Disrupted Limbic-Prefrontal Effective Connectivity in Response to Fearful Faces in Lifetime Depression

Aleks Stolicyn¹, Mathew A. Harris¹, Laura de Nooij¹,², Xueyi Shen¹, Jennifer A. Macfarlane³,⁴,⁵, Archie Campbell⁶, Christopher J. McNeil⁵,⁷, Anca-Larisa Sandu⁵,⁷, Alison D. Murray⁵,⁷, Gordon D. Waiter⁵,⁷, Stephen M. Lawrie¹, J. Douglas Steele³,⁵, Andrew M. McIntosh¹,⁵,⁶, Liana Romaniuk*¹,⁵, Heather C. Whalley*¹,⁵,⁶

* These authors share joint senior authorship

1. Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh EH10 5HF, United Kingdom
2. Donders Institute for Brain, Cognition and Behaviour, University Nijmegen Medical Center, Nijmegen 6525 GD, Netherlands
3. Division of Imaging Science and Technology, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom
4. Department of Medical Physics, NHS Tayside, Dundee DD2 1UB, United Kingdom
5. SINASPE Consortium, https://www.sinapse.ac.uk
6. Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
7. Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZN, United Kingdom

Corresponding author:
Aleks Stolicyn
Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh
Kennedy Tower, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, UK.
Email: a.stolicyn@ed.ac.uk

Running title: Amygdala-prefrontal inhibition in depression

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Depression is associated with negative emotional biases which are often studied using images of fearful facial expressions. Brain imaging studies of depression with fearful face stimuli have extensively focused on the amygdala and the prefrontal cortex, but the results have been inconsistent, potentially due to small studied sample sizes (typically $N < 50$). It remains unclear whether there are altered activations in these regions in response to fearful faces, and if any alterations are a characteristic of depressive state or of past experience of depression. Moreover, it is not clear if there are changes in effective connectivity between these regions. To address these questions, we investigated activations of the amygdala and the dorsolateral prefrontal cortex (DLPFC), as well as effective connectivity between these regions, in response to fearful face stimuli in a comparatively large, deeply-phenotyped, population-based sample of participants who had a clinically-verified diagnosis of major depressive disorder during their lifetime (lifetime depression).

Brain imaging was conducted in a subsample of the Generation Scotland cohort. While in the scanner, control participants with no history of depression ($N = 664$) and participants with lifetime depression ($N = 290$) completed an implicit facial emotion processing task with neutral and fearful face stimuli. Case-control differences in activations of the amygdala and the DLPFC were assessed using a region-of-interest approach. Changes in effective connectivity between these regions were assessed with dynamic causal modelling.

Compared to controls, lifetime depression was associated with increased activation in the left amygdala (small volume corrected $P_{FWE} = 0.031$, cluster volume 4 voxels; mean activation change $\beta = 0.0715$, $P = 0.0314$) and the left DLPFC (small volume corrected $P_{FWE} = 0.002$, cluster volume 33 voxels) in response to fearful faces compared to baseline. Effective connectivity analysis indicated significantly increased inhibition from the left amygdala to the left DLPFC (effect -0.15, probability 0.82), again related to the contrast of fearful faces to baseline. These results did not appear to be attributed to acute depressive illness severity or antidepressant medication status.

Our findings indicate that lifetime (past or present) experience of depression is related to small increases in activity of both the amygdala and the DLPFC in response to fearful faces, with complementary evidence of stronger inhibitory input from the amygdala to the DLPFC. These results substantially contribute to addressing uncertainties in the past literature and suggest disruption of ‘bottom-up’ limbic-prefrontal connectivity in depression.

Keywords: Major depressive disorder; amygdala; prefrontal cortex; fearful faces; functional MRI; effective connectivity.
Introduction

Depression (major depressive disorder, MDD) is a prevalent condition which on average affects between 10% and 15% of the general population over their lifetime.\(^1\)\(^-\)\(^3\) Depression has significant social and economic impacts, has been estimated to be one of the leading causes of years lived with disability\(^4\) and of disability adjusted life years.\(^5\) According to DSM-5, the two core symptoms of depression are low mood and anhedonia. These may be accompanied by changes in weight or appetite, changes in sleep, agitated or apathetic behaviour, fatigue, inability to think or concentrate, feelings of guilt and thoughts of death. At least five symptoms should be present for at least two weeks and should cause significant social and occupational impairment in order to warrant a diagnosis.\(^6\) According to ICD-10, three core symptoms are low mood, loss of interest, and lack of energy. These may be accompanied by the same additional symptoms as in DSM-5, and also pessimism and lack of self-confidence. At least two core symptoms, accompanied by at least two additional symptoms, should be present for at least two weeks to warrant a diagnosis.\(^7\)

One important clinical aspect of depression is a negative cognitive bias – a tendency to attend to, focus on, and remember negative emotional information.\(^8\),\(^9\) Because negative emotional information is closely related to induction of low mood, it is considered that the negative bias contributes to maintenance of low mood symptoms in depression.\(^10\),\(^11\) Behavioural changes related to negative bias have been shown in studies with stimuli such as emotional words, images of affectively valenced scenes, and images of emotional facial expressions.\(^8\),\(^12\)-\(^14\) It is theorised that in ongoing depression, at the neural level negative bias is underpinned by hyperactive limbic subcortical structures – primarily the amygdala – and hypoactive frontal cortical areas such as the dorsolateral prefrontal cortex (DLPFC).\(^15\)-\(^18\) The amygdala is considered to have a crucial role in processing emotional faces and fear-related
stimuli, and its hyperactivity could be responsible for the stronger focus on negative information. Altered activity of the DLPFC, on the other hand, could represent changes in cognitive control and lower inhibition of emotional processing in the amygdala. It remains unclear whether altered activations of these regions are a characteristic of depressed state or of experience of depression over the lifetime, and if these changes are related to disrupted limbic-prefrontal (‘bottom-up’), or prefrontal-limbic (‘top-down’) effective connectivity. These questions are important to address because they can indicate which neural abnormality (amygdala or DLPFC) may be primary and causing downstream brain activation changes in depression, and if this is related to ongoing symptoms.

One type of stimuli directly relevant to the negative bias in depression is images of facial expressions of negative emotions such as fear, anger or sadness. Over the past 15 years many functional brain imaging studies have applied such stimuli to investigate the neural mechanisms of depression, with images of fearful faces most commonly used. The brain regions of interest (ROI) which were most frequently investigated in the studies with fearful face images were the amygdala and the prefrontal cortex (see Supplementary Section S1 and Table S1). Despite the strong focus on the amygdala, only a subset of studies found increased activation in this region, while several others found decreased activation. Multiple further studies did not find significant differences in amygdala activation (Supplementary Section S1). With regard to the prefrontal cortex, reports have also been inconsistent. Some found decreased activations in the DLPFC, dorsomedial prefrontal cortex (DMPFC), orbitofrontal cortex or superior frontal gyri – primarily when emotional processing was implicit. Several other studies, however, report increased activations of the DLPFC, DMPFC and in frontal gyri. Samples in most previous studies had \(N < 50 \) cases, which may be the reason for inconsistent results.

Beyond studies of activation, some evidence also indicates depression-related disrupted
connectivity between the amygdala and prefrontal cortex in response to fearful faces. For example, Moses-Kolko et al.29 applied Granger causality analysis and found that whereas top-down effective connectivity from left DMPFC to the left amygdala was present in controls, it was absent in depression. Kong et al.36 reported decreased functional connectivity between the amygdala and left rostral PFC, assessed with simple correlation analyses. Finally, Wackerhagen et al.32 applied the generalised psychophysiological interaction (gPPI) framework and revealed depression-related decrease in functional connectivity between the amygdala and right middle frontal gyrus. Numbers of depressed participants in these studies were still relatively small, respectively $N = 28$, $N = 14$ and $N = 48$.

In the current study we aimed to directly address the inconsistent results in the past literature (see above and Supplementary Section S1) by analysing brain activations and effective connectivity between the amygdala and the DLPFC in response to fearful face stimuli in the large brain imaging subsample of the deeply-phenotyped Generation Scotland cohort.37 We aimed to leverage the large sample size to more definitively establish whether brain activations and effective connectivity are different in participants who experienced depression. We hypothesised that participants with lifetime experience of depression would be characterised by increased activation of the amygdala23–28 and by altered (increased or decreased, given mixed past evidence) activation of the DLPFC,25,26,28–35 when viewing fearful faces. Because the amygdala receives processed information from the visual areas, we also hypothesised that higher amygdala activity could be driven in part by stronger effective connectivity from these areas.38,39 Finally, we aimed to address the outstanding question regarding the limbic-prefrontal connectivity in depression and define whether altered brain activations may be driven by changes in ‘bottom-up’ (amygdala to DLPFC) or ‘top-down’ (DLPFC to amygdala) effective connections.12,18,29,32,36,40
Materials and Methods

Participant Sample

In total, brain imaging and diagnostic data were available for $N = 1,058$ participants from the Generation Scotland cohort ($N = 544$ scanned in Aberdeen, $N = 514$ scanned in Dundee). Of these, $N = 47$ had a diagnosis of current depression, $N = 270$ had a diagnosis of past depression, and $N = 741$ were classed as controls. Participants were classed as having had experience of depression within their lifetime (LMDD) if they met criteria for either current or past depression. Diagnoses were established with the research version of the Structured Clinical Interview for DSM Disorders during a face-to-face assessment, and were based on criteria from DSM-IV. Each participant also completed the Quick Inventory of Depressive Symptomatology (QIDS) scale to obtain a measure of depressive symptom severity over seven days immediately prior to assessment. The study received ethical approval from the NHS Tayside committee on research ethics (reference 14/SS/0039). All participants gave written informed consent.

Brain Imaging

Scanning Details

Structural and functional brain imaging was performed with a Philips Achieva 3T scanner in Aberdeen, and with a Siemens Prisma-FIT 3T scanner in Dundee. Scanning parameters were generally similar between the two sites, and are described in detail in Habota et al. (2019).

Task Details

The in-scanner task targeted implicit emotional processing. Participants were presented with face images from the NimStim dataset and were required to identify the gender of the face (male or female). The faces had either neutral or fearful expressions. There were three
blocks of trials with neutral faces and three blocks with fearful faces, presented interchangeably. The first block always consisted of neutral faces. Each block had six trials (three with female faces and three with male faces, presented randomly), with 36 trials in total (18 with neutral faces and 18 with fearful faces). Each trial lasted 3.5 seconds with a 0.5 second inter-trial interval (24 seconds per block). There was an 8.5 second interval between consecutive blocks. Participant behavioural measures (reactions times and correct / error responses) were recorded during the session.

Preprocessing and Quality Control

Preprocessing

Preprocessing was completed using default settings in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12). Functional (echoplanar imaging) volume time-series for each participant were realigned to time-series mean and resliced. Realigned functional volumes were then co-registered with T1-weighted structural scans. Segmented and bias-corrected T1 scans were normalised to standard MNI template through non-linear warping. Normalisation parameters were then applied to the co-registered functional volumes, which were then resampled at isotropic resolution of 2 mm and smoothed with a Gaussian kernel with full width to half maximum of 6 mm. The first six volumes of the normalised functional volume time-series were discarded.

Quality Control

Quality control was performed in three main steps: 1) Detection of artefactual volumes with ArtRepair toolkit\(^6\) for exclusion of participants with fractions of artefact volumes above threshold; 2) Visual inspection of representative functional and structural volume slices and exclusion of participants with anatomical abnormalities, normalisation or signal drop-out problems, and 3) Exclusion of participants with low task performance accuracies in the
scanner. Please see Supplementary Section S2.1 for further details of quality control.

Group-level Activation Analyses

Behavioural Data Analyses

Behavioural measures for each participant included reaction times and accuracies (fractions of correct responses) for the entire task, and separately for neutral-face and fearful-face conditions; as well as differences in mean reaction times between fearful-face and neutral-face conditions; and fractions of trials with missed responses. To test associations with depression, linear regression models were fit for each behavioural measure with either LMDD status or QIDS score entered as the main predictor variable; age, sex and site as nuisance covariates; and the tested behavioural measure as the response variable (function `fitlm` in MATLAB R2018a, MathWorks Inc). Alpha levels $P < 0.05$ were considered significant.

First-level Brain Activation Analysis

Onsets and durations of blocks with neutral and fearful face stimuli were entered as regressors for the two task conditions in the first-level general linear model (GLM) design matrix. Six within-scanner movement parameters (three translation and three rotation parameters) were entered as nuisance covariates. Serial correlations were accounted for with a first-order autoregressive model. The data were high-pass filtered with a 128-second cut-off. As in Rupprechter et al.,47 first-level relative masking threshold was set to 0.4 to increase the brain area included in the second-level analysis, and an explicit SPM mask for intracranial volume (ICV) was applied to limit the analyses to voxels within the brain.

Group-level Whole-brain Activation Analyses

Contrast images from the first-level analysis (Neutral > Baseline, Fearful > Baseline, Neutral > Fearful, Fearful > Neutral) were entered into the second-level (group) analyses, aiming to investigate associations with LMDD in any contrast. Age, sex and site (Aberdeen or
Dundee) were entered as nuisance covariates in all second-level analyses. For exploratory whole-brain analyses, the cluster-level family-wise error (FWE) corrected threshold was specified as $P < 0.05$, with the whole-brain (cluster-forming) threshold set to uncorrected $P < 0.0001$. To investigate whether any differences associated with LMDD are related to severity of current depression symptoms, additional analyses with QIDS score as the main predictor variable (instead of LMDD) were performed 1) in the entire sample, 2) in the sample of LMDD participants, and 3) in the sample of participants with current major depressive episode (Table 1). To additionally investigate whether antidepressant medication may have influenced the findings, all analyses with significant results were rerun with an added binary covariate indicating antidepressant medication status.

Group-level ROI Activation Analyses

Same group-level analyses as described above for whole-brain activations were also performed for two predefined ROIs with small volume correction (SVC). The two ROIs were the bilateral amygdala and the bilateral DLPFC. ROI masks were defined according to the Talairach Daemon atlas within the Wake Forest University School of Medicine PickAtlas tool (WFU PickAtlas), with corrected mapping from Talairach to MNI coordinates as described in Lancaster et al. (2007). DLPFC ROI was specified as a combination of bilateral Brodmann areas 9 and 46 with three-time repeated 3D dilation, as implemented in WFU PickAtlas, excluding out-of-brain areas. Brodmann areas 9 and 46 were specified because they are both involved in executive function and have been designated as the DLPFC ROI in past studies. Each 3D dilation iteration expands the ROI by one 2-mm voxel in each direction and thus the DLPFC ROI was overall enlarged by 6 mm in each direction of each of the three axes. ROI dilation was applied because Brodmann areas generally represent thin cortical strips, and thus masks without dilation are too small in volume to capture the signal of interest. Dilation also allows to take into account imperfect anatomical alignment between
subjects after normalisation. Because amygdala represents an enclosed subcortical structure, its ROI was dilated only a single time. Despite the lowered first-level masking threshold (from SPM default 0.8 to 0.4), signal was absent in a small caudal area of the amygdala ROI for some participants, and this area was not included in group-level analyses. Please see Supplementary Fig. S1 and S2 for illustrations of the amygdala ROI and the signal dropout area.

Apart from the above SVC analyses, we also investigated associations of clinical variables with mean bilateral amygdala activations at neutral- or fearful-face task conditions. Mean amygdala activations were estimated with MarsBaR toolkit.51 Statistical analyses were performed by fitting linear regression models with age, sex and scan site entered as nuisance covariates (function \texttt{fitlm} in MATLAB R2018a). Alpha levels $P < 0.05$ were considered significant. As above, all analyses with significant results were rerun with an additional covariate indicating antidepressant medication status.

Effective Connectivity Analyses

Effective Connectivity Analysis Overview

Dynamic causal modelling (DCM)54,55 was applied to investigate associations of LMDD with effective connectivity between the visual cortex (V1) and the amygdala, as well as connectivity between the amygdala and the DLPFC. V1 was considered because the amygdala receives processed information from the visual areas,38,39 and thus higher amygdala activation could be due to stronger signalling of fear-related information from these areas.12 Connectivity between the amygdala and the DLPFC was modelled because the amygdala is known to have projections to prefrontal areas,56-58 and indirect influence via neuromodulatory systems.21,59,60 We considered that altered activations in these two regions could be driven at least in part by altered effective connectivity between them.
Effective Connectivity Model Specification

A bilinear DCM with three regions (left V1, left amygdala, left DLPFC), one state per region, no stochastic effects and mean-centred inputs was specified. A fully-connected model with nine connections (including inhibitory self-connections at each region) was assumed. Fearful and neutral trial blocks served as driving inputs to the visual cortex and could also modulate any of the nine endogenous connections (‘B’ matrix specified as ones for the two conditions). There were 27 free model parameters including nine connections and 18 modulatory inputs. Connections from V1 to amygdala and from amygdala to DLPFC were assumed to be direct,38,39,56–58 while connections between V1 and the DLPFC were assumed to be largely indirect.61 Fig. 1 illustrates the DCM model structure. The DCM regions were defined according to the peak differences between LMDD and control participants in the SVC analyses and were in the left hemisphere (please see the results section below). Please see Supplementary Section S2.3 for further details of the ROI definition and the ROI time-series extraction for DCM.

First-level Effective Connectivity Model Fitting

The full DCM model (Fig. 1) was fitted for each participant using the standard Variational Laplace methodology implemented in SPM12, and percentage variance explained was estimated. Participants with at least 10% of time-series data variance explained by the model were included in the further group-level analyses, as in the previous work in our lab.47,62

Group-level Effective Connectivity Analyses

The parametric empirical Bayes (PEB) framework was used for group-level analyses of effective connectivity.63 Group-level PEB design matrix included a column of ones to model mean connectivity across the participants, and four zero-mean centred covariates – LMDD
status, age, sex and scan site. PEB model was inverted to estimate model parameters and the model evidence (approximated by the free energy property). Bayesian model reduction was used to iteratively estimate different reduced PEB models with certain model parameters disabled, within an automatic greedy search procedure. Reduced models that were identified at the final iteration of the search procedure were combined using Bayesian model averaging.63,64 It was hypothesised that LMDD would be related to increased modulation of connection V1 → Amygdala, and altered modulation of connections Amygdala → DLPFC and DLPFC → Amygdala by the fearful-face task condition (above 0.5 posterior probability of relevant DCM parameters being non-zero). To check if any differences associated with LMDD are also related to the severity of current depression symptoms, an additional analysis with QIDS score as the main predictor variable (instead of the LMDD status) was performed. All effective connectivity analyses of LMDD were also rerun with an added binary zero-centred covariate indicating antidepressant medication status – to additionally control for medication (similarly to group-level activation analyses).

Results

Participant Sample

\[N = 954 \] participants met the criteria to be included as either control or LMDD case, and passed quality control. Summary demographic characteristics of the sample included in the group-level analyses are presented in Table 1. See Supplementary Section S3.1 for details of participant exclusions during quality control.

Behavioural Results within Scanner

No significant associations were found between LMDD and either reaction times (complete task or two task conditions separately), accuracies, or fractions of missed trials (all \(P > 0.25 \)). See Supplementary Section S3.2 for further details and for the results of
analyses with QIDS scores.

Brain Activation Results

Group-level Brain Activations

Across the entire sample, whole-brain analyses revealed activations in response to both neutral and fearful faces in bilateral occipital (-14 -100 6 and 20 -96 14), fusiform (-44 -56 -20 and 42 -52 -22), paracentral (-6 10 52 and 6 14 52), precentral (-44 0 56 and 44 2 56), prefrontal (-38 20 26 and 40 42 30) and right parietal (32 -56 54) cortices (Supplementary Tables S3-S4 and Fig. S3). Analyses with SVC also revealed activations in right amygdala and in bilateral DLPFC. Mean bilateral amygdala activations, derived with the MarsBaR toolkit, were higher in the fearful-face compared to neutral-face condition, for both controls ($t(663) = 2.0051, P = 0.0454$) and LMDD cases ($t(289) = 2.5341, P = 0.0118$). These activations are generally consistent with previous studies. Please see Supplementary Section S3.3.1 for further details.

Differences in Whole-brain Activations in LMDD

Exploratory whole-brain analyses revealed higher activations in LMDD compared to controls for Neutral > Baseline contrast in the region close to the left dorsal anterior cingulate cortex (ACC, -18 30 30, cluster-level $P_{FWE} = 0.018, k_E = 83$), in bilateral precentral (-36 18 40, cluster-level $P_{FWE} < 0.001, k_E = 288$; 26 2 42, cluster-level $P_{FWE} = 0.002, k_E = 150$), right temporal (46 -16 34, cluster-level $P_{FWE} = 0.001, k_E = 192$) and left parietal / occipital cortices (-46 -62 22, cluster-level $P_{FWE} = 0.002, k_E = 244$). For Fearful > Baseline contrast, higher activations in LMDD were found in left DLPFC and left precentral cortex (-32 -18 38 and -28 6 44, cluster-level $P_{FWE} < 0.001, k_E = 1020$), left primary somatosensory cortex (-6 -30 56, cluster-level $P_{FWE} < 0.001, k_E = 1020$), and right postcentral cortex (46 -18 36, cluster-level $P_{FWE} < 0.001, k_E = 1020$).
$P_{FWE} < 0.001, k_E = 225$), right precentral cortex ($22\ -8\ 42$, cluster-level
$P_{FWE} = 0.002, k_E = 149$) and mid-cingulate cortex ($2\ -16\ 44$, cluster-level
$P_{FWE} = 0.016, k_E = 87$). No significant differences between cases and controls were
found for Neutral > Fearful and Fearful > Neutral or contrasts. Fig. 2 illustrates stronger
activations in LMDD compared to controls for Fearful > Baseline contrast with whole-brain
cluster-level FWE correction.

Clusters of higher activation in right precentral and mid-cingulate cortices in LMDD for
Fearful > Baseline contrast were no longer significant when antidepressant medication status
was added as a covariate, but differences in other areas remained. The differences associated
with LMDD were not found in the analyses of QIDS scores, either in the entire sample, in the
sample of LMDD participants only, or in the sample of participants with current MDD. This
indicates that the differences associated with LMDD are not related to the severity of current
depression symptoms. Please see Supplementary Sections S3.3.2-S3.3.3 for further details.

Differences in Amygdala ROI Activation in LMDD

Analyses with the amygdala SVC revealed stronger activation in LMDD in a small
cluster in the left amygdala for Fearful > Baseline contrast ($-22\ -10\ -10$, cluster-level
$P_{FWE} = 0.031, k_E = 4$), and for Fearful > Neutral ($-24\ -8\ -10$, cluster-level
$P_{FWE} = 0.038, k_E = 2$). No significant differences were found for other contrasts. Results
were no longer significant when antidepressant medication status was added as a covariate.

Analysis with MarsBaR toolkit revealed that LMDD was associated with higher mean
activation of bilateral amygdala in the fearful-face condition ($\beta = 0.0715, P = 0.0314$).
Effect for neutral-face condition was in the same direction but had smaller size and did not
reach significance ($\beta = 0.0601, P = 0.0727$). Association of LMDD with the difference
in amygdala activation between the fearful-face and neutral-face conditions was also not
significant. Fig. 3 illustrates differences between LMDD cases and controls in mean bilateral amygdala activation in the two task conditions. Differences between LMDD and control participants at the fearful-face condition remained significant when additionally correcting for antidepressant medication ($\beta = 0.0725, P = 0.0478$).

No significant associations of amygdala activation with severity of current depression symptoms (QIDS scores) were found in the analyses with amygdala SVC, or in analyses of MarsBaR-derived mean amygdala activations, either in the entire sample (neutral-face condition $P = 0.6911$, fearful-face condition $P = 0.6097$) or separately in the LMDD participants (neutral-face condition $P = 0.2233$, fearful-face condition $P = 0.2143$). Please see Supplementary Section S3.3.3 for details of significant associations of QIDS scores with amygdala activations in control participants.

Differences in DLPFC ROI Activations in LMDD

Analyses with DLPFC SVC revealed small clusters of increased activation in LMDD in left DLPFC for both Neutral > Baseline contrast (-36 18 40, cluster-level $P_{FWE} = 0.001, k_E = 44$; -18 30 30, cluster-level $P_{FWE} = 0.003, k_E = 31$) and Fearful > Baseline contrast (Fig. 4, -30 8 42, cluster-level $P_{FWE} = 0.002, k_E = 33$). The above differences associated with LMDD were not found in the analyses of symptom severity (QIDS scores). Please see Supplementary Sections S3.3.2-S3.3.3 for further details.

Effective Connectivity Results

Participant Sample in Effective Connectivity Analyses

Of $N = 954$ participants in total, $N = 185$ were excluded because they did not have sufficient activation in at least one of the three ROIs specified in the DCM (Supplementary Section S2.3.1). Another $N = 81$ participants were excluded due to having less than 10% of the variance of time-series data explained by the fitted DCM model.47,62 Mean explained
variance across the $N = 688$ included participants ($N = 474$ controls, $N = 214$ LMDD cases) was 32.07%. There are generally no strict criteria for optimal explained variance in DCM studies, but this result is consistent with previous effective connectivity work in our lab. The proportion of participants included in the DCM analysis (72.12%) was higher than in the previous work (34.74%) because ROI definition was tailored for each participant based on their individual peak activation coordinates (Supplementary Section S2.3.1). Demographic characteristics of the sample in effective connectivity analyses are presented in Table 2. Participants excluded from the DCM analyses on average had significantly higher fractions of artefactual volumes (1.42% compared to 1.08%, $t(445) = 2.32, P = 0.0206$), but there were no differences in terms of any demographic or clinical characteristics, or any measures of task performance within the scanner (see Supplementary Section S3.4.1 and Table S2 for further details).

Group-level Effective Connectivity

At the group-level, all endogenous (task-independent) connections were found to have high probability. Connections from V1 were found to be excitatory, while all other connections (from amygdala or the DLPFC) were found to be inhibitory. The neutral-face task condition positively modulated (increased strength) the V1 incoming connections and the Amygdala→DLPFC connection, and negatively modulated (decreased strength) the V1→DLPFC connection. The fearful-face task condition negatively modulated the V1 inhibitory self-connection and the V1→DLPFC connection, and positively modulated the amygdala and DLPFC self-connections and the V1 incoming connections. Fig. 5 illustrates the DCM model after fitting. See Supplementary Tables S15-S16 for specific estimated connectivity model parameters.

Changes in Effective Connectivity in LMDD
LMDD was found to be related to negative modulation of the Amygdala→DLPFC connection (effect -0.15, probability 0.82), and to reduced negative modulation of the V1→DLPFC connection (effect 0.065, probability 0.58), both in the fearful-face task condition. To reduce the number of estimated parameters, group-level PEB analyses were repeated with estimation of only endogenous connection parameters (‘A’ matrix, nine parameters), or only modulatory inputs (‘B’ matrix, 18 parameters). No additional associations of LMDD were discovered in these additional analyses. Results did not change when antidepressant medication status was included as a covariate in the PEB design matrix of the full DCM model. Please see Supplementary Section S3.4.2 for further details.

When LMDD status was replaced with QIDS scores, no significant associations were found in the full DCM model, indicating that the changes in LMDD were not related to severity of current depression symptoms. Please see Supplementary Section S3.4.3 for further results with separate estimation of connectivity and modulation parameters.

Discussion

Summary of Results

We analysed functional brain imaging data from a large community-based sample, where participants viewed faces with neutral and fearful emotional expressions. Our results indicate that experience of depression within the lifetime is characterised by increased activations in response to fearful face stimuli in the amygdala, left DLPFC, and left precentral cortex. Effective connectivity analyses revealed that LMDD is related to stronger inhibitory connectivity from the left amygdala to left DLPFC when viewing fearful faces. LMDD-related differences did not appear to be attributed to either severity of acute depressive illness or to antidepressant medication status. These results make a significant contribution to addressing the ambiguity in the previous literature.
Hyperactivations to Fearful Faces in LMDD

Results of previous studies were inconsistent with regard to changes in amygdala activation in response to fearful faces in depression: only a subset of studies with this ROI found significant associations. With $N = 290$ cases and $N = 664$ controls, our sample was substantially larger than those of the previous studies, where typically $N < 50$ depressed or remitted-depressed participants were investigated (Supplementary Section S1 and Table S1). It is possible that inconsistency in the previous findings may have been due to the small sample sizes, insufficient to detect low-magnitude effects such as reported here. Because our sample combined cases of both current and past depression, the results indicate that higher amygdala reactivity may be a marker of either vulnerability or the lasting effects of the experience of depression, rather than of the current depressive state. This is corroborated to some degree by results of the previous studies with fearful face stimuli which found higher amygdala activation in participants at high risk for depression due to either parental mental health history, high neuroticism, vulnerability to depression-related cognition, or past depression. More broadly, hyperactive amygdala has been suggested as one of the core mechanisms of negative bias in several prominent neurocognitive theories of MDD, due to its fundamental role in emotional processing.

With regard to the DLPFC, Norbury et al. previously found increased activation in response to fearful faces in remitted depression. Powers et al. and Luo et al. found positive correlations of depression symptom severity (BDI scores) with activations of the DMPFC or frontal gyri. These results are broadly consistent with the current study. Studies by Ruhé et al., Matthews et al., and Fales et al., however, found decreased activations of DLPFC in response to fearful faces in current MDD. These contrasting results could be due to...
differences in diagnostic criteria: whereas more severe current MDD could lead to decreased DLPFC activation,25,26,28 lifetime experience (past depression) could potentially lead instead to compensatory hyperactivation as seen in our study. Secondary evidence which indirectly supports this possibility is that transcranial stimulation of the DLPFC can be an effective treatment.72,73 DLPFC itself is a relatively large region and it is also possible that changes in its activation are heterogeneous – with hyperactivation in some sub-regions but deactivation in others.

Despite the relatively large sample size, we only found significant depression-related differences in the amygdala and the DLPFC when fearful face processing was compared with baseline, but not when compared with neutral face processing. Differences in the fearful to neutral face contrast in depression were only found in a single past study in the amygdala,28 and in three studies in the DLPFC.28,31,34 The negative affective bias in depression likely affects processing of both emotional and neutral faces – with a tendency for neutral faces to be interpreted as negative, which can in part explain the lack of depression-related differences in the contrast of fearful to neutral faces.12,74,75 It is also possible that effects related to this contrast could be characteristic of more severe current depressive symptoms, or of depression co-morbid with anxiety.

A general limitation of the cohort studied here is that it was of relatively good health,37 with relatively few participants with current depression (Table 1) – which could be the reason for a lack of effects seen in the analyses of current symptom severity (QIDS scores). Nonetheless, studying community-based samples such as the one in the current study provides insight into the most common and prevalent forms of depression, which are typically found outside clinical settings. Future studies should also assess larger samples of clinically depressed participants in long-term secondary care, to test for the presence of active depression-related changes in more severe disorder.
Apart from increased activations in the amygdala and the DLPFC, we also found increased activation in the mid-cingulate cortex in response to fearful faces in LMDD, however this result did not survive correction for antidepressant medication status. One possibility is that antidepressant intake may have driven the increased mid-cingulate activation. This would be consistent with the results of studies by Ruhé et al. and Bürger et al., who found that current MDD was related to decreased rather than increased cingulate activation in response to fearful faces. Conversely, it is possible that correction for antidepressant medication may have simultaneously adjusted for the effects of more severe depression (because medicated participants are likely to be more depressed), potentially including the increased mid-cingulate activation. This could be consistent with the previous findings of Luo et al. and Bürger et al. of positive correlations of cingulate activation with self-reported depression symptom severity (BDI scores). From a functional perspective, cingulate cortex is suggested to be involved in control of goal-directed behaviour, emotional awareness, and integration of negative affective information for decision making. It is possible that increased cingulate activity found in our study may represent higher cognitive efforts deployed to stay focused on the task in LMDD, which may in turn help maintain correct task performance in the presence of fear-related stimuli. Future studies are necessary to clarify whether increased cingulate activity may be driven by depression modulated by antidepressant medication, and what the exact role of this hyperactivity is with regard to behavioural performance.

It is worth highlighting that the analyses conducted in the current study focused heavily on the two a-priori ROIs – the DLPFC and the amygdala. These two regions were chosen because they were most frequently investigated in the past studies with fearful face stimuli, but where the results have been inconsistent (Supplementary Section S1). Although we did find significant differences in both regions in LMDD, we note that the identified
hypercation clusters and effect sizes were small (Fig. 3-4, Tables S13-S14). It is possible that depression-related differences of similarly small magnitude do also exist in other brain regions, but have not been revealed in our whole-brain analyses due to insufficient power. Whole-brain analyses did, however, identify increased activations in precentral, mid-cingulate and parietal cortices (Fig. 2, Supplementary Tables S9-S10, Supplementary Fig. S5). Activation of similar regions in response to fearful faces was found to correlate with depressive symptom severity (BDI scores) in past studies of MDD.30,35

Effective Connectivity of the Amygdala and DLPFC in LMDD

Within our analyses of effective connectivity, we found that the amygdala exerted inhibitory influence over the DLPFC, and that this inhibitory influence was increased in LMDD, specifically in response to fearful face stimuli (Fig. 5). These results are generally consistent with the studies of Kong et al. and Wackerhagen et al., who found disrupted connectivity between the amygdala and regions within the prefrontal cortex.32,36 Another past study by Moses-Kolko et al. found altered ‘top-down’ (left DMPFC to left amygdala), but not ‘bottom-up’ connectivity when processing fearful faces – somewhat contrary to our results.29 We note that these discrepant findings are likely due to differences in diagnostic inclusion criteria: whereas we investigated relatively older adults of both sexes, Moses-Kolko et al. focused on younger individuals with postpartum depression.29

Prominent neurocognitive theories of depression suggest imbalance in activities between prefrontal and limbic areas,15,16,69 however the origin of this imbalance has not yet been clearly defined. According to one theoretical view, depressive symptomatology is primarily a result of lower-level biases in information processing (perception and reinforcement learning), subserved mainly by hyperactive limbic structures including the amygdala.17,81 In that view, deficits in cognitive control represent a secondary vulnerability to depression. An alternative suggestion, however, is that the origin of negative biases is in inability to effectively regulate
and inhibit processing of negative emotional information, which is mainly related to deficits in cognitive control and hypoactive prefrontal cortical areas. In this study we only found evidence for increased inhibitory influence from the amygdala to the DLPFC, but no altered connectivity from the DLPFC to the amygdala. This provides support for the former theory – that depressive symptoms are mainly a result of ‘bottom-up’ rather than ‘top-down’ biases in emotional processing, and that these biases may be subserved by an inhibitory rather than an excitatory attention-orienting modulation of the DLPFC by the amygdala. This finding implies that at least some subtypes of depression may be susceptible to treatments which target lower-level emotional information processing biases – for example reinforcement-based attention training. Future work with larger samples should confirm whether the ‘bottom-up’ connectivity deficits identified here are also present in different age groups and subtypes of depression – and whether these deficits could represent a prognostic marker of response to interventions which target lower-level perceptual and attentional biases.

It should be noted that the results of our effective connectivity analyses do not immediately explain the observed changes in activation patterns in LMDD. Specifically, it remains an open question how increased inhibitory input from the amygdala may translate to increased activation of the DLPFC. We consider that the activation and connectivity analyses offer complementary evidence regarding neural abnormalities in depression. One example explanation which could reconcile these findings is that activation of the DLPFC may fluctuate throughout the different task trial stages. The DLPFC may, for example, be inhibited by the amygdala at stimulus onset, and thus be less active specifically at this trial stage, but may then accumulate stronger inputs from other areas such as V1 and become hyperactive by the time of response execution. These activity fluctuations may average out over the course of entire trial blocks, resulting in an apparent DLPFC hyperactivity as observed in the current study. It would have been impractical to directly investigate this possibility here due to the
block design and the relatively low numbers of trials per condition – however this remains an open avenue for future studies with event-related task designs. An alternative explanation could be that the DLPFC may be receiving excitatory inputs from brain areas outside our considered DCM model, which outweigh the inhibition received from the amygdala. One of such areas could be the ACC, due to its connectivity with the DLPFC.50,86 In our study hyperactivation of the mid-cingulate cortex was no longer significant after correction for antidepressant medication and we did not include this region in the DCM model. Nonetheless, future studies could consider more complex models with higher numbers of regions, potentially including the ACC, in order to better explain the activation patterns of the amygdala and the DLPFC.

Limitations and Conclusion

Although a distinct advantage of our study is the large sample size, several limitations should be mentioned. First of all, the identified depression-related changes were small and no differences in behavioural measures were observed. A previous study of out-of-scanner behavioural measures did find evidence of a subtle negative bias effect associated with depression symptoms in the imaging subsample of the Generation Scotland cohort.14 It is possible that the within-scanner gender identification task was sufficient to induce negative bias-related effects at the neural but not at the behavioural level, in contrast to the out-of-scanner tasks, such as the Face Affective Go/No-Go and the Bristol Emotion Recognition Task. With regard to small effect sizes, they are generally considered to be characteristic of larger-sample studies,87 however in our study this could also be because most case participants had past rather than current depression, and because average severity of depression symptoms was relatively low. Moreover, a substantial proportion of participants were taking antidepressant medication (Tables 1-2). Although most findings remained significant when additionally controlling for antidepressant medication, we cannot claim that the results extend
directly to unmedicated patients with more severe symptoms. More severely depressed patients are also more likely to be medicated, and hence it is generally difficult to disentangle effects of medication and depression severity. Further to that, it should be noted that our dataset did not involve longitudinal assessment of symptoms, and thus we did not test utility of the amygdala hyperactivity and altered connectivity as prognostic biomarkers. Future studies should assess larger, longitudinal samples of participants with current and more severe depression, ideally of younger age range, in order to identify changes which may be relevant as diagnostic or prognostic biomarkers.88–90

To summarise, in the current study we analysed a relatively large sample of participants with and without LMDD and report that depression experienced within the lifetime is associated with increased activation of the amygdala and with increased inhibitory influence of the amygdala over the DLPFC in response to fearful faces. These results provide support for the prominent neurocognitive theories of depression15,17,69 and suggest that the depressive negative bias may be underpinned by changes in ‘bottom-up’ connectivity from limbic to higher cortical areas.
Data Availability

Data from the Generation Scotland dataset are available through application to the Generation Scotland Access Committee (access@generationscotland.org) and Edinburgh DataVault (https://doi.org/10.7488/8f68f1ae-0329-4b73-b189-c7288ea844d7). For further information, please see Habota et al. (2021).
Conflicts of Interests

JDS previously received research funding from Wyeth and Indivior. AMM previously received research grant support from Pfizer, Eli Lilly and Janssen, as well as speaker fees from Illumina. HCW previously received research grant support from Pfizer. None of these funding sources are connected to the present study. No potential conflicts of interest are reported for other authors.
Funding Statement

This study was supported and funded by the Wellcome Trust Strategic Award “Stratifying Resilience and Depression Longitudinally” (STRADL) (Reference 104036/Z/14/Z), and the Medical Research Council Mental Health Pathfinder Award “Leveraging routinely collected and linked research data to study the causes and consequences of common mental disorders” (Reference MRC-MC_PC_17209). The work was also supported through the Lister Institute of Preventive Medicine award with reference 173096 and the Wellcome-University of Edinburgh Institutional Strategic Support Fund (Reference 204804/Z/16/Z). Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates (Reference CZD/16/6) and the Scottish Funding Council (Reference HR03006), and is currently supported by the Wellcome Trust (Reference 216767/Z/19/Z).
Acknowledgements

For further details regarding the NimStim dataset of facial expressions please see https://danlab.psychology.columbia.edu/content/nimstim-set-facial-expressions.

Development of the MacBrain Face Stimulus Set was overseen by Nim Tottenham and supported by the John D. and Catherine T. MacArthur Foundation Research Network on Early Experience and Brain Development. Please contact Nim Tottenham at nlt7@columbia.edu for more information concerning the stimulus set. The current work has made use of the resources provided by the Edinburgh Compute and Data Facility (ECDF) (http://www.ecdf.ed.ac.uk/).
Supplementary Materials

Supplementary materials accompanying the current manuscript include the following:

(1) Extended background information detailing a brief literature survey of functional brain imaging studies of depression which employed images of faces with fearful expressions;

(2) Extended information related to the applied methods, including details of data quality control, details of analyses of behavioural data and brain connectivity;

(3) Additional results related to data quality control, analyses of behavioural, brain imaging and effective connectivity data.
References

Figure 1 DCM model structure. Effective connectivity model structure specified for first-level fitting.
Figure 2 Increased whole-brain activations in LMDD. Stronger activations in LMDD compared to controls for Fearful > Baseline contrast with cluster-level FWE correction ($P < 0.0001$ uncorrected cluster-forming threshold, $P < 0.05$ cluster-level threshold). Crosshair centred on mid-cingulate cortex (MNI 3 -16 44).
Figure 3 Amygdala activation levels. Mean bilateral amygdala activations (beta values estimated in the first-level analysis) in controls and LMDD cases for neutral-face and fearful-face conditions. Error bars represent standard errors of the mean. Stars indicate significant differences at $P < 0.05$. Significance calculated with paired t-tests (between conditions) and with linear regression (between groups, corrected for age, sex and site). Control and LMDD groups only significantly differed in levels of amygdala activation at fearful-face condition ($\beta = 0.0715, P = 0.0314$).
Figure 4 Increased DLPFC activation in LMDD. Stronger activation in LMDD compared to controls for Fearful > Baseline contrast with DLPFC SVC (P < 0.05 small-volume FWE-corrected). Crosshair MNI coordinates -31 12 40.
Figure 5 Fitted DCM model with the estimated changes related to LMDD. Only connections and modulatory inputs estimated to be plausible are shown. Excitatory connections are denoted with arrows, inhibitory connections are denoted with circles. Boxes describe changes in LMDD.
Table 1
Summary demographic characteristics of the sample included in the analyses of behavioural measures and brain activations

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Controls</th>
<th>LMDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (N)</td>
<td>664</td>
<td>290</td>
</tr>
<tr>
<td>Current MDE (N)</td>
<td>–</td>
<td>41</td>
</tr>
<tr>
<td>Sex (male / female)</td>
<td>302 / 362</td>
<td>73 / 217</td>
</tr>
<tr>
<td>Age (years)</td>
<td>59.96 (9.98)</td>
<td>56.26 (10.25)</td>
</tr>
<tr>
<td>QIDS (score)</td>
<td>3.51 (2.14)</td>
<td>6.97 (4.85)</td>
</tr>
<tr>
<td>Medicated (N)</td>
<td>24 (3.6%)</td>
<td>108 (37.2%)</td>
</tr>
</tbody>
</table>

Note: MDE – major depressive episode. Participants were considered medicated if they had an antidepressant prescription at the time of the scan. Standard deviations are in parentheses.
Table 2
Summary demographic characteristics of the sample included in the analyses of effective connectivity

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Controls</th>
<th>LMDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (N)</td>
<td>474</td>
<td>214</td>
</tr>
<tr>
<td>Current MDE (N)</td>
<td>–</td>
<td>32</td>
</tr>
<tr>
<td>Sex (male / female)</td>
<td>230 / 244</td>
<td>53 / 161</td>
</tr>
<tr>
<td>Age (years)</td>
<td>60.09 (9.90)</td>
<td>56.80 (10.14)</td>
</tr>
<tr>
<td>QIDS (score)</td>
<td>3.45 (2.12)</td>
<td>6.90 (4.84)</td>
</tr>
<tr>
<td>Medicated (N)</td>
<td>15 (3.2%)</td>
<td>85 (39.7%)</td>
</tr>
</tbody>
</table>

Note: MDE – major depressive episode. Participants were considered medicated if they had an antidepressant prescription at the time of the scan. Standard deviations are in parentheses.