Pneumococcal Serotype Prevalence in Southeast Asia: A Systematic Review and Meta-Analysis

Alex J. J. Lister MScPH\(^1\), Evelin Dombay PhD\(^1\), David W. Cleary PhD\(^2,3\) and Stuart C. Clarke PhD\(^1,4,5,6,7\)

\(^1\)Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
\(^2\)Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham
\(^3\)NIHR Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham
\(^4\)NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Trust, Southampton, UK
\(^5\)Global Health Research Institute, University of Southampton, Southampton, UK.
\(^6\)School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia.
\(^7\)Centre for Translational Research, IMU Institute for Research, Development, and Innovation (IRDI), Kuala Lumpur, Malaysia.

*Corresponding author: Mr Alex Lister, Faculty of Medicine, Infectious Disease Epidemiology Group, University of Southampton, Mail point 814, Level C, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton Foundation NHS Trust, Southampton SO16 6YD, UK

Email address: a.lister@soton.ac.uk

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background
The prevalence of *Streptococcus pneumoniae* serotypes in the ASEAN region is not well studied despite severe pneumococcal infections being a major cause of death among children in the region. This information is crucial for understanding the epidemiology of the disease and guiding vaccine policies. Our study aimed to provide a thorough analysis of the pneumococcal serotypes in ASEAN prior to vaccine introduction to assist countries in formulating evidence-based vaccine policies.

Methods
We conducted a systematic review and meta-analysis of studies reporting *S. pneumoniae* serotypes from carriage, invasive disease (IPD) and non-invasive disease (non-IPD) published up until 31st December 2022 using PubMed, PubMed Central, Ovid MEDLINE and Scopus databases, reference lists and search engines. Data prior to the national introduction of conjugate vaccines in the ASEAN region were included. Non-English, animal, case studies, reviews, and studies on antibiotic resistance only were excluded. The quality of studies was examined using the CASP and the JBI’s Critical Appraisal Tools. The frequency of serogroups and serotypes was calculated, and vaccine coverage was estimated by the addition of vaccine serotypes as a fraction of the total number of isolates per age group. This study was registered with PROSPERO CRD42022243994.

Findings
A total of 940 studies were identified, and 99 and 84 relevant papers were included in the qualitative and quantitative analyses, respectively. A total of 16,396 isolates were identified, spread across all body sites and ages, with vaccine-covered serotypes 19F (n = 2,061, 12.57% [95%CI: 12.07 – 13.09]), 23F (n = 1,508, 9.20% [95%CI: 8.76 – 9.65]) and 6B (n = 1,160, 7.07% [95%CI: 6.69 – 7.48]) occurring most often. Non-vaccine types e.g., 6AB (n = 617, 3.76% [95%CI: 3.48 – 4.07]), 15BC (n = 35, 2.57% [95%CI: 2.33 – 2.82]) and 34 (n = 260, 1.59% [95%CI: 1.40 – 1.79]) were also frequently observed.

Interpretation
The most common serotypes found in IPD, non-IPD, and carriage in ASEAN are covered by currently available conjugate vaccines. This underscores the importance of vaccination and predicts future success in reducing the burden of pneumococcal disease. The data gathered offers important insights into pneumococcal serotype epidemiology across the different countries belonging to ASEAN.
Introduction

Streptococcus pneumoniae is a bacterial pathogen responsible for potentially life-threatening diseases, such as meningitis, pneumonia, and septicemia collectively referred to as invasive pneumococcal diseases (IPD). Additionally, infections can result in less severe, non-invasive diseases (non-IPD) including sinusitis and otitis media (OM). The bacteria can be carried asymptomatically in the upper respiratory tract (URT) as part of the normal microflora (1). Asymptomatic carriage can lead to pneumococcal disease if the bacteria cross the mucosal membrane and evade the host immune system (2). While the likelihood of developing pneumococcal disease from carriage is low, it can still contribute to the transmission thereby increasing the overall burden of pneumococcal disease in the population (3). Pneumococcal disease burden and mortality are the highest in low- and middle-income countries (LMICs) due to factors including poverty and malnutrition, limited access to healthcare, high prevalence of antibiotic resistant pneumococci and lower vaccination rates and/or coverage (4, 5). Without improvements in the latter, the burden of pneumococcal disease remains high.

Pneumococcal vaccines have been developed by leveraging the immunogenicity of the pneumococcal capsule, which defines over 100 different serotypes currently recognised (6). The differences in the polysaccharide composition of the capsule allows for serotype-specific protection through vaccination. There are currently two types of pneumococcal vaccines available. The 23-valent pneumococcal polysaccharide vaccine (PPV23) is effective against 23 serotypes and is recommended for all adults aged 65 years and older. Age-specific vaccination with PPV23 is necessary because polysaccharides lack T-cell stimulating activity, which makes it difficult to generate an effective immune response in children and antibody-deficient adults (7). The other formulation, polysaccharide conjugate vaccines (PCVs), such as Synflorix ® (PCV10, GlaxoSmithKline) and Prevnar 13® (PCV13, Pfizer), contain semi-purified capsular polysaccharides from 10 and 13 pneumococcal serotypes, respectively, covalently linked to a protein carrier. These protein carriers elicit a T-cell-dependent immune response, making conjugate vaccines more effective in children (8, 9). The first pneumococcal conjugate vaccine, PCV7 is no longer in use. The serotypes covered by PCV10 are 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F. This vaccine is licensed for use in infants and children from 6 weeks up to 5 years of age (10). A higher valency PCV, the 13-valent vaccine covers the same serotypes as PCV10, with the extension to serotypes 3, 6A and 19A (11). PCV13 and the newer PCV15 are currently recommended by the World Health Organization (WHO) for use in all countries that have not yet introduced pneumococcal conjugate vaccines into their routine immunization programs (12). PCV15 (Vaxneuvance, Merck), has been approved for use as of June 2022 and is being licensed throughout the European Union since 2021. It contains the same serotypes as PCV13 plus serotypes 22F and 33F (13) and it is currently recommended for persons aged <19 years (14, 15). Higher valent vaccines are entering the market, with the twenty-serotype vaccine (PCV20, Apexxnar R, Pfizer) being approved for use in the >18 years of age population by the European Medicines Agency and the Food and Drug Administration (13, 16 – 19). This vaccine contains the serotypes found in PCV15, with the addition of serotypes 8, 10A, 11A, 12F, and 15B and is recommended to countries that have already implemented PCV to prevent the emergence of non-vaccine types (NVTs).

Between 2010 and 2019, it is estimated that PCV13 vaccination prevented 175.2 million cases of pneumococcal diseases and 624,904 deaths worldwide (20). According to the World Health Organization (WHO), as of 2021, more than 150 countries have introduced pneumococcal conjugate vaccines into their routine immunization
programs. However, the extent of implementation varies. Some countries have PCVs as part of their routine
immunization schedule, while others use it on an *ad hoc* basis where individuals are given a choice to purchase
the vaccine. Unfortunately, certain low- and middle-income countries (LMICs) are unable to adopt vaccination
due to financial constraints and vaccine policies needing review. The paucity of country-specific data on disease
burden and the cost of pneumococcal conjugate vaccines (PCVs) are among the primary reasons for the slow
adoption of PCVs in LMICs (21).

Ten nations in the South-East Asian region form the Association of Southeast Asian Nations (ASEAN) and are
amongst those with the highest burden of childhood pneumonia globally. The incidence of pneumonia in
children in Southeast Asia is 2,500 cases per 100,000 children which is higher than the global average of 1,400
cases per 100,000 children according to data by the UNICEF (22). The disparity in vaccine availability
discussed above is seen in Southeast Asian countries. In Thailand, PCV13 was first introduced in 2011, not
currently as part of the routine immunization programme but it can be purchased at private clinics and hospitals
(23). In Malaysia, PCVs were similarly available from around 2005 through private healthcare facilities.
However, in 2020 Malaysia took the next step and included PCV10 in their NIPs. Other Southeast Asian
countries that have introduced PCV in their NIPs are Cambodia, the Philippines, Myanmar and Laos, and there
has been partial introduction in Indonesia. Vaccines are given to certain risk groups in Brunei, and Vietnam is
yet to introduce a PCV.

The primary objective of this study was to quantify the importance of PCV vaccine implementation and/or
amendment in the remainder of ASEAN countries by providing a comprehensive review of the prevalence of
pneumococcal serotypes across the region and an update on the 2012 review in the region (24). Using a
systematic approach, this study aims to estimate the vaccine coverage in countries where PCV has been
implemented and in those where the vaccine is yet to be introduced. With the evidence gathered in this study,
we aim to inform policy makers about the importance of pneumococcal vaccination in reducing the burden and
mortality of pneumococcal diseases so that further considerations can be made on an improved vaccine policy.

Methods

Online databases PubMed, PubMed Central, Ovid MEDLINE and Scopus were systematically searched for
literature regarding the serotype prevalence of *S. pneumoniae* across the Southeast Asian countries belonging to
ASEAN. No lower date limit was set and included papers published up until the 31st December 2022. Search
‘Streptococcus pneumoniae’, ’S pneumoniae’, ’pneumococce*’, ’pneumonia’, ’serotype*’, ’serogroup*
, ’seroprevalence’, separated by the binary operators ‘OR’ and ‘AND’. Asterisks represent a truncation of the
term.

Inclusion criteria included full texts that reported *S. pneumoniae* serotypes in countries that belonged to
ASEAN, those which reported both invasive, non-invasive disease data with the inclusion of carriage studies
regardless of age or gender reported. Both serogroup and serotype data were included. Exclusion criteria of
studies included those that were not written in English, animal studies, case studies, reviews, studies that only
reported strains with antibiotic resistance, studies of single serotypes, articles on biochemical techniques or
genetics for serotyping, non-ASEAN studies, and studies which only reported infection numbers or antibody
levels without reporting serotypes. From the initial search, returned papers were scanned for duplicates, which
were then removed. Titles and abstracts were analysed, and any papers deemed not relevant were removed.
Remaining papers’ full texts were then reviewed by two researchers, using the criteria for inclusion/exclusion in
the qualitative analysis. Studies that then met inclusion criteria for quantitative analysis were then reviewed and
serotype data was extracted. Exclusion criteria for quantitative analysis included studies that were conducted
after the respective countries’ date of PCV implementation and those studies that overlapped with others already
included.

The assessment of articles from a quality perspective was undertaken using a by using a consolidation of two
checklist-style quality assessment frameworks: The Critical Appraisal Skills Programme (CASP) checklists and
the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies (25, 26).

Country data was grouped into source type categories (IPD, non-IPD and carriage). IPD isolates were defined as
samples taken from a normally sterile site such as blood or cerebrospinal fluid (CSF), non-IPD isolates were
defined as those taken from a non-sterile site and experienced non-invasive disease such as bronchitis, otitis
media and other mild pneumococcal infection. Carriage isolates were defined as those taken from patients
experiencing neither IPD nor non-IPD, including generally healthy populations. Serotypes and groups were
classed as vaccine type (VT) serotypes, which were those serotypes found in the PCVs. Non-vaccine types
(NVT), unencapsulated non-typeable (NT) serotypes and unknown (N/A) serotypes formed a separate category.
Unknown serotypes were classed as those that could not be determined through methodologies or from studies
which do not explicitly state the specific serotype. Some studies reported serotypes that were either VTs or
NVTs but remained unidentified, so were grouped into additional ‘PCV related unknown’ and ‘non-PCV related
unknown’ serotypes. Serotype prevalence was stratified by age categories including ‘under-five years’, ‘over
five years’ and ‘unreported’, the latter used for studies that did not specify the age of the participant or did not
fit the over and under five classifications, such as data that spanned the age ranges without further details.

GraphPad Prism 9 (GraphPad Software, Inc.) was used for data management and graph construction. Numbers
of isolates were grouped into their respective serotypes under each country, as well as by age category.
Percentage coverage of the vaccines was calculated by the addition of vaccine serotypes as a fraction of the total
number of isolates per age group. Percentages were expressed with 95% confidence intervals (95%CI) in tabular
and boxplot format. GraphPad Prism 9 was used for graph construction and to perform the statistical analysis.

The funder of the study had no role in the study design, data collection, data analysis, data interpretation or
writing of the report.
Results

In total, 940 articles were identified. The initial database search resulted in n = 934 articles (PubMed = 396, Ovid Medline = 153, Scopus = 294, PMC = 91) with the remaining six identified from search engine keywords. From this collection, n = 452 studies were duplicates. Screening abstracts and titles resulted in n = 389 records being excluded. From the identified articles, n = 99 met the inclusion criteria for qualitative analysis (Table 1) and of these, n = 84 were included in the quantitative analysis (Figure 1).

It was decided that the study on the Thailand / Myanmar border (27) would be added to the Myanmar data as, despite residing in a refugee camp in Thailand at time of study, the population were originally refugees from Myanmar. The results from all studies were broken down by country.

Figure 1. PRISMA Statement showing search and study selection.
Table 1. Qualitative analysis of studies investigating pneumococcal serotype prevalence in ASEAN countries

*Study omitted to avoid risk of duplication. **Study omitted due to serotype data that could not be determined from the manuscript. ***Study omitted due to serotypes coming from post-PCV in population. ****Study omitted due to no full text
All Countries

A total of n = 16,396 isolates were identified with n = 4,129 (25.18% [95%CI: 24.52 – 25.85]) from IPD, n =
1,752 isolates (10.69%, [95%CI:10.22 – 11.17]) from non-IPD, and n = 10,053 isolates from carriage (61.31%, [95%CI: 60.56 – 62.06]) (Table 2). The remaining n = 462 (2.82%, [95%CI: 2.57 – 3.08]) were from unknown sources. The most common vaccine types across all sources were 19F (n = 2,061, 12.57% [95%CI: 12.07 – 13.09]), followed by 23F (n = 1,508, 9.20% [95%CI: 8.76 – 9.65]) and 6B (n = 1,160, 7.07% [95%CI: 6.69 – 7.48]) (Table 2). The three most common NVTs were 6AB (n = 617, 3.76% [95%CI: 3.48 – 4.07]), 15BC (n =
35, 2.57% [95%CI: 2.33 – 2.82]) and 34 (n = 260, 1.59% [95%CI: 1.40 – 1.79]). PCV10 and PCV13, PCV15 and
PCV20 serotypes accounted for 40.06% [95%CI: 39.31 – 40.81], 49.93% [95%CI: 49.16 – 50.70], 50.22% [95%CI: 49.45 – 50.99] and 51.95% [95%CI: 51.18 – 52.71] respectively. Non-typeable isolates totalled n =
1,708 (10.42%, [95%CI: 9.95 – 10.89]) and unknown serotypes, including those that were reported as autoagglutinated, totalled n = 2,350 (14.33% [95%CI: 13.80 – 14.88]) of total isolates. Fig2, Fig3, Fig4 and
Fig5 show the split of serotype counts from across IPD, non-IPD, carriage and unknown sources.

Table 2. Serotype counts and percentages for all countries in ASEAN, split by age category and invasive, non-
invasive, carriage sources and from sources which could not be determined.

Fig2. Serotypes from across ASEAN invasive disease studies. (A) Number of isolates for each respective
serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified
studies on IPD. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including
number of NVTs and unknown serotypes from identified studies.

Fig3. Serotypes from across ASEAN non-invasive disease studies. (A) Number of isolates for each respective
serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified
studies on non-IPD. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20,
including number of NVTs and unknown serotypes from identified studies.

Fig4. Serotypes from across ASEAN carriage studies. (A) Number of isolates for each respective serotype found
in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies on
carriage. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including
number of NVTs and unknown serotypes from identified studies.

Fig5. Serotypes from across ASEAN studies where source could not be determined. (A) Number of isolates for
each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes
from identified studies for which source could not be identified. (B) Frequency of isolates for each respective
serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified
studies.

Serogroup and serotype prevalence among disease and carriage across ASEAN

The frequency of serogroups and individual serotypes has been calculated for IPD, non-IPD and carriage,
separately. The three most common serogroups in all types of conditions were found to be consistently 6, 19 and
23 (Table 3). The rank order of serotypes was found to be not as consistent; serotypes 1 (39.87%), 3 (28.39%),
and 4 (21.09%) were identified as the most prevalent in causing IPDs, while serotypes 3 (34.51%), 34 (25.35%),

2382
and 1 (23.24%) were commonly observed in non-IPDs. On the other hand, serotypes 34 (53.65%), 3 (21.35%),
and 4 (7.29%) were frequently found in carriage (Table 4).

Table 3. Rank order of serogroups across IPD, non-IPD and carriage sources in ASEAN

Table 4. Rank order of serotypes across IPD, non-IPD and carriage sources in ASEAN

Brunei

No studies were identified for Brunei.

Cambodia

A total of n = 1,153 isolates were identified with n = 270 (23.42% [95%CI: 21.00 – 25.97]) from IPD, n = 140 isolates (12.14%, [95%CI: 10.31 – 14.17]) from non-IPD and n = 743 isolates from carriage (64.44%, [95%CI: 61.60 – 67.21]). The most common vaccine types across all sources were 19F (n = 143, 12.4% [95%CI: 10.55 – 14.44]), followed by 23F (n = 108, 9.37% [95%CI: 7.75 – 11.20]) and 6B (n = 106, 9.19% [95%CI: 7.59 – 11.01]) (Table 5). The three most common NVTs were 6AB (n = 96, 8.33% [95%CI: 6.80 – 10.07]), 34 (n = 35, 3.04% [95%CI: 2.12 – 4.20]) and 35C (n = 19, 1.65% [95%CI: 0.99 – 2.56]). PCV10 and PCV13, PCV15 and PCV20 serotypes accounted for 41.28% [95%CI: 38.42 – 44.19], 58.20% [95%CI: 55.29 – 61.06], 58.37% [95%CI: 55.46 – 61.23] and 64.44% [95%CI: 61.60 – 67.21] of all isolates respectively. Non-typeables accounted for n = 88 (7.63%, [95%CI: 6.17 – 9.32]). No unknown serotypes were reported. Fig6, Fig7, Fig8 show the split of serotype counts from across IPD, non-IPD and carriage sources.

Table 5. Serotype counts and percentages for all countries in Cambodia, split by age category and invasive, non-invasive and carriage sources.

Fig6. Serotypes from across Cambodian invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Cambodia invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig7. Serotypes from across Cambodian non-invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Cambodia non-invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig8. Serotypes from across Cambodian carriage studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Cambodia carriage. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.
Indonesia

A total of n = 2,012 isolates were identified. N = 4 (0.20% [95% CI: 0.05 – 0.51]) were from IPD, n = 65 isolates (3.23%, [95% CI: 2.50 – 4.10]) from non-IPD and n = 1,943 isolates from carriage (96.57%, [95% CI: 95.68 – 97.32]). The most common vaccine types across all sources were 19F (n = 175, 8.70% [95% CI: 7.50 – 10.01]), followed by 23F (n = 144, 7.16% [95% CI: 6.07 – 8.37]) and 14 (n = 76, 3.78% [95% CI: 2.99 – 4.71]) (Table 6).

The three most common NVTs were 6AB (n = 259, 12.87% [95% CI: 11.44 – 14.42]), 15BC (n = 134, 6.66% [95% CI: 5.61 – 7.84]) and 23A (n = 81, 4.03% [95% CI: 3.21 – 4.98]). PCV10 and PCV13, PCV15 and PCV20 serotypes accounted for 24.45% [95% CI: 22.59 – 26.39], 34.59% [95% CI: 32.51 – 36.72], 35.19% [95% CI: 33.10 – 37.32] and 38.97% [95% CI: 36.83 – 41.14] of all isolates respectively. Non-typeable accounted for n = 312 (15.51%, [95% CI: 13.95 – 17.16]) and unknown serotypes accounted for n = 24 (1.19%, [95% CI: 0.77 – 1.77]) of total isolates. Fig9, Fig10, Fig11 show the split of serotype counts from across IPD, non-IPD and carriage sources.

Table 6. Serotype counts and percentages for all countries in Indonesia, split by age category and invasive, non-invasive and carriage sources.

Laos

A total of n = 217 isolates were identified. N = 33 (15.21%, [95% CI: 10.71 – 20.69]), n = 0 from non-IPD and n = 184 isolates from carriage (84.79%, [95% CI: 79.31 – 89.29]). The most common vaccine types across all sources were 6B (n =49, 22.58% [95% CI: 17/20 – 28.73]), followed by 23F (n = 37, 17.05% [95% CI: 12.30 –...
22.73]) and 19F (n = 34, 15.67% [95% CI: 11.10 – 21.20]) (Table 7). The three most common NVTs were 15BC
(n = 6, 2.76%, [95% CI: 1.02 – 5.92]), 6ABC (n = 3, 1.38% [95% CI: 0.29 – 3.99]), with the remaining serotypes
15C, 23B and 38 each having n = 1 (0.46%, [95% CI: 0.01 – 2.54]) each. PCV10, PCV13, PCV15 and PCV20
serotypes accounted for 63.59% [95% CI: 56.81 – 70.00], 69.12% [95% CI: 62.52 – 75.20], 69.12% [95% CI:
62.52 – 75.20] and 69.12% [95% CI: 62.52 – 75.20] of all isolates respectively. Non-typeables accounted for n =
55 (25.35%, [95% CI: 19.70 – 31.68]) and unknown serotypes accounted for zero of total isolates. Fig 12, Fig 13,
Fig 14 show the split of serotype counts from across IPD, non-IPD and carriage sources.

Table 7. Serotype counts and percentages for all countries in Laos, split by age category and invasive, non-
invasive and carriage sources.

Fig 12. Serotypes from across Laos invasive disease studies. (A) Number of isolates for each respective serotype
found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for
which source could not be identified for Laos invasive disease. (B) Frequency of isolates for each respective
serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified
studies.

Fig 13. Serotypes from across Laos non-invasive disease studies. (A) Number of isolates for each respective
serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified
studies for which source could not be identified for Laos non-invasive disease. (B) Frequency of isolates for
each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes
from identified studies. As seen, no serotypes were identified.

Fig 14. Serotypes from across Laos carriage studies (A) Number of isolates for each respective serotype found in
PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which
source could not be identified for Laos carriage. (B) Frequency of isolates for each respective serotype found in
PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Malaysia

A total of n = 2,210 isolates were identified. N = 883 (39.95% [95% CI: 37.90 – 42.03]) were from IPD, n = 778
isolates (35.20%, [95% CI: 33.31 – 37.24]) from non-IPD, n = 426 isolates from carriage (19.28%, [95% CI:
17.65 – 20.98]) and n = 123 (5.57% [95% CI: 4.65 – 6.60]) were from unknown source. The most common
vaccine types across all sources were 19F (n = 335, 15.16% [95% CI: 13.69 – 16.72]), followed by 14 (n = 184,
8.33% [95% CI: 7.21 – 9.56]) and 23F (n = 172, 7.78% [95% CI: 6.70 – 8.98]) (Table 8). The three most
common NVTs were 6AB (n = 87, 3.94%, [95% CI: 3.16 – 4.83]), 23A (n = 37, 1.67% [95% CI: 1.18 – 2.30]) and
6C (n = 26, 1.18% [95% CI: 0.77 – 1.72]). PCV10 and PCV13, PCV15 and PCV20 serotypes accounted for
47.01% [95% CI: 44.91 – 49.12], 62.40% [95% CI: 60.34 – 64.42], 62.94% [95% CI: 60.89 – 64.96] and 65.16%
[95% CI: 63.13 – 67.15] of all isolates respectively. Non-typeables accounted for n = 154 (6.97%, [95% CI: 5.94
– 8.11]) of all isolates and unknown serotypes accounted for n = 34 (1.54% [95% CI: 1.07 – 2.14]) of total
isolates. Fig 15, Fig 16, Fig 17, Fig 18 show the split of serotype counts from across IPD, non-IPD, carriage and
unknown sources.
A total of n = 4,420 isolates were identified. Zero isolates were from IPD, n = 24 isolates (0.54%, [95%CI: 0.35 – 0.81]) from non-IPD and n = 4,396 isolates from carriage (99.46%, [95%CI: 99.19 – 99.65]). The most common vaccine types across all sources were 19F (n = 606, 13.71% [95%CI: 12.71 – 14.76]), followed by 23F (n = 473, 10.70% [95%CI: 9.80 – 11.65]) and 6B (n = 337, 7.62% [95%CI: 6.86 – 8.45]) (Table 9). The three most common NVTs were 15BC (n = 171, 3.87% [95%CI: 3.32 – 4.48]), 34 (n = 139, 3.14% [95%CI: 2.65 – 3.70]), 6C (n = 117, 2.65% [95%CI: 2.19 – 3.16]). PCV10, PCV13, PCV15 and PCV20 serotypes accounted for 36.92% [95%CI: 35.50 – 38.37], 43.67% [95%CI: 42.20 – 45.14], 43.67% [95%CI: 42.20 – 45.14] and 43.67% [95%CI: 42.20 – 45.14] of all isolates respectively. Non-typeables accounted for n = 665 (15.05% [95%CI: 14.00 – 16.13]) of total isolates and unknown serotypes accounted for n = 1148, 25.97% [95%CI: 24.69 – 27.29] of total isolates. Fig19, Fig20, Fig21 show the split of serotype counts from across IPD, non-IPD and carriage sources.

Table 9. Serotype counts and percentages for all countries in Malaysia, split by age category and invasive, non-invasive, carriage sources and from sources which could not be determined.

Fig15. Serotypes from across Malaysian invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Malaysia invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig16. Serotypes from across Malaysian non-invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Malaysia non-invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig17. Serotypes from across Malaysian carriage studies (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Malaysia carriage. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig18. Serotypes from across Malaysian studies where source could not be determined. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Malaysia unknown sources. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Myanmar

A total of n = 4,420 isolates were identified. Zero isolates were from IPD, n = 24 isolates (0.54%, [95%CI: 0.35 – 0.81]) from non-IPD and n = 4,396 isolates from carriage (99.46%, [95%CI: 99.19 – 99.65]). The most common vaccine types across all sources were 19F (n = 606, 13.71% [95%CI: 12.71 – 14.76]), followed by 23F (n = 473, 10.70% [95%CI: 9.80 – 11.65]) and 6B (n = 337, 7.62% [95%CI: 6.86 – 8.45]) (Table 9). The three most common NVTs were 15BC (n = 171, 3.87% [95%CI: 3.32 – 4.48]), 34 (n = 139, 3.14% [95%CI: 2.65 – 3.70]), 6C (n = 117, 2.65% [95%CI: 2.19 – 3.16]). PCV10, PCV13, PCV15 and PCV20 serotypes accounted for 36.92% [95%CI: 35.50 – 38.37], 43.67% [95%CI: 42.20 – 45.14], 43.67% [95%CI: 42.20 – 45.14] and 43.67% [95%CI: 42.20 – 45.14] of all isolates respectively. Non-typeables accounted for n = 665 (15.05% [95%CI: 14.00 – 16.13]) of total isolates and unknown serotypes accounted for n = 1148, 25.97% [95%CI: 24.69 – 27.29] of total isolates. Fig19, Fig20, Fig21 show the split of serotype counts from across IPD, non-IPD and carriage sources.

Table 9. Serotype counts and percentages for all countries in Myanmar, split by age category and invasive, non-invasive and carriage sources.
Fig 19. Serotypes from across Myanmar invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Myanmar invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig 20. Serotypes from across Myanmar non-invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Myanmar non-invasive disease (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig 21. Serotypes from across Myanmar carriage studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Myanmar carriage (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Philippines

A total of n = 587 isolates were identified. N = 365 (62.18% [95%CI: 58.12 – 66.12]) were from IPD, n = 51 isolates (8.69%, [95%CI: 6.54 – 11.27]) from non-IPD, n = 158 isolates from carriage (26.92%, [95%CI: 23.37 – 30.70]) and n = 13 (2.10%, [95%CI: 1.18 – 3.76]) were of unknown source. The most common vaccine types across all sources were 1 (n = 57, 9.71% [95%CI: 7.44 – 12.40]), followed by 5 (n = 34, 5.79% [95%CI: 4.04 – 8.00]) and 14 (n = 29, 4.94% [95%CI: 3.33 – 7.02]) (Table 10). The three most common NVTs were 6 (n= 43, 7.33% [95%CI: 5.35 – 9.74]), 23 (n = 23, 3.92% [95%CI: 2.50 – 5.82]) and 18 (n = 15, 2.56% [95%CI: 1.44 – 4.18]). PCV10, PCV13, PCV15 and PCV20 serotypes accounted for 32.54% [95%CI: 28.76 – 36.49], 39.52% [95%CI: 35.54 – 43.61], 39.52% [95%CI: 35.54 – 43.61] and 40.55% [95%CI: 36.54 – 44.64] of all isolates respectively. Non-typeables accounted for n = 38 (6.47% [95%CI: 4.62 – 8.78]) and unknown serotypes accounted for n = 84 (14.31% [95%CI: 11.58 – 17.41]) of total isolates. Fig 22, Fig 23, Fig 24, Fig 25 show the split of serotype counts from across IPD, non-IPD, carriage and unknown sources.

Table 10. Serotype counts and percentages for all countries in Philippines, split by age category and invasive, non-invasive, carriage sources and from sources which could not be determined.

Fig 22. Serotypes from across Philippines invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Philippines invasive disease. (B) Frequency of isolates for
each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig23. Serotypes from across Philippines non-invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Philippines non-invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig24. Serotypes from across Philippines carriage disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Philippines carriage. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig25. Serotypes from across Philippines studies where source could not be determined. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Philippines unknown sources. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig26. Serotypes from across Singapore invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Singapore invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Singapore

A total of n = 552 isolates were identified. N = 331 (59.96% [95%CI: 55.74 – 64.08]) were from IPD, zero were from non-IPD, n = 41 isolates from carriage (7.43%, [95%CI: 5.38 – 9.94]) and n = 180 (32.61%, [95%CI: 28.71 – 36.70]) were from unknown source. The most common vaccine types across all sources [Figure 9] were 19F (n = 96, 17.39% [95%CI: 14.32 - 20.82]), followed by 14 (n = 91, 16.49% [95%CI: 13.49 – 19.85]) and 23F (n = 74, 13.41% [95%CI: 10.67 – 16.54]) (Table 11). The three most common NVTs were 6 (n = 24, 4.35% [95%CI: 2.81 – 6.40]), 19 (n = 19, 3.44% [95%CI: 2.08 – 5.32]) and 20 (n = 10, 1.81% [95%CI: 0.87 – 3.31]).

PCV10 and PCV13, PCV15 and PCV20 serotypes accounted for 60.51% [95%CI: 56.29 – 64.61], 69.20% [95%CI: 65.17 – 73.03], 70.83% [95%CI: 66.85 – 74.60] and 74.64% [95%CI: 70.79 – 78.22] of all isolates respectively. Non-typeables accounted for n = 12 (2.17%, [95%CI: 1.13 – 3.77]) and unknown serotypes accounted for n = 27 (4.89% [95%CI: 3.25 – 7.04]) of total isolates. Fig26, Fig27, Fig28, Fig29 show the split of serotype counts from across IPD, non-IPD, carriage and unknown sources.

Table 11. Serotype counts and percentages for all countries in Singapore, split by age category and invasive, non-invasive, carriage sources and from sources which could not be determined.

Fig26. Serotypes from across Singapore invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Singapore invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.
Fig27. Serotypes from across Singapore non-invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Singapore non-invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig28. Serotypes from across Singapore carriage studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Singapore carriage. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig29. Serotypes from across Singapore studies where source could not be determined. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Singapore unknown sources. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Timor-Leste

No studies were identified for Timor-Leste.

Thailand

A total of n = 3,016 isolates were identified. N = 1,887 (62.57% [95%CI: 60.81 – 64.30]) were from IPD, n = 202 isolates (6.70%, [95%CI: 5.83 – 7.65]) from non-IPD, n = 781 isolates from carriage (25.90%, [95%CI: 24.34 – 27.50]) and n = 146 (4.84%, [95%CI: 4.10 – 5.67]) were of unknown source. The most common vaccine types across all sources were 6B (n = 343, 11.37% [95%CI: 10.26 – 12.56]), followed by 23F (n = 263, 8.72% [95%CI: 7.74 – 9.78]) and 19F (n = 214, 7.10% [95%CI: 6.20 – 8.07]) (Table 12). The three most common NVTs were 6 (n = 147, 4.87%, [95%CI: 4.13 – 5.70]), 23 (n = 101, 3.35% [95%CI: 2.74 – 4.05]) and 19 (n = 64, 2.12%, [95%CI: 1.64 – 2.70]). PCV10 and PCV13, PCV15 and PCV20 serotypes accounted for 44.03% [95%CI: 42.25 – 45.82], 54.44% [95%CI: 52.65 – 56.23], 54.81% [95%CI: 53.01 – 56.59] and 55.97% [95%CI: 54.18 – 57.75] of all isolates respectively. Non-typeables accounted for n = 164 (5.44%, [95%CI: 4.66 – 6.31]) and unknown serotypes accounted for n = 574 (19.03% [95%CI: 17.64 – 20.48]) of total isolates. Fig30, Fig31, Fig32, Fig33 show the split of serotype counts from across IPD, non-IPD, carriage and unknown sources.

Table 12. Serotype counts and percentages for all countries in Thailand, split by age category and invasive, non-invasive, carriage sources and from sources which could not be determined.
Fig 30. Serotypes from across Thailand invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Thailand invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig 31. Serotypes from across Thailand non-invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Thailand non-invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig 32. Serotypes from across Thailand carriage studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Thailand carriage. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig 33. Serotypes from across Thailand studies where source could not be determined. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Thailand unknown source. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Vietnam

A total of n = 2,229 isolates were identified. N = 356 (15.97% [95%CI: 14.47 – 17.56]) were from IPD, n = 492 isolates (22.07%, [95%CI: 20.37 – 23.85]) from non-IPD and n = 1,381 isolates from carriage (61.96%, [95%CI: 59.90 – 63.98]). The most common vaccine types across all sources were 19F (n = 469, 21.04% [95%CI: 19.37 – 22.79]), followed by 23F (n = 264, 11.84% [95%CI: 10.53 – 13.26]) and 14 (n = 191, 8.57% [95%CI: 7.44 – 9.81]) (Table 13). The three most common NVTs were 6AB (n = 174, 7.90% [95%CI: 6.73 – 9.00]), 19 (n = 104, 4.67% [95%CI: 3.83 – 5.63]) and 23 (n = 77, 3.45% [95%CI: 2.74 – 4.30]). PCV10 and PCV13, PCV15 and PCV20 serotypes accounted for 47.33% [95%CI: 45.24 – 49.43], 54.60% [95%CI: 52.50 – 56.68], 54.64% [95%CI: 52.55 – 56.73] and 55.81% [95%CI: 53.72 – 57.88] of all isolates respectively. Non-typeables accounted for n = 202 (9.06%, [95%CI: 7.90 – 10.33]) and unknown serotypes accounted for n = 79 (3.54% [95%CI: 2.82 – 4.40)) of total isolates. Fig 34, Fig 35, Fig 36 show the split of serotype counts from across IPD, non-IPD and carriage sources.

Table 13. Serotype counts and percentages for all countries in Vietnam, split by age category and invasive, non-invasive and carriage sources.
Fig 34. Serotypes from across Vietnam invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Vietnam invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig 35. Serotypes from across Vietnam non-invasive disease studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Vietnam non-invasive disease. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Fig 36. Serotypes from across Vietnam carriage studies. (A) Number of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies for which source could not be identified for Vietnam carriage. (B) Frequency of isolates for each respective serotype found in PCV10, 13, 15 and 20, including number of NVTs and unknown serotypes from identified studies.

Percentage coverage represents the minimum coverage of each vaccine, as ‘unknown’ variables are included in the calculation, classed as serotypes not covered by vaccines. Vaccine coverage of serotypes are for all disease types, split by age category in each country. Coverage is calculated as the percentage of VT’s out of the total number of isolates, across PCV10, PCV13, PCV15 and PCV20, shown in Fig 37.

Fig 37. Forest plot of vaccine coverage for each of the currently licensed conjugates in each of the countries belonging to ASEAN. The plot shows the calculated coverage of conjugate-covered serotypes against the total number of serotypes identified in the studies.

PCV coverage over the three age categories and across pooled ASEAN data shows the lowest theoretical coverage, as unknown serotypes were also included in the calculation, under non-vaccine type numbers.
Discussion

Despite high mortality in the ASEAN region associated with childhood pneumonia, pneumococcal serotype prevalence was incompletely understood. This study fills an important knowledge gap that has not been addressed since 2012. Over the last ten years the vaccination landscape has changed due to the introduction of the PCV13, as well as the development of other vaccines with higher valency. Additionally, some countries have since successfully implemented PCVs into their NIPs, while others have yet to do so. Serotype replacement in disease, the development of new vaccines and the heavy burden pneumonia continues to extract in the location necessitated this review of pneumococcal serotype epidemiology in Southeast Asia.

Based on our literature search and meta-analysis we found that the most common serogroups in IPD were 6 (23.19%), 19 (22.99%) and 23 (16.03%) whilst the most frequent serotypes were 1 (39.87%), 3 (28.39%), and 4 (21.09%). Notably, these results fit into the landscape of worldwide serotype prevalence in the pre-PCV era when serotypes 19F, 6B, 6A, and 23F were amongst the top ten most common serotypes observed in IPD, non-IPD and carriage in children <5 years of age (126, 127). These 10 serotypes were deemed to be responsible for >70% of IPDs globally, and 65-76% of paediatric carriage events in Europe and Asia prior to the introduction of PCVs. Our serogroup results are also in concordance with data reported in 2012, however the IPD causing serotypes have changed from 3, 34, and 1. Within serogroup 19, 19F was the most frequent which is especially worrying given its’ high rates of resistance to penicillin, a first-line antibiotic for pneumococcal infections. In addition, some strains of serotype 19F may also be resistant to other antibiotics, such as macrolides and fluoroquinolone. The use of conjugate vaccines can help prevent pneumococcal disease caused by antibiotic-resistant strains, and previous studies have proven their efficacy against serotype 19F in IPD (129 – 131).

Within serogroup 6 and 23, the most frequently observed serotypes were 6B and 23F. Both are also included in all currently licenced and available PCVs. Moreover, all three most common IPD causing serotypes are also VTs - serotypes 1 and 4 are covered by PCV10 and above, and all three all included in PCV13 and other higher valent vaccines on the market. This demonstrates that ASEAN countries that are currently using PCV13 have likely achieved an adequate vaccine coverage and successfully mitigated pneumococcal diseases caused by these serotypes. However, it is important to note that these figures should be regarded as a conservative estimate due to differing levels of reporting accuracy and diagnosis between countries in ASEAN. Additionally, ongoing surveillance will be crucial, particularly for countries like Malaysia, which recently implemented PCV10 in their NIP. Monitoring will help assess the effectiveness of the vaccine and enable the adoption of a higher valency formulation if required.

The frequency of carried serotypes across countries and age groups slightly differed from those of IPD. Notably, the most carried serotype was 34, followed by serotypes 3 and 4. It is not uncommon to observe prevalent NVTs, such as 34, in countries where PCVs are not widely used or unavailable. For example, in 2015, the most common non-PCV13 isolates were serotype 34 in hospitalized children in Shanghai Children Hospital (132). This serotype is considered to have intermediate to high virulence i.e., capable of causing invasive diseases but less virulent than those of greater concern such as 1, 3, 7F, and 19A (133). Nevertheless, our data reveals an increase in IPDs caused by serotype 34, which ranked fourth among the most common serotypes (3.76%) in this disease group. This represents a rise compared to the 1% observed during the systematic review conducted in 2012 (24). It is important to note that newly emerging NVTs like serotype 34 may result from serotype-
replacement after vaccination as was observed following the introduction of PCV7 in England (131). To date, serotype 34 is generally known to be susceptible to several antibiotics, including penicillin, amoxicillin, and some cephalosporins (134) however, resistance has been noted and therefore warrants continued vigilance (59, 135).

The frequency of vaccine serotypes causing IPDs was the highest in Thailand, followed by Malaysia, Vietnam, Singapore, Philippines, Cambodia, Laos, Indonesia and Myanmar. Country-specific burdens however remain problematic to determine given the ongoing lack of data and this ranking should be viewed with caution. For example, the available data on IPD serotypes in Laos and Indonesia was limited and we were unable to locate any information on the prevalence of IPD in Myanmar. Contrastingly, in carriage Myanmar had the highest reported vaccine serotype prevalence, followed by Indonesia, Vietnam, Cambodia, Thailand, Malaysia, Laos, Philippines, and Singapore.

Most of the isolates (61.31%) in the ASEAN analysed in this study were from carriage. While asymptomatic colonization of pneumococci is common, individuals carrying highly virulent serotypes could be at risk of developing pneumococcal diseases. Therefore, the identification of serotypes carried in healthy individuals can help assess the circulating serotypes in the population and identify those that could potentially cause disease in vulnerable individuals and those who have not been vaccinated. Our study revealed that the predominant serotypes detected in carriage were consistent with those observed in IPDs. Specifically, serotypes 19F, 23F, and 6B were identified as the most common serotypes in both carriage and IPD. Therefore, pneumococcal carriage studies can aid us to predict the impact vaccines can make in preventing and assess impact.

Continued surveillance of pneumococcal serotypes is essential to track changes in their prevalence as vaccines are implemented. Countries such as Malaysia, which most recently have adopted PCV10, should pay close attention to ongoing surveillance of pneumococcal serotypes. This is particularly crucial since the vaccine formulation does not include other high-virulence serotypes such as 19A, which are known to cause IPD and was found the 2nd most common serotype within serogroup 19 in our analysis and also overall the 3rd most frequent serotype in Malaysia. With the increasing immunization of the population through PCV10, the number of vaccine serotypes in circulation is expected to decrease. Consequently, serotypes that are not covered by PCV10 may experience less competition and start to increase in prevalence. While PCV13 provides broader coverage of pneumococcal serotypes than PCV10, the latter includes protein D from non-typeable Haemophilus influenzae (NTHi) as a carrier for the vaccine's pneumococcal serotypes. This may offer a more comprehensive protection against the non-invasive disease acute otitis media (AOM), as shown in a study (136). Although Synflorix® (PCV10) does not include serotype 19A in its selection, it may still provide some degree of cross-protection against this serotype. However, studies investigating this are inconclusive (137).

NT pneumococci accounted for 10.42% [95%CI: 9.95 – 10.89] of total serotypes. NT pneumococci can cause clinical disease, particularly in neonates and young infants, and studies have demonstrated an increase in NT carriage following the implementation of PCV (138). Further, their potential role in the spread of antimicrobial resistance has been shown with NT pneumococci exhibiting higher rates of recombination of genes in vitro compared with capsulated pneumococci (139). This highlights the importance of further studies so that epidemiology and pathogenesis can be better understood.
Despite the known advantages of using PCV the main barriers to widespread immunisation in MICs need to be acknowledged. Insufficient data reporting and the absence of pneumococcal surveillance programs pose challenges in evaluating the public health requirements of the population and consequently developing evidence-based public health policies (21). However, epidemiological data is vital for informing vaccine policy (140) which cannot rely on a single review or cost-benefit analysis. Instead, it necessitates continuous and rigorous research to establish a comprehensive evidence base. Cross-border collaboration has been promoted as a critical health improvement strategy (141) therefore, the ASEAN network should aid each other in the development of policy. Pneumococcal surveillance programmes are needed to better understand the pneumococcal burden, as well as track progress on vaccination programmes and offers insight into herd immunity effects (142).

The most recent country to update their pneumococcal vaccination policy is Malaysia opting to introduce PCV10, which has been accessible through the NIP since December 2020. This decision is beneficial as it will aid in reducing pneumococcal disease and lowering antimicrobial resistance in the country. Malaysia has been shown to have resistant pneumococci and particularly high penicillin resistance (123) along with multi-drug resistant pneumococci which is comparable to other countries in Asia (68). The implementation of PCV10 in Malaysia underscores the need for comprehensive pneumococcal surveillance programs across the country. As we have previously emphasized (143) such programs are critical for evaluating vaccine efficacy and informing policy decisions.

One of the key strengths of this study was its thorough search process, which involved searching multiple databases without limiting the publication start date to ensure that all relevant studies from the pre-PCV era were included. Additionally, our study has taken into consideration the potential use of the newly licensed PCV15 and PCV20 vaccines to determine their theoretical coverage of various serotypes. However, this study has certain limitations. The reviewed studies often had small sample sizes, non-standardized sampling methods, and inadequate duration. Moreover, the studies were frequently conducted in a single location within a country, thereby failing to provide a precise representation of the epidemiology across the broader population. A few studies only reported serogroups without conducting additional serotyping, while others reported ‘unknown’ serotypes. This makes it difficult to report increases in specific serotypes and fails to provide a comprehensive picture of serotype distribution. These findings also do not contribute meaningfully to the study calculations as it is unclear whether the serotypes are vaccine-types or not. Some studies included in this review did not account for antibiotic use or prior vaccination status of the participants, which would affect the serotypes observed.

This study focused on the serotype prevalence prior to the introduction of PCV vaccines, with the calculated vaccine coverages heavily reliant on the availability of data published during this time period. In order to gain a more accurate understanding of the actual vaccine coverage in the region, this study highlights the potential of conducting a comprehensive review and meta-analysis of the data published following the implementation of the vaccines.
Conclusion

This study shows it is imperative that ongoing surveillance of pneumococci in the ASEAN region be established, utilising comparable approaches to ensure high-quality studies that yield valuable insights into vaccine policy and program efficacy. Comprehensive research encompassing IPD, non-IPD, and pneumococcal carriage is necessary to monitor changes in serotype distribution, assess the impact of vaccination on circulating serotypes and strengthen vaccine policies. Such efforts will help safeguard public health measures ultimately reducing the burden of pneumococcal disease in the most affected parts of the world.

List of Abbreviations

ASEAN = Association of Southeast Asian Nations
IPD = Invasive Pneumococcal Disease
LMIC = Low and Middle-Income Countries
Non-IPD = Non-Invasive Pneumococcal Disease
NT = Non-Typeable
NVT = Non-Vaccine Type
PCV = Pneumococcal Conjugate Vaccine
VRT = Vaccine-Related Types
VT = Vaccine Type

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and Materials

All data generated or analysed during this study are included in this published article.

Competing interests

I have read the journal's policy and the authors of this manuscript have the following competing interests: SCC acts as principal investigator on studies conducted on behalf of University Hospital Southampton NHS Foundation Trust and the University of Southampton that are sponsored by vaccine manufacturers but receives no personal payments. SCC has received financial assistance from vaccine manufacturers to attend conferences. SCC has participated in advisory boards for vaccine manufacturers but receives no personal payments. DWC was a post-doctoral researcher on projects funded by Pfizer and GSK between April 2014 and 20th October 2017. All other authors have no conflicts of interest.
Authors contributions

SCC planned the review. AJJL and ED wrote the initial draft and conducted the data analysis. DWC and SCC reviewed the draft manuscript and directed the edits. DWC and SCC reviewed the final draft and gave recommendations to additional research, structure and clarity. AJJL and ED made corrections and additions to the final draft and AJJL made the submission.

Acknowledgements

This work arose from a dissertation submitted by AJJL in partial fulfilment of the requirements for the Degree of Master of Science (Public Health) at the University of Southampton.

Funding

This study was funded, in part, by a Global Partnership Award to SCC from the University of Southampton via the World Universities Network and a Pfizer GMG grant ID#69396685 to SCC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

143. Lister AJJ, Le CF, Cheah ESG, Desa MNM, Cleary DW, Clarke SC. Serotype distribution of invasive, non-invasive and carried Streptococcus pneumoniae in Malaysia: a meta-analysis. Pneumonia. 2021; 13(9).
Figure 1 PRISMA
Figure 2
Figure 14

(A)

Number of isolates (n)

- ≤5 years
- >5 years
- Unreported

Serotype: PCV10, PCV13, PCV15, PCV20

(B)

Frequency (%)

- ≤5 years
- >5 years
- Unreported

Serotype: PCV10, PCV13, PCV15, PCV20
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 26
Figure 27
Figure 28

(A) Number of isolates (n) by serotype and age group.

(B) Frequency (%) of isolates by serotype and age group.
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12