) Forest plot for the p.N264K association analysis showing significantly protective odds ratios across APOL1-HR genotypes.

FSGS=focal segmental glomerulosclerosis; CKD=chronic kidney disease; ESKD=end-stage kidney disease; AF=allele frequency; Ctrls=controls; OR=odds ratio; CI=95% confidence interval; MAF=minor allele frequency.

REFERENCES
A.

Cohort 1: FSGS

- 528 cases
- 2,606 controls
- OR = 0.08 (0.01-0.30)

Cohort 2: CKD3-ESKD

- 276 cases
- 1,297 controls
- OR = 0.30 (0.11-0.83)

B.

Graph showing allele frequencies (AF) for different genotypes:
- Allele A
- Allele C

C.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Cases/Controls</th>
<th>OR [CI]</th>
<th>P</th>
<th>MAF (%)</th>
<th>Cases</th>
<th>Ctrl</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>528/2606</td>
<td>0.067 [0.008-0.249]</td>
<td>3.43x10^-9</td>
<td>0.19</td>
<td>2.69</td>
<td></td>
</tr>
<tr>
<td>G1G2</td>
<td>203/1217</td>
<td>0.136 [0.160-0.519]</td>
<td>3.99x10^-4</td>
<td>0.50</td>
<td>3.57</td>
<td></td>
</tr>
<tr>
<td>G2G2</td>
<td>62/398</td>
<td>0 [0-0.410]</td>
<td>4.39x10^-4</td>
<td>0</td>
<td>6.66</td>
<td></td>
</tr>
<tr>
<td>G1G2+G2G2</td>
<td>265/1615</td>
<td>0.081 [0.010-0.302]</td>
<td>2.01x10^-7</td>
<td>0.38</td>
<td>4.33</td>
<td></td>
</tr>
</tbody>
</table>