Effects of oral anticoagulant adherence on stroke, death, and major bleeding in patients with atrial fibrillation: A long-term retrospective cohort study

Abdollah Safari, PhDa, Hamed Helisaz, PhDb,c, Shahrzad Salmasi, PhDd, Adenike Adelakun, MSce, Mary A. De Vera, PhDc,f, Jason G. Andrade, MDg,h,i,k, Marc W. Deyell, MD MSc g,i,j, Peter Loewen, PharmDc,f,i

a School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Iran
b Faculty of Applied Science, University of British Columbia
c GranTAZ Consulting Ltd., Vancouver, Canada
d McGill University, Montreal, Canada
e Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
f Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Canada
g Division of Cardiology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
h Atrial Fibrillation Clinic, Vancouver General Hospital, Canada
i UBC Center for Cardiovascular Innovation, Vancouver, Canada
j Centre for Health Evaluation & Outcome Sciences, Providence Health Care Research Institute, Canada
k Montreal Heart Institute, Université de Montréal, Montréal, Canada

Body word count: 3499

Funding: This research was supported by Canadian Institutes of Health Research grant (FRN 168896). Dr. Loewen’s research is also partially supported by the UBC David H MacDonald Professorship in Clinical Pharmacy (Vancouver, Canada). Dr. Salmasi’s research was supported by a Canadian Institutes of Health Research Postdoctoral Fellowship award.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Disclosure: Dr. Andrade has received honoraria from Bayer, Biosense-Webster, BMS Pfizer, Medtronic, and Servier, as well as Grants from Medtronic. Dr. Deyell has received honoraria from Pfizer, Servier, and Bayer. Other authors have no conflicts of interest to disclose.

Disclaimer: Access to data provided by the Data Steward(s) is subject to approval, but can be requested for research projects through the Data Steward(s) or their designated service providers. All inferences, opinions, and conclusions drawn in this publication are those of the author(s), and do not reflect the opinions or policies of the Data Steward(s).

Address for correspondence:
Peter Loewen B.Sc.(Pharm), ACPR, Pharm.D., FCSHP, R.Ph.
Associate Professor | Faculty of Pharmaceutical Sciences
David H MacDonald Professor in Clinical Pharmacy
Faculty, UBC Collaboration for Outcomes Research & Evaluation
Researcher, UBC Center for Cardiovascular Innovation
The University of British Columbia | Vancouver Campus
2405 Wesbrook Mall | Vancouver, BC Canada V6T 1Z3
phone 604 506 8011 | peter.loewen@ubc.ca

Acknowledgements: The authors are grateful to Dr. Anita I. Kapanen from University of British Columbia for her expert support of the data stewardship and ethical oversight of this study.

Disclaimer: All inferences, opinions, and conclusions drawn in this manuscript are those of the authors, and do not reflect the opinions or policies of the Data Steward(s).
ABSTRACT

Background
Patients with atrial fibrillation (AF) are frequently nonadherent to oral anticoagulants (OACs) prescribed for prevention of stroke and systemic embolism (SSE). The effects of OAC adherence on clinical outcomes are uncertain because previous studies used short time periods, treated adherence as binary, and/or excluded VKA users. Our objectives were to quantify the relationship between adherence to OACs as a continuous variable and AF-related clinical outcomes, and to compare the consequences of nonadherence between OAC classes and individual OACs.

Methods
This retrospective, observational cohort study included incident cases of AF from population-based administrative data of 5 million British Columbians from 1996 to 2020. The exposure of interest was proportion of days covered (PDC) for incident OAC prescriptions during 90 days before a clinical event or end of follow-up. Multivariable Cox proportional hazard models were used to evaluate time to first composite outcome of SSE, transient ischemic attack (TIA), or death and SSE and several secondary outcomes. Models were also stratified by the OAC patients were receiving within 90 days of the outcome event.

Results
The study cohort included 34,946 patients (mean age 70.1, 45% female) with median follow-up of 6.7 years. Each 10% absolute decrease in PDC was associated with a 4.3% (95%CI 2.9-5.6) and 10.3% (95%CI 7.5-13.0) increase in hazard of SSE, TIA, or death for VKA and direct OAC (DOAC) users, respectively. For SSE, hazard increases per 10% PDC reduction were 22.5% (95%CI 19.6-25.4) and 34.2% (95%CI 28.2-40.6) for VKA and DOAC, respectively. Similar significant effects were seen for all secondary efficacy outcomes. Differences between VKA and DOAC were statistically significant for all outcomes (p<0.001 all contrast tests) except major bleeding.

Conclusions
Even small reductions in OAC adherence in patients with AF are associated with significant increases in risk of SSE and death, and these effects are significantly greater with DOAC nonadherence than with VKA nonadherence. These results suggest that DOAC recipients are more vulnerable than VKA recipients to increased risk of stroke and death even with small reductions in adherence. The worsening efficacy outcomes associated with decreasing adherence occur without any benefit in terms of major bleeding reduction.
INTRODUCTION

Atrial fibrillation (AF) is the most common chronic arrhythmia, affecting 3% of the world’s population. Stroke prevention is a cornerstone of AF management because patients with AF are at 5 times higher risk of experiencing a stroke than those without AF, and strokes secondary to AF are more debilitating and more lethal than those due to cerebrovascular disease. Oral anticoagulants [OACs; vitamin K antagonists (VKAs, typically warfarin), Direct Oral Anticoagulants (DOACs; apixaban, dabigatran, edoxaban and rivaroxaban)] are highly effective for stroke prevention. Unfortunately, it is estimated that 33-50% of patients are nonadherent to their OACs and miss, on average, 30% of their OAC doses.

It is important to quantify the relationship between OAC adherence and clinical outcomes in patients with AF because the clinical consequences of nonadherence are potentially devastating and costly. The few existing studies have treated adherence as a binary exposure (e.g. ≥ 80 or < 80%) and evaluated the effect of adherence over only short follow-up durations (< 2 years), despite OAC therapy being lifelong and adherence being a continuous spectrum known to vary over time. Existing studies have typically excluded VKA users because of difficulties in measuring adherence due to its variable dosing regimens. It is conceivable that patients with different levels of adherence who would otherwise be simply categorized as nonadherent experience different clinical event rates, and that nonadherence to VKA vs. DOACs has significantly different clinical consequences due to their different pharmacodynamics. Hence, significant uncertainty remains about the relationship between OAC adherence and the risk of stroke or systemic embolism (SSE) and death.

Given our limited understanding of the multidimensional nature of medication adherence, reliable interventions to improve adherence in patients with AF remain elusive. A more comprehensive understanding of these phenomena could help identify patients with adherence problems who are most at risk of adverse clinical outcomes and could inform the design of adherence interventions to maximize their impact on stroke and death.

To address these knowledge gaps, our objectives were to quantify the relationship between adherence to OACs and various AF-related clinical outcomes, and to compare the consequences of nonadherence to VKA to DOAC in terms of these outcomes.

METHODS

Study design and setting

This was a retrospective observational cohort study using de-identified patient records from administrative data (Population Data BC) for the entire population of the province of British Columbia (BC), Canada (~5 million residents). This included the following databases: Medical Services Plan (MSP) billing for outpatient visits, Discharge Abstract Database (DAD) containing extensive data from hospitalizations, the Consolidation File containing demographics such as sex, place of residence, and registration with the provincial healthcare.
plan, and the Vital Statistics Database26 containing date and primary cause of death. Data for all prescription medications dispensed outside of hospital between January 1996 and December 2019 was retrieved from the PharmaNet database and linked to the other datasets.27 Person-level linkage used a study-specific unique identifier created by the data provider and linkage was performed before the data was released to the investigators.

The study was approved by the University of British Columbia Clinical Research Ethics Board (H17-02420). Study reporting follows the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) and Reporting of Studies Conducted Using Observational Routinely Collected Health Data Statement for Pharmacoepidemiology (RECORD-PE) extension guides.28-30

Participants

We created an incident cohort of adult patients \geq 18 years old with non-valvular AF. Using the algorithm validated by Navar et al. with a positive predictive value of 95.7%,31 we included individuals who had \geq3 recorded visits in MSP or DAD23,24 related to AF or atrial flutter, with at least one of the three recorded visits being AF-specific (ICD-9 = 427.31; ICD-10 = I48; Supplemental Appendix A). To distinguish AF for which anticoagulation therapy is normally considered from potentially transient/reversible AF, at least two of the visits had to occur within one year.32

Next, using Anatomical Therapeutic Chemical (ATC) codes from PharmaNet27 records, we captured all dispensed prescriptions for OACs available in the study jurisdiction (warfarin, dabigatran, apixaban, rivaroxaban, edoxaban). Individuals were excluded if they did not have continuous public medical insurance coverage during the 1-year prior to their first OAC prescription fill, or if their first OAC prescription occurred before 1997 to permit 1-year baseline covariate ascertainment, or after Jan 2019 to ensure \geq1 year follow-up before end of the data.

The date on which the first OAC prescription was filled after the first AF diagnostic code (or within 60 days before the first AF code), was referred to as the “index date” (Figure 1). Baseline patient characteristics were measured during 12 months prior to the index date, referred to as the “baseline period”. Follow-up ended at the time of first study event or on the date of the last available data, whichever came first.

To ensure we included only incident AF cases and incident OAC use, those with an AF code or OAC prescription fill during the 3 years prior to their AF diagnosis date or their index date, respectively, were excluded. To improve specificity, we excluded individuals with indications for OAC other than non-valvular AF (e.g., venous thromboembolism, rheumatic valve disease; Supplemental Appendix A) based on codes appearing any time before their index date. We also excluded patients with two different OACs filled on the same index date. Finally, because \geq2 OAC prescription fills were required to measure adherence, patients with only one OAC prescription fill were excluded.
Patients were followed from the index date until the end of their follow-up time, defined as December 2019, date of death, or discontinuation of their public medical insurance enrolment, whichever came first.

Variables

The primary exposure of interest was OAC adherence, measured as proportion of days covered (PDC). Ninety-day consecutive windows (the typical length of dispensed prescriptions in PharmaNet) were created for each patient between their first OAC prescription fill date and the end of their follow-up and PDC was calculated for each window. If a patient permanently discontinued their medication, all windows after their last supply ran out were assigned a PDC of zero until the end of their follow-up period. To address variable dosing of warfarin based on international normalized ratio (INR) results, we used the validated Random Effects Warfarin Days’ Supply (REWarDS) method to estimate the average daily dose for warfarin in the computation of PDC for warfarin. PDC was multiplied by 10 (representing PDC deciles) to allow more meaningful interpretation of its impact on risk of outcomes in our study models.

The co-primary outcomes were SSE and the composite of SSE, transient ischemic attack (TIA), or death. Secondary outcomes were all-cause death, cardiovascular death, SSE or TIA, ischemic stroke, hemorrhagic stroke, major bleeding, and nontraumatic intracranial hemorrhage. All outcomes were measured as time to first event.

All outcomes except death were based on the first or second most responsible causes of hospitalization as recorded in DAD. Death and its cause were ascertained from the Vital Statistics registry. The primary outcome of SSE was chosen to align the Canadian Cardiovascular Society’s AF surveillance quality indicators program primary outcome and used the same validated ascertainment scheme. The other primary outcome was chosen to avoid competing risk between SSE and death and included TIA using a validated ascertainment scheme to encompass all stroke-related outcomes.

Covariates included in study analyses were age, sex, SSE risk score, CHA2DS2-VASc (Congestive heart failure, Hypertension, Age ≥75, Diabetes, prior Stroke or systemic embolism, Vascular disease, Age 65-74, Sex [female]), major bleeding risk score, modified HAS-BLED (Hypertension, Abnormal renal/liver function, Stroke, Bleeding, Labile INR, Elderly, and Drugs/alcohol), comorbidities (individual components of CHA2DS2-VASc and HAS-BLED scores), socioeconomic status, neighbourhood income quintile, number of medical services plan billings, number of hospitalizations, time from AF diagnosis to OAC start, Charlson comorbidity index (CCI), and polypharmacy (5 or more concurrent medications, not including OAC). Following convention, CHA2DS2-VASc and HAS-BLED scores were binarized at ≥2. Due to their highly skewed distributions, number of hospitalizations during follow-up was grouped into four categories: 0, 1, 2, and ≥3 admissions, and time to OAC initiation was grouped into three categories: <3 months, 3 to 9 months, and >9 months. Multivariable imputation was used to impute missing values for SES (the only covariate with missing values).
To enable analyses of association between specific OAC drugs and the study outcomes, we created an additional variable for OAC at time of the event using a novel scheme described in Supplemental Appendix A4. For our main exposure of interest, PDC, to study the effect of OAC adherence and OAC drug class separately, we included their corresponding information in three separate variables: PDC, OAC drug class, and individual OAC drug. The former measured patients’ adherence to any prescribed OAC medication calculated during 90-day window prior to the event date or end of follow-up, and the others captured the class or drug temporally associated with the event.

To avoid collinearity, we selectively included HAS-BLED, CHA2DS2-VASc, and CCI scores in our study models based on their relevance. We used CHA2DS2-VASc score for stroke or death outcomes and HAS-BLED score for bleeding outcomes. CCI was not included in any models due to its high correlation with both scores.

Statistical analyses

To evaluate the association between OAC adherence and time to clinical outcomes, multivariable Cox proportional hazard models were constructed that incorporated PDC and the study covariates. To ensure clinical events were first occurrences, for models including stroke (any type) or major bleeding, we excluded patients who had that event in the previous 5 years. For each model, history of other study outcomes within the previous year was also included as a covariate. For example, when stroke was among the model outcomes, history of major bleeding was used as a covariate in the model, and vice-versa. For outcomes involving death, history of stroke and major bleeding were both included in the model. For all analyses we used each patient’s OAC PDC during the 90-days prior to the event or end of follow-up, whichever came first. Sex was included as a covariate in all models regardless of its contribution and we constructed separate Cox models for females and males for the primary outcomes.

For our second objective, we hypothesized that the relationships between PDC and time to clinical outcomes would vary significantly based on the OAC class (VKA or DOAC) and/or OAC drug the patient was receiving at the time of their event. We evaluated this in the initial Cox models by examining the significance of the PDC covariate hazard ratio (HR) regardless of patients’ OAC drug class. Then, to allow the effect of PDC on the hazard of outcomes to be different for patients under different OAC drug classes at event time, we fitted the Cox models with an additional PDC:OAC class interaction term. We also did contrast analyses comparing the PDC HRs between VKA and DOAC recipients. Cox models with adherence to individual OAC drugs as covariates were constructed for the primary outcomes using similar methods.

Model results are presented with hazard ratios (HR) and 95% confidence intervals (95%CI) for covariates. HRs of PDCs are changes in risk of outcome per 10% absolute increase in PDC. For ease of interpretation, associations between PDC and study outcomes are also presented as percent increase in hazard of outcome per 10% absolute decrease in PDC.
Sensitivity analyses

To identify period effects, we fitted the models on patients diagnosed after 2010 when both OAC drug classes were available. To evaluate the scheme used to assign patients an OAC drug class at event time, similar Cox models were fitted on only patients with a stable OAC (no recent drug switches or stopped medications), and different gap times (5, 7, or 10 days) prior to event date were used in the scheme to test their effects on classification and outcomes. To study the effect of PDC on outcomes among only patients with an active OAC, we used similar Cox models but excluded patients with no OAC at event date. Further sensitivity analyses were conducted to test the robustness of the results against different pre-event PDC periods: 30 days and 180 days vs. conventional 90-day windows. We evaluated the effects of excluding people with a prior similar event by running the models without that exclusion criterion. Finally, to identify residual confounding due to healthy adherer effects, we performed analyses using accidental death as the falsification endpoint.

All analysis was conducted using R v4.0.5 (R Core Team, Vienna, Austria, 2021) and RStudio v1.3.1039 (RStudio Team, Boston, US, 2020).

RESULTS

Participants

The cohort included 34,946 people; 44.5% were female, and average age was 70.1 (11.3). Median follow-up time was 6.7 years (interquartile range (IQR): 4.0, 10.7). The median number of OAC prescriptions filled during follow-up was 42 (IQR 20, 66) per patient. Other characteristics of the included patients are shown in Table 1. During follow up 14,136 SSE, TIA, or death events and 1928 SSE events occurred. Table 2 shows the number of events included and median time to event in each study model.

Effects of OAC adherence on clinical outcomes

Results of the time-to-event analyses of the effect of PDC on outcomes are shown in Table 3 and Figure 2. Primary outcomes were modelled with and without the PDC:OAC drug class interaction term and secondary outcomes were modeled only with the interaction term. Figure 3 illustrates the relationship between log relative hazard of the primary outcomes and PDC by OAC class from the Cox regression models. The figure shows the stronger relationship between PDC and the primary outcomes among DOAC recipients versus VKA recipients (steeper orange lines), and the gap between orange and blue lines reflects more patients with higher risk of outcomes were prescribed VKA versus DOAC.

There were too few events to model outcomes for nontraumatic ICH (179 events), and death due to bleeding (305 events), AF (603 events), or stroke (803 events).
Individual OAC analyses

Effects of adherence to individual OACs on the primary outcomes are shown in Figure 4. Too few participants were receiving edoxaban to include it in the models. Contrast testing revealed significant differences in hazards for all three DOACs compared to VKA, except dabigatran vs. VKA for SSE.

Sex-based analyses

Sex-specific Cox models showed that for females, a 10% absolute decrease in PDC for VKA was associated with a 4.5% increase in hazard of SSE, TIA, or death (HR 0.957; 95%CI 0.939 – 0.977), and 10.3% increase in hazard for DOAC recipients (HR 0.907; 95%CI 0.873 – 0.943). The corresponding models for males showed a 10% absolute decrease in PDC for VKA was associated with a 4.2% increase in hazard of SSE, TIA, or death (HR 0.960; 95%CI 0.943 – 0.978), and 10.5% increase in hazard for DOAC recipients (HR 0.904; 95%CI 0.874 – 0.934). Contrast between VKA and DOAC was significant in both sets of sex-specific models (p<0.017).

For SSE, in the females-only Cox model, a 10% absolute decrease in PDC for VKA was associated with a 21.7% increase in hazard of SSE (HR 0.822; 95%CI 0.794 – 0.850), and 32.1% increase in hazard for DOAC recipients (HR 0.757; 95%CI 0.705 – 0.812). The corresponding models for males showed a 10% absolute increase in PDC for VKA was associated with a 24.2% increase in hazard of SSE (HR 0.805; 95%CI 0.778 – 0.833), and 36.2% increase in hazard for DOAC recipients (HR 0.734; 95%CI 0.690 – 0.780). Contrast between VKA and DOAC was significant in both sets of sex-specific models (p<0.039).

Sensitivity analyses

Confining the primary analyses to patients who initiated OAC therapy after 2010, when at least one alternative to VKA was available, had no significant effect on the model outputs. Choosing a longer window of PDC prior to events (180 days) resulted in more model instability and sharply reduced effect sizes, indicating clinical events are closely related to short-term OAC-taking behaviours rather than long-term preventive effects, as hypothesized. Sensitivity analysis of the robustness of our scheme to attribute drug classes to clinical events showed that different cut-offs for number of days prior to events for drug changes (5d, 7d, 10d) did not affect the classification proportions. Exclusion of patients with a prior similar event from study models had negligible effects on the results (Supplemental Appendix A6.3, A6.4). The falsification analyses using accidental death as an outcome showed no association with PDC, confirming healthy adherer effects did not contribute significantly to our results.

DISCUSSION

In this large population-based cohort study of incident AF patients with incident OAC use, we found strong associations between OAC adherence and major clinical outcomes. These associations were markedly different between the OAC drug classes patients were prescribed at the time of their event. For the primary outcomes, adherence to DOAC was significantly more
strongly associated with events than adherence to VKA, after adjustment for available
confounders. For DOACs, each 10% absolute decrease in adherence was associated with a
34.2% increase in risk of SSE and 10.3% increase in risk of SSE, TIA, or death. For VKA the
corresponding increased risks were 22.5% and 4.3%, respectively. Similar statistically significant
relationships were seen with secondary outcomes of SSE or TIA and ischemic stroke. These
effects were similar in magnitude among individual DOACs (dabigatran, apixaban, and
rivaroxaban). Strikingly, there was a strong association between DOAC adherence and all-cause
and cardiovascular death, which was not seen for VKA use.

These results confirm the importance of achieving maximal adherence in OAC recipients with
AF, but especially among DOAC recipients given the much sharper declines in efficacy we
observed for nonadherence to DOACs than for VKA. This may be a result of the short duration
action of DOACs compared to VKA,51-53 with missed DOAC doses potentially leaving
patients subtherapeutically anticoagulated for longer periods than missed VKA doses. Our results
are the first to demonstrate the magnitude of these effects on major clinical outcomes.

In an apparent paradox, higher adherence to OACs was associated with lower risk of major
bleeding. We conducted some exploratory analyses (e.g., examining only GI bleeding,
concurrent NSAID, antiplatelet, or gastroprotective drug therapy, further HAS-BLED stratum
analyses) to identify potential confounders, but this deserves further study. Residual confounding
is possible, for example from patients who are more adherent engaging in more bleeding risk-
reducing behaviours compared to less adherent patients (so-called healthy adherer effects),48, 49
though our falsification endpoint analysis makes this less likely. The possibility that the
relationship between OAC adherence and major bleeding behaves differently than efficacy
outcomes deserves investigation. Regardless, we found no safety advantage to OAC
nonadherence, and our results clearly show that improving OAC adherence does not come at the
cost of more major bleeding.

Others have demonstrated that poor OAC adherence is associated with worse clinical outcomes
in patients with AF.11-16 However, these prior studies had several methodological limitations
which ours overcomes: We used one of the world’s most comprehensive administrative datasets
which includes complete medication prescribing records regardless of payer. We avoided
prevalent user biases with a new-user and incident cohort design.54-56 We achieved high
statistical power via our large sample size. We used adherence as a continuous variable,
revealing the effects of incremental and relatively small (e.g., 10%) changes in adherence, which
is not possible when adherence is treated as binary as it is in most studies. We used a rigorous
scheme to distinguish between OACs in use at the time of the event which allowed us to
compare effect estimates between OACs. Lastly, we included VKA recipients, a group routinely
excluded from population-based studies due to difficulties in accurately ascertaining PDC.

\textbf{Limitations}

These results should be interpreted considering the study’s limitations. We assumed that filling a
prescription equates to consuming the medication, which may not always be true. Some variables
known to affect adherence (e.g., education level, adverse effects experienced, psychosocial factors) were absent from the administrative databases, limiting our ability to account for their contributions. Requiring at least two prescription fills for inclusion in the cohort meant that we excluded those who never initiated therapy or stopped after one prescription fill, a potentially high-risk subpopulation. The available data did not include laboratory values, so we were unable to validate VKA adherence with INR values or include measures of renal function in study models. There were too few edoxaban recipients and too few of certain events (ICH, deaths due to bleeding, AF, or stroke) to permit analyses. Finally, our data covered only through the end of 2019, although this coincided with the beginning of the COVID-19 pandemic which resulted in major changes to prescription filling and drug coverage for OACs in British Columbia. Hence, our results are not confounded by those disruptions to the medication supply system and its effects on prescribing and adherence.

CONCLUSIONS

Even small reductions in OAC adherence in patients with AF are associated with significant increases in risk of SSE and death, and these effects are significantly greater with DOAC nonadherence than with VKA nonadherence. These results suggest that DOAC recipients are more vulnerable than VKA recipients to increased risk of stroke and death even with small reductions in adherence. The worsening efficacy outcomes associated with decreasing adherence occur without any benefit in terms of major bleeding reduction.
KEY POINTS

- Decreased OAC adherence in patients with AF is likely to yield significantly increased risk of stroke and death, particularly among DOAC recipients.
- Even small reductions in OAC adherence are associated with increased risk of stroke and death in AF patients.
- Negative effects of reduced OAC adherence on clinical outcomes are significantly greater with DOACs than VKA, and DOAC recipients are more vulnerable than VKA recipients to increased risk of stroke and death even with small reductions in adherence.
- Lower OAC adherence does not provide a safety advantage in terms of lower risk of major bleeding.

33. Centers for Disease Control and Prevention Division for Heart Disease and Stroke Prevention. Calculating proportion of days covered (PDC) for antihypertensive and antidiabetic medications: an evaluation guide for grantees. In: (NCCDPHP) NCfCDPaHP, (ed.). USA2015.

Table 1: Characteristics of study patients at index date

<table>
<thead>
<tr>
<th>Patient Characteristic</th>
<th>Overall (n = 34,946)</th>
<th>Males (n = 19,379)</th>
<th>Females (n = 15,567)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>15567 (44.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>70.1 y ± 11.3</td>
<td>67.9 (11.5)</td>
<td>72.9 (10.3)</td>
</tr>
<tr>
<td>Age category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><55</td>
<td>3183 (9.1%)</td>
<td>2445 (7.0%)</td>
<td>738 (2.1%)</td>
</tr>
<tr>
<td>55-65</td>
<td>6983 (20.0%)</td>
<td>4553 (13.0%)</td>
<td>2430 (7.0%)</td>
</tr>
<tr>
<td>65-75</td>
<td>11413 (32.7%)</td>
<td>6400 (18.3%)</td>
<td>5013 (14.3%)</td>
</tr>
<tr>
<td>≥75</td>
<td>13367 (38.3%)</td>
<td>5981 (17.1%)</td>
<td>7386 (21.1%)</td>
</tr>
<tr>
<td>Neighborhood income quintile d</td>
<td>3.0 ± 1.4</td>
<td>3.0 ± 1.4</td>
<td>2.8 ± 1.4</td>
</tr>
<tr>
<td>Socioeconomic status category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2</td>
<td>7335 (21.0%)</td>
<td>3722 (10.7%)</td>
<td>3620 (10.4%)</td>
</tr>
<tr>
<td>2-3</td>
<td>7132 (20.4%)</td>
<td>3752 (10.7%)</td>
<td>3393 (9.7%)</td>
</tr>
<tr>
<td>3-4</td>
<td>6862 (19.6%)</td>
<td>3873 (11.1%)</td>
<td>2966 (8.5%)</td>
</tr>
<tr>
<td>≥4</td>
<td>13617 (39.0%)</td>
<td>8032 (23.0%)</td>
<td>5588 (16.0%)</td>
</tr>
<tr>
<td>Index OAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warfarin</td>
<td>24927 (71.3%)</td>
<td>13825 (39.6%)</td>
<td>11102 (31.8%)</td>
</tr>
<tr>
<td>Dabigatran</td>
<td>2601 (7.4%)</td>
<td>1458 (4.2%)</td>
<td>1143 (3.3%)</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>4714 (13.5%)</td>
<td>2622 (7.5%)</td>
<td>2092 (6.0%)</td>
</tr>
<tr>
<td>Apixaban</td>
<td>2693 (7.7%)</td>
<td>1469 (4.2%)</td>
<td>1224 (3.5%)</td>
</tr>
<tr>
<td>Edoxaban</td>
<td>11 (0.0%)</td>
<td>5 (0.0%)</td>
<td>6 (0.0%)</td>
</tr>
</tbody>
</table>

Characteristics measured during baseline period (1 year prior to index date)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Overall (IQR)</th>
<th>Males (IQR)</th>
<th>Females (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHA2DS2-VASc score, median (IQR) e</td>
<td>3 (2, 4)</td>
<td>2 (1, 4)</td>
<td>3 (2, 4)</td>
</tr>
<tr>
<td>HAS-BLED score, median (IQR) f</td>
<td>2 (1, 3)</td>
<td>2 (1, 3)</td>
<td>2 (2, 3)</td>
</tr>
<tr>
<td>Weighted Charlson Comorbidity Index, mean (IQR) g</td>
<td>5 (3, 8)</td>
<td>5 (3, 8)</td>
<td>5 (3, 8)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>17546 (50.2%)</td>
<td>10636 (30.4%)</td>
<td>10108 (28.9%)</td>
</tr>
<tr>
<td>Vascular disease</td>
<td>9723 (27.8%)</td>
<td>5765 (16.5%)</td>
<td>3958 (11.3%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>6655 (19.0%)</td>
<td>3992 (11.4%)</td>
<td>2663 (7.6%)</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>5461 (15.6%)</td>
<td>2951 (8.4%)</td>
<td>2510 (7.2%)</td>
</tr>
<tr>
<td>Condition</td>
<td>Median (IQR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke/TIA</td>
<td>3427 (9.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal renal function</td>
<td>2248 (6.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td>2778 (7.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal liver function</td>
<td>353 (1.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol use</td>
<td>213 (0.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prescribed nonsteroidal anti-inflammatory (NSAID) or antiplatelet drug, median (IQR)</td>
<td>0 (0-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OAC: Oral Anticoagulants. TIA: Transient ischemic attack. IQR: Interquartile range.

Values are n (%), mean ± standard deviation, median (IQR), unless otherwise stated.

Neighborhood income quintile represents the average equivalized disposable income by postal code in patients’ residential area at index date, with 1 as the lowest and 5 as the highest level.

Stroke risk score calculated based on the presence of comorbidities: Cardiomyopathy (1 point), Hypertension (1 point), Age≥75 (2 points), Diabetes (1 point), Stroke (2 points), Vascular disease (1 point), Age 65–75 (1 point), Sex category female (1 point). Scored if at least one disease specific ICD code was present in either outpatient or inpatient records during the baseline period. Ascertainment scheme is in Supplemental appendix Table A1.

Bleeding risk score calculated based on the presence of comorbidities: Hypertension (1 point), Abnormal liver/kidney function (1 point), Stroke (1 point), Bleeding (1 point), Age > 75 years (1 point), Drugs (NSAID or antiplatelet) or alcohol use (1 point). Scored if at least one disease specific ICD code was present in either outpatient or inpatient records during the baseline period. Ascertainment scheme is in Supplemental appendix Tables A1 and A2.

Each comorbidity category has an associated weight (from 1 to 6), based on the adjusted risk of mortality or resource use, and the sum of all the weights results in a single comorbidity score for a patient. Possible range of scores: 0-31. Zero indicates that no comorbidities were found. Ascertainment scheme is in Supplemental appendix Table A1.

NSAIDs and ASA could be obtained with or without a prescription in the study jurisdiction.

19
<table>
<thead>
<tr>
<th>Outcome model</th>
<th>Frequency</th>
<th>Median time to event in years (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSE, TIA, or death*</td>
<td>13,543</td>
<td>5.6 (2.8-9.5)</td>
</tr>
<tr>
<td>SSE*</td>
<td>1804</td>
<td>4.3 (1.8-7.7)</td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSE or TIA*</td>
<td>2377</td>
<td>4.2 (1.7-7.6)</td>
</tr>
<tr>
<td>Ischemic stroke*</td>
<td>1467</td>
<td>4.2 (1.8-7.6)</td>
</tr>
<tr>
<td>Death (any cause)</td>
<td>13,096</td>
<td>6.1 (3.2-10)</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>5306</td>
<td>6.3 (3.3-10.2)</td>
</tr>
<tr>
<td>Major bleeding**</td>
<td>3839</td>
<td>3.7 (1.5-7.1)</td>
</tr>
<tr>
<td>Nontraumatic intracranial hemorrhage</td>
<td>300</td>
<td>4.2 (1.8-7.3)</td>
</tr>
</tbody>
</table>

SSE: stroke or systemic embolism. Ascertainment scheme in Supplemental appendix.

*after excluding patients with SSE within the previous 5 years

**after excluding patients with major bleeding within the previous 5 years

Study outcome definitions are in Supplemental appendix Table A3.
Table 3: Effects of OAC adherence on clinical outcomes by OAC class

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of events</th>
<th>Drug</th>
<th>HR (95% CI)*</th>
<th>Change in hazard of outcome per 10% absolute decrease in PDC (95%CI)</th>
<th>Contrast test for DOAC vs. VKA HR (95%CI); p-value</th>
<th>Detailed model outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSE, TIA, or death (co-primary outcome)</td>
<td>13,543</td>
<td>any OAC</td>
<td>0.992 (0.987 – 0.997)</td>
<td>0.8% (0.3-1.3) increase</td>
<td></td>
<td>Supplemental appendix A 6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VKA</td>
<td>0.959 (0.947 – 0.972)</td>
<td>4.3% (2.9-5.6) increase</td>
<td>0.946 (0.919-0.973); p<0.001</td>
<td>Supplemental appendix A 6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOAC</td>
<td>0.907 (0.885 – 0.930)</td>
<td>10.3% (7.5-13.0) increase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSE (co-primary outcome)</td>
<td>1804</td>
<td>any OAC</td>
<td>0.901 (0.887 – 0.914)</td>
<td>11% (9.4-12.7) increase</td>
<td></td>
<td>Supplemental appendix A 6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VKA</td>
<td>0.816 (0.797 – 0.836)</td>
<td>22.5% (19.6-25.4) increase</td>
<td>0.913 (0.866-0.961); p<0.001</td>
<td>Supplemental appendix A 6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOAC</td>
<td>0.745 (0.711 – 0.780)</td>
<td>34.2% (28.2-40.6) increase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSE or TIA</td>
<td>2377</td>
<td>VKA</td>
<td>0.824 (0.807 – 0.840)</td>
<td>21.4% (19.0-23.9) increase</td>
<td>0.926 (0.885-0.968); p<0.001</td>
<td>Supplemental appendix A 6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOAC</td>
<td>0.762 (0.732 – 0.794)</td>
<td>31.2% (25.9-36.6) increase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>1467</td>
<td>VKA</td>
<td>0.802 (0.780 – 0.824)</td>
<td>24.7% (21.4-28.2) increase</td>
<td>0.930 (95%CI 0.877-0.986); p=0.014</td>
<td>Supplemental appendix A 6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOAC</td>
<td>0.745 (0.708 – 0.785)</td>
<td>34.2% (27.4-41.2) increase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause death</td>
<td>13,096</td>
<td>VKA</td>
<td>1.005 (0.986)</td>
<td>NS</td>
<td>0.941</td>
<td>Supplemental</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>DOAC 0.946 (0.916</td>
<td>5.7% increase</td>
<td>appendix A 6.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>death</td>
<td>– 0.977)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.919 (95% CI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.869-0.971);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p=0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DOAC 0.918 (0.875</td>
<td>8.9% (3.8-14.3)</td>
<td>Supplemental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 0.963)</td>
<td>increase</td>
<td>appendix A 6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td>VKA 0.850 (0.839</td>
<td>17.6% (16.0-19.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>– 0.862)</td>
<td>increase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.019 (0.982-1.058); p=0.317</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.9% (9.3-19.9)</td>
<td>increase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*HRs are relative hazard per 10% increase in PDC.

NS: not statistically significant; SSE: stroke or systemic embolism; TIA: transient ischemic attack; VKA: vitamin K antagonist; DOAC: direct-acting oral anticoagulant; PDC: proportion of days covered.
Figure 1: Study design

Index date:
1st OAC prescription fill either after the
1st AF diagnosis code or within 60 days
before AF diagnosis

Follow up period ended when any
of the following occurred:
- First outcome event
- End of continuous MSP enrolment
 or 30-day gap in MSP registration
- End of available data
Figure 2: Increase in hazard of clinical event per 10% reduction in PDC by OAC drug class

*VKA vs. DOAC test for contrast p<0.001
**VKA vs. DOAC test for contrast p=0.85

SSE: stroke or systemic embolism; TIA: transient ischemic attack; VKA: vitamin K antagonist; DOAC: direct-acting oral anticoagulant; PDC: proportion of days covered
Figure 3: Change in log relative hazard of primary outcomes vs. PDC by OAC class

A) SSE, TIA, or death

B) SSE

SSE: stroke or systemic embolism; TIA: transient ischemic attack; VKA: vitamin K antagonist; DOAC: direct-acting oral anticoagulant; PDC: proportion of days covered
Figure 4: Increase in hazard of clinical event per 10% reduction in PDC by OAC drug

* test for contrast