Secondary negative symptoms across schizophrenia and bipolar disorder

Xaver Berg¹, Foivos Georgiadis¹, Janis Brakowski¹, Achim Burre³, Michel Sabe², Stefan Vetter¹, Erich Seifritz¹, Philipp Homan¹, Stefan Kaiser², Matthias Kirschner ¹,²

¹Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Switzerland
²Division of Adult Psychiatry, Department of Psychiatry Geneva University Hospitals Geneva, Switzerland
³Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland

Corresponding author: Matthias.kirschner@hcuge.ch, Dr Matthias Kirschner, Division of Adult Psychiatry, Department of Psychiatry Geneva University Hospitals Geneva, Chemin du Petit-Bel-Air CH-1226 Thônex, Switzerland

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Primary and secondary negative symptoms (NS) are core features of schizophrenia (SCZ) and can also be observed in bipolar-disorder-I (BD-I) patients. Secondary NS, due to other clinical factors, are frequently reported in clinical practice, yet systematic investigations into these symptoms remain sparse. In this study, we characterized potential sources of secondary NS as well as the association between NS and working memory (WM) capacity within the SCZ-BD spectrum.

Methods: We included 50 outpatients with SCZ and 49 with BD-I and assessed NS domains using SANS global scores for avolition-apathy, anhedonia-asociality, alogia and blunted affect. To identify clinical factors as potential sources of NS we applied multiple regression analyses including positive symptoms, disorganization, depressive symptoms, antipsychotic and mood stabilizer intake. We quantified their relative importance as sources for secondary NS through dominance analyses. Lastly, we used multiple regression to assess the relationship between NS domains and WM.

Results: Across SCZ and BD-I, disorganization was associated with avolition-apathy and anhedonia-asociality and depressive symptoms additionally predicted anhedonia-asociality. Antipsychotic dose was associated with blunted affect while group differences only predicted alogia. Avolition-apathy predicted impaired WM transdiagnostically and in BD-I higher anhedonia-asociality was associated with better WM capacity.

Conclusion: Secondary NS are prevalent across the SCZ-BD spectrum, with disorganization reflecting an important factor for avolition-apathy and anhedonia-asociality. Avolition-apathy emerged as a transdiagnostic predictor of WM impairment, while anhedonia-asociality was linked to better WM in BD-I. Altogether, these findings support the clinical relevance and need for future research of secondary NS across the SCZ-BD spectrum.
Introduction

Negative symptoms (NS) are a core feature of schizophrenia (SCZ) including avolition, anhedonia, asociality, alogia and blunted affect (Kirkpatrick, Fenton, Carpenter, & Marder, 2006). These five symptom domains map at least onto two symptom dimensions: the amotivation dimension including avolition, anhedonia, asociality and the diminished expression including blunted affect and alogia (Blanchard & Cohen, 2006; Bègue, Kaiser, & Kirschner, 2020). Both NS dimensions relate differently to clinical outcome (Faerden et al., 2009; Silvana Galderisi et al., 2013; Silvana Galderisi et al., 2014; Mantovani et al., 2016; Strauss et al., 2013) and show divergent behavioral and neurobiological substrates (Bègue, Kaiser, & Kirschner, 2020; Silvana Galderisi, Mucci, Buchanan, & Arango, 2018; Hartmann et al., 2015; Kirschner et al., 2016; Mucci et al., 2015; Stepien et al., 2018; Wolf et al., 2014). Recent psychometric research supports an even more granular differentiation into the five NS domains (Strauss et al., 2018) suggesting for example distinct neural correlates of avolition and anhedonia in individuals with schizophrenia. On a neural level, this is so far only supported by few studies identifying neural substrates that are distinct to avolition and anhedonia (Mucci et al., 2015) while in most studies neural substrates are associated with both avolition and anhedonia (Kaliuzhna et al., 2021; Kirschner et al., 2016; Wolf et al., 2014).

NS have long been considered a hallmark symptom of SCZ and within that to be distinguishable from other typical psychotic symptoms, like disorganization and positive symptoms (Tibber et al., 2018). In recent years, however, there is a growing body of literature which implies that NS are not SCZ-specific but can also be measured in other psychiatric illnesses (Kaiser, Heekeren & Simon, 2011; Foussias, Agid, Fervaha, & Remington, 2014; Strauss & Cohen, 2017). Given the clinical, genetic and biological proximity of SCZ and bipolar disorder I (BD-I) (Anttila et al., 2018; Cardno & Owen, 2014; Lee et al., 2019; Patel et al., 2021; Reininghaus et al., 2019), transdiagnostic investigation of NS across the SCZ-BD
spectrum have gained particular interest. Recent studies support such a transdiagnostic construct of NS showing similar levels of avolition and anhedonia but higher levels of blunted affect and alogia in SCZ compared BD-I patients (Kirschner et al., 2020; Strauss & Cohen, 2017; Strauss, Vertinski, Vogel, Ringdahl, & Allen, 2016). In addition, transdiagnostic associations between amotivation and impaired working memory (WM) have been observed in SCZ and BD-I (Gold et al., 2019).

NS can be further distinguished into primary or secondary NS (Kirkpatrick, 2014; Kirschner, Aleman, & Kaiser, 2017). The construct of secondary NS has been first systematically described in the seminal work from Carpenter et al. in the mid 80s (Carpenter, Heinrichs, & Alphs, 1985). Several authors have re-emphasized the relevance of secondary NS for research and clinical work in the recent years (Carpenter et al., 1985; Kirkpatrick, 2014; Kirschner et al., 2017; Mosolov & Yaltonskaya, 2021). Primary NS are thought to be intrinsic to the pathological processes underlying SCZ and not related to other symptoms or clinical factors. Secondary NS are defined as NS that are related to other clinical factors including positive symptoms, depression, medication side effects, social deprivation, and substance abuse (Carpenter et al. 1985, Kirkpatrick et al. 2014, Kirschner et al. 2017, Galderisi et al. 2021). While disorganization has also been observed to be associated with NS (Demjaha, Valmaggia, Stahl, Byrne, & McGuire, 2012) it has to our knowledge not been discussed as potential underlying sources in the concept of secondary NS so far. Examples of secondary NS frequently reported in clinical practice are anhedonia secondary due to depressive symptoms and social withdrawal, avolition due to severe delusions, or blunted affect due to medication side effects. Such secondary NS might be responsive if the underlying causes are identified and adequately treated. With respect to NS due to positive symptoms this is indirectly supported by acute treatment trial reporting a joint reduction in positive and NS (Huhn et al., 2019). Despite its high clinical relevance, systematic investigations into the relationships
between distinct NS domains and potential causes for secondary NS remain sparse and, to our knowledge, have not been carried out across the SCZ-BD spectrum.

The present study addresses two complementary research questions to provide new insights into the transdiagnostic relevance of different NS domains. First, we characterized NS domains across outpatients of the SCZ-BD spectrum and investigated how these NS domains relate to potential underlying sources of secondary NS. Second, we examined the relationship between NS domains, other clinical factors and WM function across SCZ and BD individuals. To achieve these aims, we capitalized on a naturalistic cross-disorder outpatient sample of patients with SCZ and BD-I. This sample was not a priori optimized for primary NS research, providing us the opportunity to explore the relationship between NS domains and other clinical factor. Based on previous reports (Kirschner et al., 2020; Strauss et al., 2016) we hypothesized that levels of avolition and anhedonia would be comparable in SCZ and BD-I, while blunted affect and alogia would be stronger in SCZ compared to BD-I. We further hypothesized that even low to moderate levels of positive, disorganized and depressive symptoms, and continuous antipsychotic medication as well as mood stabilizer intake would be correlated with distinct NS domains indicative of secondary NS in outpatients of the SCZ-BD spectrum. Finally, given prior evidence of a transdiagnostic association between amotivation and poor WM, we hypothesized that avolition and anhedonia would be correlated with WM capacity.

Methods

Participants

Demographic and clinical data of 50 outpatient individuals with SCZ and 49 with BD-I from UCLA CNP were download from the public database OpenfMRI (https://openfmri.org/dataset/ds000030/). Please note that the current sample of the CNP was part of a larger multimodal imaging cohort including data from healthy controls and
individuals with ADHD, which are not subject to this study (for more details of the CNP cohort see (Poldrack et al., 2016)). In brief, all participants were recruited from the Los Angeles area via outreach to local clinics and via online portals. Inclusion criteria were: Age between 21 and 50 years; primary language either English or Spanish; at least 8 years of formal education; no significant medical illness; negative drug test (urine sample tested for cocaine, methamphetamine, morphine, tetrahydrocannabinol, benzodiazepines). A dual diagnosis of SCZ and BD-I was an exclusion criterion. All participants were outpatients showing clinical stability to complete the clinical assessment and extensive multimodal imaging of the CNP cohort. Diagnoses were confirmed following DSM-IV criteria using a semi-structured assessment with Structured Clinical Interview (SCID) for the DSM-IV (Table S1).

Clinical assessment

A comprehensive clinical assessment was applied across both groups to assess NS and potential sources of secondary NS including positive symptoms, disorganization, depression, and current antipsychotic as well as current mood stabilizing medication. The Scale for the Assessment of Negative Symptoms (SANS) was used to assess the four NS domains blunted affect, alogia, avolition-apathy, anhedonia-asociality. Following previous work from Strauss and Cohen, the global rating scores were used to measure severity of each NS domains (Strauss & Cohen, 2017). In addition, the motivation and pleasure dimension was defined by combining the avolition-apathy and anhedonia-asociality domain, and the diminished expression dimension by combining the blunted affect and alogia domain, respectively (Kirschner et al., 2020; Strauss et al., 2013). Positive symptoms were assessed using the Scale for the Assessment of Positive Symptoms (SAPS). Following the work of (Peralta & Cuesta, 1999) and (Tibber et al. 2018), global scores of the SAPS domains delusions, hallucinations, bizarre behavior and positive formal thought disorder were used to define two positive
symptom dimensions: The positive symptom dimension includes the delusion and hallucination global scores and the disorganization dimension comprises the bizarre behavior and positive formal thought disorder global scores. To assess depressive symptoms the 21-item version of the Hamilton Scale for Depression (HAMD-21) was used. Finally, daily antipsychotic doses and use of mood stabilizers were determined. Individual doses of antipsychotics were converted in oral risperidone equivalent doses using the defined daily doses (DDD) method from (Leucht, Samara, Heres, & Davis, 2016). The use of any mood stabilizers, including lithium, valproate, lamotrigine, topiramate, oxcarbazepine, carbamazepine and gabapentine were assessed with an additional categorial variable defining whether subjects were taking mood stabilizer or not (Table S2).

Working memory

WM was assessed using total raw scores of symbol span and visual reproduction (both from the Wechsler Memory Scale), as well as total raw scores of digit span and letter number sequencing (both from Wechsler Adult Intelligence Scale IV). The total raw scores were standardized using z transformation and a composite WM sum score of all four independent z scores was calculated.

Data analysis

All analyses were performed using SPSS (version 27.00, SPSS Inc.) and figures were made with ggplot2 and reshape packages in R (© 2009-2021 RStudio, PBC; 2021.09.0 Build 351).

Associations between negative symptoms and potential secondary sources

First, group differences of potential secondary sources of NS including positive symptoms, disorganization, depressive symptoms, daily antipsychotic dose, and use of mood stabilizer were examined using analysis of covariance (ANCOVA). Sex as was included as covariate
because of significant group differences (see results section). We next applied a transdiagnostic approach to examine associations between each NS domain and potential sources of secondary NS across both groups. For each NS domain, a separate multiple linear regression analysis of all potential secondary sources as well as group, age and sex as additional covariates were applied. Furthermore, separate dominance analyses (Budescu, 1993) were applied for each NS domain to examine the generalized relative importance of each clinical factor tested as potential source of secondary NS. Dominance analysis is a statistical method to determine the relative importance of predictor variables (in our case potential sources of secondary NS) in a statistical model. It provides the chance to rank order and scale of variables in a qualitative way defined by pairwise comparison. This approach enables to show which variable dominates the other variables regarding its usefulness in predicting the variance of the dependent variable. Figure 2 shows a visualization of the relative importance scores of each predictor variable as a heatmap, with darker colours representing lesser dominance of the correspondent predictor variable (Budescu, 1993).

To allow comparison with studies using the two-factor model of NS, all analyses were repeated by performing the multiple linear regression analyses using the two NS dimensions. Finally, to control that none of the transdiagnostic findings was driven by either SCZ or BD-I regression analyses were repeated within each subgroup separately.

Associations between working memory and negative symptoms

In line with the transdiagnostic approach mentioned above, the relationship between WM and NS domains were first assessed across both groups. To this end a multiple linear regression model were fitted including the four NS domains, all potential secondary sources as well as group, age, and sex as covariates. Finally, to explore potential group-specific associations between WM and NS domains, explorative regression analyses were performed in each subgroup separately.
Results

Demographic and clinical data

All demographic and clinical data are summarized in Table 1. No group difference in age (F = 0.128, p = 0.880) but significant differences in sex with a higher proportion of male subjects in the SCZ group compared to the BD-I group (SCZ (76%) vs BD-I (57%), $\chi^2 = 11.00; p < 0.001$) were observed. Both groups showed mild to moderate levels of SANS avolition-apathy and SANS anhedonia-asociality and subclinical levels of SANS blunted affect and SANS alogia, with very low levels of alogia in BD-I (Table 1).

With respect to other symptom dimensions, subjects with SCZ had higher SAPS positive symptoms dimension scores (F = 44.443, p = 0.000) than subjects with BD-I, while subjects with BD-I had higher HAMD-21 scores (F = 3.765, p = 0.027). In contrast, SAPS disorganization dimension scores did not differ between groups (F = 2.911, p = 0.059).

Comparing medication dose, we found no group differences in risperidone equivalent doses (F = 1.41, p = 0.25), while mood stabilizers were significantly more prescribed in the BD-I group ($\chi^2 = 15.69, p < 0.001$).
Table 1. Demographic and clinical data

<table>
<thead>
<tr>
<th></th>
<th>SCZ (N=50)</th>
<th>BD-I (N=49)</th>
<th>Test-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>36.46 ± 8.878</td>
<td>35.61 ± 9.140</td>
<td>F = .128 (p = .880)</td>
</tr>
<tr>
<td>Sex (male / female)</td>
<td>38 / 12</td>
<td>28 / 21</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaskan Native</td>
<td>11 (22%)</td>
<td>4 (8.2%)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>1 (2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black/African American</td>
<td>2 (4%)</td>
<td>1 (2%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>33 (66%)</td>
<td>37 (75.5%)</td>
<td></td>
</tr>
<tr>
<td>More than one race</td>
<td>1 (2%)</td>
<td>7 (14.3%)</td>
<td></td>
</tr>
<tr>
<td>SANS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apathy-Avition</td>
<td>2.72 ± 1.512</td>
<td>1.85 ± 1.382</td>
<td></td>
</tr>
<tr>
<td>Anhedonia-Asociality</td>
<td>2.28 ± 1.499</td>
<td>1.70 ± 1.245</td>
<td></td>
</tr>
<tr>
<td>Alogia</td>
<td>.98 ± 1.152</td>
<td>.15 ± .420</td>
<td></td>
</tr>
<tr>
<td>Blunted affect</td>
<td>1.26 ± 1.306</td>
<td>.57 ± 1.088</td>
<td></td>
</tr>
<tr>
<td>Amotivation</td>
<td>5.00 ± 2.770</td>
<td>3.54 ± 2.287</td>
<td></td>
</tr>
<tr>
<td>Diminished expression</td>
<td>2.24 ± 2.246</td>
<td>.72 ± 1.393</td>
<td></td>
</tr>
<tr>
<td>SAPS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive symptoms</td>
<td>4.84 ± 2.795</td>
<td>.72 ± 0.98</td>
<td>F = 44.443 (p = .000)</td>
</tr>
<tr>
<td>Disorganization</td>
<td>2.56 ± 2.28</td>
<td>1.63 ± 1.77</td>
<td>F = 2.911 (p = .059)</td>
</tr>
<tr>
<td>HAMD-21</td>
<td>11.92 ± 9.001</td>
<td>13.72 ± 9.75</td>
<td>F = 3.765 (p = .027)</td>
</tr>
<tr>
<td>Risperidone equivalent dose (mg/d)</td>
<td>7.48 ± 8.79</td>
<td>4.85 ± 10.93</td>
<td>F = 1.41 (p = 0.25)</td>
</tr>
<tr>
<td>Patients with mood stabilizer intake</td>
<td>11 (22%)</td>
<td>30 (61%)</td>
<td>χ² = 15.69 (p < 0.001)</td>
</tr>
</tbody>
</table>

Table 1: SCZ, schizophrenia; BD-I, bipolar disorder I; Test-statistic, ANCOVA (sex as covariate); SANS, Scale for the assessment of negative symptoms. SANS amotivation includes the SANS domains avolition-apathy and anhedonia/asociality. SANS diminished expression includes the SANS domains alogia and blunted affect. SAPS, Scale for the assessment of positive symptoms. SAPS positive symptoms includes the SAPS domains delusion and hallucination. SAPS disorganization includes the SAPS domains bizarre behavior and positive formal thought disorder; HAMD-21, Hamilton Depression Scale (21 items).
Potential sources of secondary negative symptoms

Using multiple linear regression models, we contextualized potential sources for secondary negative symptoms for each NS domain across SCZ and BD-I. The SAPS disorganization dimension was significantly associated with higher SANS avolition-apathy ($\beta = 0.34$, $p < 0.001$), and higher SANS anhedonia-asociality ($\beta = 0.31$, $p < 0.005$), while depressive symptoms were additionally related to SANS anhedonia-asociality ($\beta = 0.35$, $p < 0.001$) (Figure 1, Table 2). Risperidone equivalent dose was associated with higher SANS blunted affect ($\beta = 0.24; p < 0.05$), while for SANS alogia no relationship with any of the potential sources for secondary NS were observed. With respect to positive symptoms as potential secondary sources, no association of the SAPS positive dimension with any NS domain was observed across both groups (Figure 1, Table 2). Of note, significant group differences were only observed in alogia ($\beta = 0.35; p < 0.05$) with more severe alogia in SCZ compared to BD-I. To further quantify the portion of variance of NS explained through each clinical factor related to NS we performed separate dominance analyses for each NS domain. The generalized relative importance values are shown in Figure 2 and explain to which part the potential underlying sources of secondary negative symptoms contribute to the measured SANS domain scores. Using the SANS amotivation and the diminished expression dimensions largely confirmed the results from the four SANS domain scores. SAPS disorganization scores and depressive symptoms were associated with the SANS amotivation dimension ($\beta = 0.37$, $p < 0.001$ and $\beta = 0.25; p < 0.05$), while risperidone equivalent dose was associated with the SANS diminished expression ($\beta = 0.21; p < 0.05$) (Table S3). In line with the observed group differences in SANS alogia, the SANS diminished expression dimension showed a trend-level group effect ($\beta = -0.31$, $p = 0.051$; SCZ>BD-I). Finally, repeating the analyses for SCZ and BD-I separately largely mirrors the observed results albeit with smaller effect sizes (Table S4).
Taken together, across SCZ and BD-I disorganization, depressive symptoms and antipsychotic medication significantly predicted NS domains, while group differences only predicted alogia.
Table 2. Relationship between negative symptom domains and other clinical factors

<table>
<thead>
<tr>
<th></th>
<th>Avolition-Apathy</th>
<th>Anhedonia-Asociality</th>
<th>Alogia</th>
<th>Blunted affect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r^2_{\text{adj}} = .18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F(8,88) = 2.55^{**})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>-0.25 [-1.66, 0.14]</td>
<td>-0.21 [-1.41, 0.21]</td>
<td>-0.35 [-1.25, -0.07]*</td>
<td>-0.23 [-1.33, 0.21]</td>
</tr>
<tr>
<td>Age</td>
<td>0.03 [-0.03, 0.04]</td>
<td>0.07 [-0.02, 0.04]</td>
<td>-0.11 [-0.03, 0.01]</td>
<td>-0.09 [-0.04, 0.01]</td>
</tr>
<tr>
<td>Sex</td>
<td>0.03 [-0.55, 0.73]</td>
<td>0.03 [-0.49, 0.67]</td>
<td>0.07 [-0.27, 0.56]</td>
<td>0.1 [-0.3, 0.79]</td>
</tr>
<tr>
<td>Positive Symptoms</td>
<td>-0.01 [-0.16, 0.15]</td>
<td>-0.07 [-0.17, 0.1]</td>
<td>0.04 [-0.09, 0.11]</td>
<td>0.09 [-0.09, 0.17]</td>
</tr>
<tr>
<td>Disorganization</td>
<td>0.34 [0.09, 0.4]***</td>
<td>0.31 [0.07, 0.34]**</td>
<td>0.11 [-0.05, 0.15]</td>
<td>0.04 [-0.11, 0.15]</td>
</tr>
<tr>
<td>Depression</td>
<td>0.13 [-0.01, 0.06]</td>
<td>0.35 [0.02, 0.08]***</td>
<td>-0.01 [-0.02, 0.02]</td>
<td>0.17 [-0.01, 0.05]</td>
</tr>
<tr>
<td>RSP-eq dose</td>
<td>0.1 [-0.01, 0.05]</td>
<td>0.11 [-0.01, 0.04]</td>
<td>0.11 [-0.01, 0.03]</td>
<td>0.24 [0.01, 0.06]*</td>
</tr>
<tr>
<td>MS intake</td>
<td>0.13 [-0.25, 1.02]</td>
<td>0.01 [-0.56, 0.59]</td>
<td>-0.07 [-0.56, 0.27]</td>
<td>0.02 [-0.49, 0.59]</td>
</tr>
</tbody>
</table>

Table 2: Linear multivariate regressions of 4 negative symptom domains as dependent variables with potential sources of secondary negative symptoms as independent variables across SCZ and BD-I patients. Beta values and corresponding 95% confidence intervals are given; Positive symptoms were measured using the Scale for the assessment of positive symptoms (SAPS); Depressive symptoms were measured using the Hamilton Depression Scale (21 items); RSP-eq dose, daily antipsychotic dose as risperidone equivalent; MS intake, mood stabilizer intake as categorical factor (mood stabilizer intake yes or no); *p<0.05 **p<0.005 ***p<0.001
Figure 1. Associations between Negative symptoms and potential sources of secondary negative symptoms

![Diagram showing associations]

Figure 1: Significant associations between negative symptom domains and potential underlying sources for secondary negative symptoms.

Significant beta values from linear multivariate regressions shown in Table 2 are presented. *p<0.05; **p<0.005; ***p<0.001

Figure 2. Dominance analysis of potential secondary sources of the four negative symptom domains

![Heatmap showing dominance analysis]

Figure 2: Visualization of relative importance scores of causes of secondary negative symptoms on a standardized scale from 0 (no importance) to 1 (high importance) as a heatmap. Brighter colors are corresponding to higher percentage of relative importance.
Associations of working memory and clinical variables

In a next step, we sought to examine the relationship between NS and WM across SCZ and BD-I and in each group separately. In our transdiagnostic model, higher WM scores were predicted by group ($\beta = 0.48$, $p < 0.005$) with better WM in BD-I than SCZ (Table S5). In addition, across both groups, age and higher SANS avolition-apathy scores were associated with lower WM scores (age: $\beta = -0.32$, $p < 0.001$; SANS avolition-apathy $\beta = -0.34$, $p < 0.005$). None of the other symptom dimensions or medication effects predicted WM (Table S5). Examining the relationship between NS and WM in SCZ and BD-I separately, we observed that the effect of SANS avolition-apathy was more pronounced in subjects with BD-I ($\beta = -0.52$, $p = 0.004$) than SCZ ($\beta = -0.27$, $p = 0.214$). In addition to the negative relationship between higher SANS avolition-apathy scores and WM, subjects with BD-I showed an inverse positive association between higher SANS anhedonia-asociality and WM ($\beta = 0.53$, $p = 0.023$) (Table S5). In other words, BD-I subjects with higher SANS avolition-apathy had reduced WM scores, while those with higher SANS anhedonia-asociality had higher WM scores.

In sum, across both groups more severe SANS avolition-apathy scores and group differences (SCZ<BD-I) predicted lower WM, while in BD-I only higher SANS anhedonia-asociality showed an inverse relationship with WM (i.e. higher scores).
Mediation analysis

Poor WM is associated with both disorganization (Nieuwenstein, Aleman, & Haan, 2001; Ventura, Thames, Wood, Guzik, & Hellemann, 2010) and avolition-apathy (Faerden et al., 2009; Foussias et al., 2015; Raffard et al., 2016) in patients with SCZ. In the presented sample, higher disorganization was related to higher avolition-apathy and higher avolition-apathy to lower WM. We performed a mediation analysis to examine whether disorganization mediates the effect of WM on avolition-apathy (see Figure 3). Regressing disorganization on WM showed a trend effect of higher WM to be associated with lower disorganization scores (a). Regressing disorganization on avolition-apathy showed a highly significant positive association of WM on avolition-apathy (b). Regressing WM on avolition-apathy (c), we observed a negative effect with lower WM related with higher avolition-apathy. Adding disorganization as a mediator (c’) diminished the significant association between WM and avolition-apathy (c) and showed a significant mediation effect of disorganization on the relationship between WM and avolition-apathy (a*b). In sum, this analysis suggests that WM has a significant direct effect on avolition-apathy and an additional indirect effect mediated by disorganization within the SCZ-BD spectrum.
Discussion

In the presented study we applied a transdiagnostic approach to characterize NS domains and their relationships with potential sources of secondary NS across the SCZ-BD spectrum. We further evaluate the transdiagnostic association between distinct NS domains and WM capacity. Across individuals with SCZ and BD-I, disorganization was associated with avolition-apathy and anhedonia-asociality, depression additionally predicted anhedonia-asociality. In addition, higher antipsychotic dose was associated with blunted affect. Among all four NS domains only alogia was better predicted by disease categories and not by transdiagnostic clinical dimensions. Avolition-apathy predicted reduced WM performance transdiagnostically, while only in the BD-I group higher anhedonia-asociality was associated with better WM. Collectively, these findings provide evidence for secondary NS with disorganization emerging as important factor and reveal differential effects of avolition-apathy and anhedonia-asociality on WM in outpatients with SCZ and BD-I.
Over the last years NS have been increasingly recognized as a transdiagnostic construct (Strauss & Cohen, 2017), although to our knowledge only few studies have directly compared NS between SCZ and BD-I. With respect to the different NS domains, similar levels of avolition and anhedonia have been reported for SCZ and BD-I (Kirschner et al. 2020; Strauss et al. 2016). In contrast, alogia (Kirschner et al., 2020; Strauss et al., 2016) and blunted affect (Strauss et al., 2016) differed between both groups with significantly more severe scores in SCZ compared to BD-I. Together with these reports, the present findings suggest that avolition and anhedonia appear as transdiagnostic domains across SCZ and BD-I. The diminished expression dimension and in particular severity of alogia, however, seems to be stronger differentiated by disease category.

Secondary NS are frequently observed in clinical routine, however, empirical studies examining potential underlying sources of secondary NS remain relatively scarce. In the present study higher disorganization was transdiagnostically associated with higher avolition-apathy as well as anhedonia-asociality. Disorganization has been conceptualized as one core dimension (Liddle, 1987) along with positive symptoms and NS, which has been consistently confirmed in SCZ (Peralta & Cuesta, 1999; Tibber et al., 2018) and across the SCZ-BD spectrum (Reininghaus et al., 2019). However, the relation between disorganization and NS have been received surprisingly low attention. The present findings suggest that disorganization is also a substantial source of secondary avolition-apathy/anhedonia-asociality in patients of the SCZ-BD spectrum. One clinical explanation for this association might be that disorganization directly affects the patient’s ability to plan and engage in activities and social interaction. This was found to be consistent using a transdiagnostic approach across both disorders and confirmed for each disorder separately. This observation could be of direct clinical interest as cariprazine, a novel antipsychotic drug, was effective in reducing NS and disorganization in SCZ patients (Fleischhacker et al., 2019). Hence, secondary avolition-
apathy and anhedonia-asociality due to disorganization might be sensitive to treatment with cariprazine. It is important to note here, that it is also possible that there might be no causal link between disorganization and NS. The shared treatment effect of cariprazine could therefore be the result of a common underlying mechanism that is targeted by cariprazine and improve both symptoms independently. Anhedonia-asociality was additionally related to depressive symptoms across both groups, which is in line with anhedonia as shared feature of depressive symptoms and NS in SCZ and BD-I (Kirschner et al., 2020; Krynicki, Upthegrove, Deakin, & Barnes, 2018; Kulhara et al., 1989). With respect to medication effects higher daily antipsychotic doses were associated with blunted affect across both disorders. The association, however, was mainly driven by the BD-I group, although medication dose did not differ between BD-I and SCZ patients taking antipsychotics. One previous study reported a similar relationship in BD-I patients but not SCZ patients (Strauss et al., 2016), raising the question whether BD-I patients are more sensitive to medication-induced affective flattening compared to SCZ patients. Extrapyramidal side effects are often suggested as cause of diminished expressivity (Kelley, van Kammen, & Allen, 1999), although other mechanism might contribute to this relationship. Collectively, these findings show that antipsychotic medication relate even to mild to moderate blunted affect that could potentially ameliorated with precise drug monitoring. Of all four NS domains tested in this study, only alogia was predicted by diagnostic category showing significant higher scores in SCZ compared to BD-I patients. In addition, alogia was not related to any potential secondary sources, thus suggesting that alogia was a primary NS in this cross-disorder sample. This observation raises the question whether some NS domains are more likely to be secondary due to other clinical factors, while others such as alogia are more likely primary NS.

Cognitive deficits are common in psychotic disorders (Bortolato, Miskowiak, Köhler, Vieta, & Carvalho, 2015) and WM capacity, a domain of neurocognitive functioning, is typically impaired in both patients with SCZ and BD-I (Žakić Milas & Milas, 2019). Impaired WM has
been further related to NS (Ventura, Hellemann, Thames, Koellner & Nuechterlein, 2009) as well as disorganization (Nieuwenstein et al., 2001; Ventura et al., 2010) in patients with SCZ, but not in BD-I patients. We observed that across SCZ and BD-I patients, lower WM as associated with higher avolition-apathy scores supporting a direct effect of WM on avolition-apathy. Disorganization further mediated the effect of WM on avolition-apathy suggesting an additional indirect effect of WM on avolition-apathy. The negative effect of primary avolition-apathy on WM has been consistently observed in different stages of SCZ (Faerden et al., 2009; Foussias et al., 2015; Gold et al., 2019; Raffard et al., 2016). The present findings extend these reports by showing that avolition-apathy partly explained by disorganization relates to more severe WM deficits across SCZ and BD-I patients. Of note, the relationship between higher avolition-apathy and lower WM performance was more pronounced in BD-I confirming that this result is not driven by the SCZ group. These results further provide evidence for a transdiagnostic link between WM and higher avolition-apathy scores, which is shared across the SCZ-BD spectrum. In contrast to this transdiagnostic relationship we observed an inverse association of higher anhedonia-asociality with better WM in BD-I patients only. Anhedonia-asociality was also associated with depressive symptoms, therefore one interpretation could be that those BD-I patients with subclinical affective symptoms showed overall better WM performance compared to those with less affective symptoms. In addition, this observation was specific for BD-I patients and could potentially reflect the overall better neurocognition seen in BD-I compared to SCZ. This interpretation would be in line with a general model of cognitive functioning across the SCZ-BD spectrum showing that patients with more affective symptoms have overall better cognitive functioning compared to patients with primary and more enduring psychotic symptoms (Hill et al., 2013).

Limitations
There are several limitations to our study. First, the SANS was used to assess NS. SANS is a first-generation questionnaire for the assessment of NS and newer scales such as the Brief Negative Symptom Scale or the Clinical Assessment Interview for Negative Symptoms are available. However, according to the EPA guidelines, the use of the SANS is still viable for research and clinical practice (S. Galderisi et al., 2021). Furthermore, as proposed in the EPA guidelines, specific items which do not represent NS (like inappropriate affect and inattention) were not used in this study (S. Galderisi et al., 2021). In addition, the SANS is a widely used instrument in clinical routine and a significant number of previous NS studies have used this scale allowing comparability of the present work with previous findings and facilitates transfer into clinical practice. Second, while this study addressed the main clinical factors contributing to secondary NS, it did not investigate other potential secondary sources such as environmental, psychological, and biological factors. Moreover, our dataset lacked detailed information regarding the number and frequency of psychotic episodes in the BD-I group. Understanding how the frequency of psychotic episodes might contribute to NS and neurocognitive deficits in BD-I patients could be a relevant avenue for future research. Finally, the data that has been used for this study were cross-sectional with no follow up examinations examining changes of symptomatology over time. Longitudinal data would be necessary to further evaluate the impact of secondary NS on important outcomes like recovery rate or level of functioning.

Conclusion

Our findings demonstrate that secondary NS are prevalent in outpatients within the SCZ-BD spectrum, highlighting the significant role of disorganization as an underlying source of secondary avolition and anhedonia. The relationship between avolition-apathy and impaired WM suggests the presence of shared neurocognitive mechanisms across SCZ and BD-I.
Collectively, these findings enhance our understanding of secondary NS and open new avenues for targeted treatment and preventive measures for NS within the SCZ-BD spectrum.
Acknowledgements

All data used in this study were derived from the UCLA CNP cohort. Data can be downloaded from the publicly available database OpenfMRI (https://openfmri.org/dataset/ds000030/).

Conflict of interests

The authors declare that they have no conflicts of interest related to this study.
References

Galderisi, S. [Silvana], Bucci, P. [Paola], Mucci, A. [Armida], Kirkpatrick, B., Pini, S., Rossi, A., . . . Maj, M. [Mario] (2013). Categorical and dimensional approaches to negative...

