Assessing feasibility and risk to translate, de-identify and summarize medical letters using deep learning

Lucas W. Gauthier¹,², Marjolaine Willems², Nicolas Chatron¹,³, Camille Cenni⁴, Pierre Meyer⁵, Valentin Ruault², Constance Wells², Quentin Sabbagh², David Genevieve², Kevin Yauy⁶

¹ Genetics Department, Lyon University Hospital, Lyon, France
² Montpellier University, Inserm U1183, IRMB, Reference center for congenital anomalies, Clinical Genetic Unit, Montpellier University Hospital Center, Montpellier, France
³ Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261 -INSERM U1315, Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
⁴ Clinical Cytology and Genetics Department, Carémeau Hospital, Nîmes, France.
⁵ Department of Pediatric Neurology, Montpellier University Hospital Center, PhyMedExp, CNRS, INSERM, Montpellier University, Montpellier, France
⁶ Univ Montpellier, LIRMM, CNRS, Reference center for congenital anomalies, Clinical Genetic Unit, Montpellier University Hospital Center, Montpellier, France

* Corresponding authors. Email: lucas.gauthier01@chu-lyon.fr and kevin.yauy@chu-montpellier.fr

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Precision medicine requires accurate phenotyping and data sharing, particularly for rare diseases. However, sharing medical letters across language barriers is challenging, as inconsistent and incomplete Human Phenotype Ontology (HPO) terms provided by physicians can lead to a loss of clinical information.

Methods: To assess the feasibility and the risk of using deep learning methods to translate, de-identify and summarize medical letters, we developed an open-source deep learning multi-language software in line with health data privacy. We conducted a non-inferiority clinical trial using deep learning methods versus a physician to de-identify protected health information (PHI) targeting a minimum sensitivity of 90% and specificity of 75%, and summarize non-English medical letters in HPO format, aiming a sensitivity of 75% and specificity of 90%.

Results: From March to April 2023, we evaluated 50 non-English medical letters from 8 physicians coming from 12 different indications of which neurodevelopmental disorders, congenital disorders, fetal pathology and oncology. Letter contains in median 15 PHI and 7 HPO terms. Deep learning method achieved a sensitivity of 99% and a specificity of 87% in de-identification, and a specificity of 92% in summarizing medical letters, reporting a median number of 6,6 HPO terms per letter, which is equivalent to the number of HPO terms provided usually by physicians in databases (6,8 in PhenoDB).

Conclusions: De-identification and summarization of non-English medical letters using deep learning methods, compared with the current manual physician’s method reports non-inferior performance, providing insights on AI usage to facilitate precision medicine.
Introduction

Precision medicine requires precise phenotyping and structured electronic health records based on clinical data sharing, especially in the context of rare diseases, where matching patients worldwide is crucial \(^1\).

In particular, medical letters contain critical information about a patient's condition, making them crucial for communication between healthcare providers \(^2\). However, sharing letters between providers who speak different languages can be challenging and time-consuming, especially if the letters need to be translated and de-identified to protect patient privacy \(^3\). Moreover, medical letters are unstructured text which is difficult to exploit in precision medicine.

As an alternative, the community adopted the Human Phenotype Ontology (HPO) that enabled physicians to use a common language with machines \(^4\). Sharing HPO terms summarizing clinical descriptions has already proved effective in discovering new diseases through MatchMaker Exchange\(^5\) and is a key element for computational phenotype analysis in genome sequencing analysis \(^6\). However, HPO terms furnished by physicians appear to have significant differences when evaluated, requiring standardization of practices and reproducibility to communicate more efficiently. Moreover, they are generally partially filled, losing clinical information \(^7\).

Recent advancements in Artificial Intelligence (AI) including deep learning and natural language processing show potential in addressing sharing of medical information challenges \(^8\). However, the use of black box approach and cloud-only systems may not comply with the General Data Protection Regulation (GDPR) with health data. Therefore, it is recommended to keep Protected Health Informations (PHI) in-house and keep
processing of medical data off-line. Achieving de-identified and structured clinical data is a key element to efficiently exploit clinical data warehouse and apply algorithms to discover and better understand diseases.

To assess the feasibility and the risk to translate, de-identify and summarize medical letters using deep learning, we developed an open-source software for multi-language translation, de-identification, and summarization of medical letters using HPO terms in line with FAIR principles while ensuring data privacy and security. This deep learning-based software was evaluated by a non-inferiority trial of 50 medical letters in de-identification and summarization using HPO terms compared to a physician.
Methods

STUDY POPULATION

A multi-centric and prospective study was conducted at University Hospital Center of Montpellier and University Hospital Center of Nîmes to evaluate the performance of a software that generates English translations, de-identifies, and summarizes symptoms in the Human Phenotype Ontology (HPO) format from non-english medical consultation or hospitalization letters. The study included patients with suspected genetic disorders and non-opposition consent for the use of their clinical data in this study was collected after being informed by physicians. The first edited or available letters (consultation or hospitalization) in patient’s Electronic Health Records (EHR) were included and their first and last name were pseudonymised before inclusion. Patients who did not provide consent or did not have consultation or hospitalization letter were excluded. The study was approved by the Institutional Review Board (IRB) of University Hospital Center of Montpellier on April 14th 2023 (IRB-MTP_2023_04_202301351).

STUDY DESIGN

In this study, a physician examined 50 medical letters and initiated a multi-step analysis using the deep learning method. Firstly, the proband names were de-identified to ensure privacy. Subsequently, the medical letters underwent various processes within the framework, including abbreviation expansion, translation correction, PHI de-identification according to the University of Chicago's HIPAA privacy rules. The physician conducted a meticulous comparison between the results obtained from the pipeline and their own assessments. The evaluation involved assessing the quantity and accuracy of de-
identification, translation, and summarization using HPO terms, while systematically documenting any errors encountered, specifying their severity, and providing explanations for their occurrence.

The primary endpoint of this study is to compare the number of PHI that are de-identify by an automated framework to the number that are de-identified by a physician.

The software validation for this study's secondary endpoint includes evaluating the non-inferiority of the tool compared to a physician in terms of de-identification and symptom summarization in HPO format. For being sustainable in routine clinical practice, we targeted a minimal sensitivity of 90% and specificity of 75% of de-identification and a sensitivity of 75% and specificity of 90% of summarization. Errors in the de-identification process are categorized as major (e.g. including identifiable information) or moderate (e.g. indirectly identifying PHI), while errors in summarized information are categorized as major (e.g. missing the diagnosis) or moderate (e.g. incorrect summarized information). This three-levels assessing risk system is detailed in Table S1.

DEEP LEARNING MEDICAL LETTER PROCESSING

Letter was processed according to the following offline pipeline: a) Text was first expanded with abbreviations gathered previously, b) Expanded text was translated into English using the Marian translator, an open-source neural machine translation tool developed by OpenNMT 11 (https://marian-nmt.github.io), c) Translated and corrected text was de-identified from PHI using Microsoft's Presidio (https://microsoft.github.io/presidio/), d) Translated and de-identified text is summarized in HPO format, including symptoms’ quantitative data, using a upgraded version of ClinPhen 12, and flagged “high-confidence”
or “low-confidence” according the possibility of being associated to a relatives-concerned or a negatives sentences. An example of the deep learning method processing on a typical French medical letter is presented in the Figure 1.

Hybrid processing with human correction of medical terms and databases

To avoid reading difficulties and losing clinical information, we implemented a hybrid process involving both human review and AI techniques (Table 1), using French as a proof of concept.

In order to identify and prevent de-identification errors, we compiled a comprehensive list of 2998 medical associated proper names, 4939 officinal drugs and 109804 genes symbols from various databases, including the OMIM phenotype title (March 2023 update, https://omim.org/), Human Phenotype Ontology terms (March 2023 release), ANSM lists of official medication in allopathy without homeopathy and herbal medicine (March 2023 update), and complete HGNC approved gene dataset (March 2023 update) to excluded them from de-identification. Given that method location detection was insufficient concerning French territories, we implemented a list composed of 34981 proper names of French cities, departments and regions coming from INSEE' official geographic code (https://www.insee.fr/fr/information/6051727, January 2022 release) to force de-identification. Concerning abbreviation, we have listed 146 frequent French country-specific abbreviations, usually stand for pathologies, medical related structures, technologies and analysis, collected from Geneva University Hospitals’ glossary (http://abreviationsmedicales.ch/), as well as the collaborative Wikipedia page "Liste d’abréviations en médecine" (https://fr.wikipedia.org/wiki/Liste_d%27abr%C3%A9viations_en_m%C3%A9decine), and the Pays de la Loire Regional Health Agency (ARS) abbreviation list (https://www.pays-de-
la-loire.ars.sante.fr/system/files/2018-06/Aide%20-%20Acronymes.pdf), to write them out in full in French and translate them into English. Five among those cannot be expanded because of their ambivalent meaning (e.g. TCA, CMT, RCP).

To ensure an accurate translation of the clinical information, a correction dictionary composed of 4646 terms was created from the French translation of Human Phenotype Ontology (accessible in PhenoTips website https://nexus.phenotips.org/nexus/content/repositories/releases/org/phenotips/vocabulary-hpo-translation-french/1.4-rc-4/, October 2018 release) and manually reviewed. 163 translations have been removed because of misleading translation without alternative, 54 have been replaced.

STATISTICAL ANALYSIS

In this study, we have considered the missed PHI de-identification as False Negative (FN) and the excess of de-identification of non-PHI information as False Positive (FP). As well, for the summarization, we have considered the excess of HPO terms as False Positive and the missed HPO terms as False Negative. True Positive (TP) and True Negative (TN) were de-identification and summarization for which the assessing physician corroborates the tool statement. To assess this method, we use sensitivity and specificity thresholds as primary objectives. Specificity is a statistical measure that quantifies the proportion of true negatives in a diagnostic test, represented by the formula: Specificity = TN / (TN + FP).

Sensitivity is a statistical measure that quantifies the proportion of true positives in a diagnostic test, represented by the formula: Sensitivity = TP / (TP + FN).
CODE AVAILABILITY

This deep learning method is open-source and can be installed for offline usage on a local machine by following instructions at https://github.com/kyauy/ClinFly or used directly online at https://huggingface.co/spaces/kyauy/ClinFly. This method manages French, German and Spanish language. A translated and de-identify letter can be downloaded as a text file output. The list of symptoms can be downloaded in CSV or PhenoTips JSON format, compatible with most EHR entries especially in genome sequencing platforms.
Results

STUDY DATA

From March to April 2023, we have gathered 46 consultations letters and 4 hospitalization reports written between 2019 and 2023 by eight different physicians, concerning 50 patients, whose median age in letter was 6 years old coming from 12 different indications of which neurodevelopmental disorders (54%), congenital disorders, fetal pathology and oncology. In median, a letter contains 478 words, 3180 characters, 3 abbreviations, 15 PHI and 7 HPO terms. The distribution between the PHI and HPO terms is shown in Figure 2. The cohort characteristics are detailed in the Table 2.

STUDY ANALYSIS

Primary endpoint

Deep learning method de-identified 443 of the 449 existing PHI, achieving the primary objectives with a sensitivity of 99%, which is superior to the 90% predefined minimal sensitivity threshold. Concerning de-identification, 51 were due to the French territories dictionary, 231 were due to the date and time detection module and 166 were due to the person detection module of the software. For the six remaining errors, three of those were moderate errors, missing a location information (i.e. “Paris”, “Nîmes”) and the three others were major errors, missing the mother’ maiden name of the proband.
Secondary endpoints

Assessing medical letter summarizing using HPO format

Deep learning method summarized 207 on 227 high confidence correct HPO terms, reaching a specificity of 92%, which is superior to the 90% predefined minimal specificity threshold of summarizing medical letter using HPO format. The low confidence summarized informations allowed to save 125 HPO terms, on 255 proposed, leading to 29% of recall. Encompassing the high and low confidence summarized informations, deep learning method summarized 332 on the 426 HPO terms, which is equivalent to 6.6 HPO per letter in median, and an overall sensibility of 78%, which is superior to the 75% predefined minimal sensibility threshold.

The 130 low confidence HPO terms left were objectively false because of a negative form (83/130), a family member sentences (31/130), a translation/summarized issue (130) or due to a mention of a symptom yet to come (2/130). Concerning the false high confidence HPO terms summarization, half of them were because of a translation or an summarization issue (major error), 7 of them were due to a family member sentence (moderate error) and 3 of them were due to the mention of symptoms yet to come, in description syndrome paragraph (not included as error).

Evaluation of de-identification processing

Deep learning method keeped 362 of 495 non-PHI informations, with an overall specificity of 78%, or a 87% specificity if encompassing only moderate and major errors, which is superior to the 75% threshold.
Thanks to the hybrid processing to keep pertinent clinical information, deep learning only de-identified 9 non-PHI diagnosis or indication in excess (i.e. “onychodysplasia”, “Iso Kikuchi”) coming from the same medical letter, 55 non-PHI clinical informations (symptom), 69 non-PHI non-clinically relevant words (this, by, morning...), considered respectively as major, moderate and minor errors.
Discussion

In this study, we conducted an non-inferiority trial to evaluate the feasability and the risk of a deep learning method for translation, de-identification and summarization of medical letters compliant to health data privacy, compared to a physician.

To assess deep learning methods, we developed an open-source software reaching 99% sensibility and 87% specificity of de-identification of PHI information. Assessing medical letters summarizing using HPO format reaching a 92% specificity, highlighting the high reliability of the symptoms summarization using this system. Overall, this deep learning method successfully summarized 332 of the 426 HPO terms which is equivalent to 6.6 HPO per letter in median. This performance is comparable to the median number of symptoms manually filled out by physicians in PhenoDB and the MatchMaker Exchange initiative 13.

To our knowledge, there is no other existing multi-language framework allowing physicians to translate, de-identify and summarize medical letters. Moreover, concerning the HPO format summarization, performances are similar to pre-existing automated tools such as Doc2HPO 14. This deep learning method reliably delivers scalable results, validated through rigorous testing, making it suitable for handling large data volumes without compromising accuracy. To ensure anonymity and accuracy, the deep learning framework was specifically designed to maintain high sensitivity in PHI de-identification and high specificity in summarizing medical letters using HPO, prioritizing excess of de-identification of the medical letter and generating fewer but accurate symptoms. These sensitivity and specificity thresholds were chosen because they allow the framework to be used in routine clinical practice, although human corrective action maybe necessary to verify the data generated especially to get the most comprehensive data.

Despite extensive efforts, some PHI remained identifying. However, we believe that these
remaining location-related PHI can be effectively addressed through software enhancements, further improving the efficiency of deep learning in de-identify medical letters. This method does process German and Spanish medical letters, however, no manual curation improvement has been developed for those languages yet. Our study data was mainly based on medical letter from clinical geneticists. Therefore this could explain why family member symptoms represent 35% of excess of summarized informations errors; we consider that this risk is maximal in genetic medical letters due to the systematic mention of the family medical background.

In addition, proper names from classifications, surgical techniques and study names are not managed and usually undergo an excess of de-identification. We did not implement a module to recognize drug medications indications and summarize by the corresponding HPO terms. Another limitation of this method is the management of multiple patients and family members on a single medical letter. Although we conducted preliminary evaluations and selected the tools based on our assessments, a more comprehensive benchmark of existing deep learning methods would have been beneficial.

Machine learning tools such as LLM and GPT could benefit for translation, de-identification and summarization when it will be compatible with medical data privacy restriction.

Overall, our results demonstrate the potential of AI methods in improving the efficiency and accuracy of PHI de-identification and summarizing medical letters in HPO format. AI could help to overcome manual entries of clinical data, facilitating the exploitation of the "genotype-first" approach in medical genomics to discover new disease-gene, expand clinical spectrum and retro-phenotype the patient by presume and confirm the diagnosis with a variant of interest.
Deep learning method reports non-inferior performance as physician to de-identify and summarize in HPO format non-English medical letters with reliable and scalable results. This study provides insights on how to exploit medical letters that allows physicians to share structured clinical data to facilitate precision medicine.

References

Chers collègues, j’ai reçu en consultation M. John Doe né le 14/07/1789 à Paris pour une fièvre récurrente et une maladie de Crohn. Il a pour antécédent des épistaxis récurrents. Parmi les antécédents familiaux, sa maman a présenté un cancer des ovaires. Il mesure 1.90 m (+2.5 DS), pèse 93 kg (+3.0 DS) et son PC est à 57 cm (+0DS) ...

<table>
<thead>
<tr>
<th>HPO_ID Phenotype name</th>
<th>keep_in_list</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP:0001945 Fever</td>
<td></td>
<td>high</td>
</tr>
<tr>
<td>HP:0001954 Recurrent fever</td>
<td></td>
<td>high</td>
</tr>
<tr>
<td>HP:0100280 Crohn’s disease</td>
<td></td>
<td>high</td>
</tr>
<tr>
<td>HP:0000421 Epistaxis</td>
<td></td>
<td>high</td>
</tr>
<tr>
<td>HP:0004406 Recurrent epistaxis</td>
<td></td>
<td>high</td>
</tr>
<tr>
<td>HP:0004324 Increased body weight</td>
<td></td>
<td>high</td>
</tr>
<tr>
<td>HP:0000098 Tall stature</td>
<td></td>
<td>high</td>
</tr>
<tr>
<td>HP:0002664 Neoplasm</td>
<td></td>
<td>low</td>
</tr>
<tr>
<td>HP:0100615 Ovarian neoplasm</td>
<td></td>
<td>low</td>
</tr>
</tbody>
</table>
50 non-English medical letters
- 46 consultation
- 4 hospitalization

449 PHI

6 FN PHI
- 3 mother maiden name
- 3 French territories

133 FP PHI
- 9 diagnostic (2 unique diagnostic)
- 55 non-PHI symptom
- 69 non-PHI non clinically relevant

443 anonymized PHI
- 51 Location PHI
- 231 Time&Date PHI
- 166 Person PHI

426 proband HPO terms

94 FN
- 20 FP high confidence
 - 10 absent symptom
 - 7 symptom in relatives
 - 3 symptom yet to come
- 130 FP low confidence
 - 14 tool specific errors
 - 83 negative symptom
 - 31 symptom in relatives
 - 2 symptom yet to come

332 HPO extracted
- 207 high confidence
- 125 low confidence
Medical letters are sensitive, unstructured and multi-language

1. Translate
Enzo DUPONT
né le 10/12/2021
mesure 75cm (-2DS)
Surdité

2. Anonymize
CAS INDEX
born in "DATE"
measures 75cm (-2SD)
Hearing impairment

3. Summarize in HPO format
removed Name
removed Birthdate
HP:0001263: Short stature
HP:0000365: Hearing
impairment

AI processing is corrected using curated resources to ensure a safe and accurate system

Assessing feasibility and risk of deep learning processing

<table>
<thead>
<tr>
<th>Anonymization</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se = 99%</td>
<td>Sp = 91%</td>
</tr>
<tr>
<td>Sp = 78%</td>
<td>Se = 78%</td>
</tr>
<tr>
<td>Steps</td>
<td>Count</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Translation issue</td>
<td></td>
</tr>
<tr>
<td>Getting full and</td>
<td></td>
</tr>
<tr>
<td>accurate informations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbreviations</td>
<td>146</td>
</tr>
<tr>
<td>Translation errors</td>
<td>4646</td>
</tr>
<tr>
<td>De-identification</td>
<td></td>
</tr>
<tr>
<td>issue</td>
<td></td>
</tr>
<tr>
<td>Not to miss PHI and</td>
<td></td>
</tr>
<tr>
<td>avoid over-anonymization of clinical informations</td>
<td></td>
</tr>
<tr>
<td>Proper name: syndrome</td>
<td>1263</td>
</tr>
<tr>
<td>Proper name: symptom</td>
<td>1735</td>
</tr>
<tr>
<td>Drug</td>
<td>4939</td>
</tr>
<tr>
<td>Gene</td>
<td>109804</td>
</tr>
<tr>
<td>French territories</td>
<td>34981</td>
</tr>
<tr>
<td>Cohort</td>
<td>n [min_max]</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Number of physician</td>
<td>8</td>
</tr>
<tr>
<td>Number of consultation letter</td>
<td>50</td>
</tr>
<tr>
<td>Number of indication</td>
<td>12</td>
</tr>
<tr>
<td>Median age in letter</td>
<td>6 [0-50]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metrics per letter in median</th>
<th>n [min_max]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>478 [229-1728]</td>
</tr>
<tr>
<td>Characters</td>
<td>3180 [1571-11405]</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>3 [0-14]</td>
</tr>
<tr>
<td>PHI</td>
<td>15 [5-70]</td>
</tr>
<tr>
<td>HPO terms</td>
<td>7 [2-26]</td>
</tr>
</tbody>
</table>