Abstract
Objective To confirm and investigate why pathological HFOs (pHFOs), including Ripples [80-200 Hz] and fast ripples [200-600 Hz], are generated during the UP-DOWN transition of the slow wave and if pHFOs interfere with information transmission.
Methods We isolated 217 total units from 175.95 iEEG contact-hours of synchronized macro- and microelectrode recordings from 6 patients. Sleep slow oscillation (0.1-2 Hz) epochs were identified in the iEEG recording. iEEG HFOs that occurred superimposed on the slow wave were transformed to phasors and adjusted by the phase of maximum firing in nearby units (i.e., maximum UP). We tested whether, in the seizure onset zone (SOZ), HFOs and associated action potentials (AP) occur more often at the UP-DOWN transition. We also examined ripple temporal correlations using cross correlograms.
Results At the group level in the SOZ, HFO and HFO-associated AP probability was highest during the UP-DOWN transition of slow wave excitability (p≪0.001). In the non-SOZ, HFO and HFO-associated AP was highest during the DOWN-UP transition (p≪0.001). At the unit level in the SOZ, 15.6% and 20% of units exhibited more robust firing during ripples (Cohen’s d=0.11-0.83) and fast ripples (d=0.36-0.90) at the UP-DOWN transition (p<0.05 f.d.r corrected), respectively. By comparison, also in the SOZ, 6.6% (d=0.14-0.30) and 8.5% (d=0.33-0.41) of units had significantly less firing during ripples and fast ripples at the UP-DOWN transition, respectively. Additional data shows ripple temporal correlations, involving global slow waves, between the hippocampus, entorhinal cortex, and parahippocampal gyrus were reduced by ∼50-80% in the SOZ compared to the non-SOZ (N=3).
Significance The UP-DOWN transition of slow wave excitability facilitates the activation of pathological neurons to generate pHFOs. The pathological neurons and pHFOs disrupt ripple temporal correlations across brain regions that transfer information and may be important in memory consolidation.
Key Points
In the SOZ, HFO probability is highest during the UP-DOWN transition of slow wave excitability.
In the SOZ, action potentials associated with HFOs occur at the highest probability at the UP-DOWN transition.
In the SOZ, a subpopulation of individual units fire more robustly during HFOs at UP-DOWN compared to HFOs at DOWN-UP.
Ripple temporal correlations between the hippocampus and other mesial-temporal structures are reduced in the SOZ.
Competing Interest Statement
Disclosures Statement: S.A.W., I.F., J.E., A.B., S.W., R.K.S.W, Y.N has nothing to disclose, M.R.S has received compensation for speaking at continuing medical education (CME) programs from Medscape, Projects for Knowledge, International Medical Press, and Eisai. He has consulted for Medtronic, Neurelis, and Johnson & Johnson. He has received research support from Eisai, Medtronic, Neurelis, SK Life Science, Takeda, Xenon, Cerevel, UCB Pharma, Janssen, and Engage Pharmaceuticals. He has received royalties from Oxford University Press and Cambridge University Press.
Funding Statement
K23NS094633 a Junior Investigator Award from the American Epilepsy Society R01NS106958 R01NS033310 ERC2019CoG864353
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Richard Staba Professor University of California Los Angeles: Ethics Committee/IRB of University of California gave ethical approval of this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
added a supplementary figure and minor changes to the text.