Investigating the Efficacy of Peripheral Nerve Stimulation and Spinal Cord Stimulation for Providing Natural Somatosensory Feedback in Bionic Prostheses for Transhumeral Amputees

Gurgen Soghoyan (1), Artur Biktimirov (2,3), Nikita Piliugin(1), Yury Matvienko (3), Alexander Kaplan (1,4), Mikhail Sintsov (3), Mikhail Lebedev (4,5)

(1) Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
(2) Laboratory of Experimental and Translational Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
(3) Motorica LLC, Moscow, Russia
(4) Moscow State University, Moscow, Russia
(5) I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, St Petersburg, Russia

Keywords
Peripheral nerve stimulation, spinal cord stimulation, neuroprosthetics, neuromodulation, phantom limb, phantom limb pain, sensory restoration, embodiment, neuropathic pain, transcutaneous electrical nerve stimulation, bionic prosthetics, neurostimulation, sensory discrimination, brain-computer interface, electroencephalography, upper-limb amputees, amputation

Formatting of funding sources
1. This work was supported by the Russian Science Foundation under grant № 21-75-30024.

Declarations of interest:
AB, YM, and MS are employees of Motorica LLC, other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
*Motorica LLC is a private company, developing and producing functional prosthetics of upper limbs.

Abstract
Limb amputation results in such devastating consequences as loss of motor and sensory functions and phantom limb pain (PLP). Here we explored peripheral nerve stimulation...
(PNS), spinal cord stimulation (SCS) and transcutaneous electrical nerve stimulation (TENS) as the approaches to enable tactile and proprioceptive sensations in amputees and suppress PLP. We investigated the efficacy of these approaches for sensory discrimination tasks, namely determining object size and softness using a bionic prosthesis of the hand. Two transhumeral amputees were implanted for four weeks with stimulating electrodes placed in the medial nerve and/or epidurally over the spinal cord. Both PNS and SCS mapped to the sensation in different parts of the phantom hand, which was confirmed by both subjective reports and electroencephalographic (EEG) recordings of cortical responses to stimulation. Surprisingly, PNS provided more naturalistic sensations compared to SNS. Moreover, these sensations were felt as emerging from the prosthetic hand when the participants performed sensorimotor tasks where they determined the size and softness of objects being grasped. As they practiced in these tasks, the prosthetic sensations became more natural. While the participants could perform some of the tasks, for example tactile surface exploration, using auditory feedback, PNS and/or SCS have a benefit of better approximating the sensations lost to the amputation while suppressing PLP.

Significance statement

Research on prosthetic somatosensation could benefit from a comparative analysis of different approaches for providing sensory feedback, preferably in the same participants. As a step toward this goal, we investigated PNS, SCS, TENS, and auditory feedback as methods for restoring somatic sensations in amputees and suppressing their PLP. While most of these methods could enable tactile and proprioceptive sensations, the effectiveness of specific approaches differed depending on the individual. For instance, in one participant, PNS evoked sensations that were more naturalistic and localized compared to SCS. As the participants practiced with neurostimulation, improvements were observed in sensation naturalness, prosthetic embodiment, and overall performance in sensorimotor tasks. Most impressively, PNS enabled sensations of object size and softness in the grasping tasks performed by a bionic hand. We conclude that an individual-based approach to selecting the right combination of neurostimulation tools for amputees could both restore the ability to perform complex sensorimotor tasks and effectively suppress PLP.

Introduction

The control of prosthetic devices could be augmented with the technology of brain-computer interface (BCI), the systems that connect to the brain to enhance or restore motor functions (Lebedev & Nicolelis, 2017). In BCIs, intentions to perform voluntary movements are decoded from the activity of different areas of the nervous system, which enables control of external effectors even in such complex tasks as handwriting (Willett et al., 2021). Using electromyographic (EMG) decoders is an alternative approach to controlling prostheses by amputees (Al-Timemy et al., 2013). Regardless of the prosthetic control mode and its sophistication, users still experience difficulties when the sensory feedback from a prosthetic limb is insufficient (Kyberd et al., 2007). This problem is exacerbated by the presence of
phantom limb pain (PLP) that is experienced by up to 80% of amputees (De Nunzio et al., 2018; Flor, 2002).

Several approaches have been proposed for improving neuroprosthetic feedback and treating PLP. Peripheral nerve stimulation (PNS) (Kumar & Rizvi, 2014) could be used to both implement prosthetic sensations and suppress PLP (Soghoyan et al., 2023). In addition to PNS, spinal cord stimulation (SCS) is applicable to treat PLP and other types of neuropathic pain (Knotkova et al., 2021; Kumar & Rizvi, 2014). While the pain-relieving mechanisms of PNS and SCS are not fully understood, it has been suggested that they could inhibit pathological patterns of activity generated by neuromas both at the spinal (Foell et al., 2011) and cortical levels (Zheng et al., 2021). An optimal neurostimulation system for amputees would be a bidirectional one where stimulation parameters are set based on changes in neural activity (Kleeva et al., 2022). In addition to PNS and SCS, such a system could incorporate transcutaneous electrical nerve stimulation (TENS) (Flor et al., 2001) and targeted muscle reinnervation (TMR) (Mioton et al., 2020).

Notwithstanding the progress in the development of sensorized prostheses for amputees (Bensmaia et al., 2020; Raspopovic et al., 2021) (Soghoyan et al., 2023) more research is needed for improving practicality of such systems. Examples of practical use of sensorized prostheses include neurostimulation-based sensations that improve motor control and enable differentiation of object size and object texture (Oddo et al., 2016; Raspopovic et al., 2021)(Oddo et al., 2016). Stability and naturalness of PNS-induced sensations varies through time (Cuberovic et al., 2019). One approach to improving neurostimulation-based feedback is based on the idea of biomimetics (Okorokova et al., 2018; Saal & Bensmaia, 2015) where generation of artificial sensations adheres to the principles of normal somatosensory organization. The occurrence embodiment (Zbinden et al., 2022) is an ultimate criterion for the evaluation of how limb neuroprostheses perform.

As a step toward the development of an effective neural prosthesis for amputees, here we evaluated the PNS and SCS approaches in two transhumeral amputees. The parameter values of these neurostimulation methods were explored to improve the naturalness of sensations felt in the phantom limb. Additionally, auditory stimulation was examined as an alternative for providing sensory feedback in tasks like active tactile exploration. Furthermore, we tackled the possibility of enabling proprioception using PNS and SCS in sensory discrimination tasks aided by a bionic prosthesis. Simultaneous proprioceptive and tactile sensations were implemented, as well, in the tasks where the bionic hand was used to assess object softness. Finally, cortical manifestation of the sensation naturalness was assessed by measuring evoked response potentials (ERPs) for different stimuli. These findings improve our understanding of how naturalness of prosthetic sensation and improved embodiment could be achieved.

Materials and methods

Surgery and patients
Two amputees participated in the study, and both suffered from PLP. S12 and S13 had transhumeral amputation on the left side. The patient IDs are not known to anyone outside the research group. The study was approved by the Ethical Committee of the Far East Federal University (FEFU) Biomedicine school (Protocol #4; April 16, 2021). Each patient signed the informed consent form prior to participating in the experiments. The study is registered as a clinical trial on platform https://clinicaltrials.gov/ #NCT05650931.

Implantation surgeries were performed at the Medical Center of FEFU. Eight-contact electrodes (Directional Lead for the St. Jude Medical Infinity™ DBS System; Abbot; USA) were implanted in the median nerve in all three patients under endotracheal anesthesia. Additionally, in two patients (S12 and S13) electrodes were implanted in the area of intumescentia cervicalis of the spinal cord (Fig. 1). SCS cylindrical electrodes (Vectris Surescan Trail MRI 1×8 compact 977D260; Medtronic; USA) were implanted under local anesthesia and X-ray control.

![X-ray images of the PNS and SCS electrodes position in patients S12 and S13.](image-url)

(A) Patient S12 was implanted with two electrodes in the area of intumescentia cervicalis of the spinal cord and one electrode in the medial nerve of the left hand. (B) Patients S13 was implanted with two electrodes in the area of intumescentia cervicalis of the spinal cord and one electrode in the medial nerve of the left hand.

To implant the PNS electrodes, the epineurium was cut under a surgical microscope. The electrodes were placed in the space between the nerve fascicles. For spinal electrodes implantation, a puncture of the posterior epidural space was performed at the level of Th6-7 under local anesthesia. In patient S12, the SCS electrode migrated to the midline on the 3rd day after the surgery. To correct for this issue, an additional electrode was implanted over the spinal cord.

In all patients, sensations evoked by stimulation covered the zone where PLP was experienced. Stimulation paradigms were individually adjusted in each patient to maximize the PLP treatment effect. As a result of these adjustments, patient S12 was treated with PNS, patient S13 received SCS treatment. The stimulation parameters were selected individually and made up of frequency of 40-100Hz and pulse width of 100-1000μs. The patients documented their sensations in the diaries where they marked the level of PLP suppression using a visual analogue scale.
Sensory mapping

PNS

PNS evoked sensations in the phantom hands of both participants. During sensory mapping, sensations were determined that were evoked by the stimulation delivered using various electrode pairs. The mapping was performed three times during three consecutive days. Stimulation frequency was 50 Hz on day 1 and 100 Hz on days 2 and 3. The frequency was increased to 100 Hz because both participants reported more natural sensations for this type of stimulation. For a selected electrode pair, stimulation parameters were set to the initial values (bipolar stimulation with pulse width of 100 μs and frequency of 50 or 100 Hz, depending on the day of testing). Stimulation amplitude was then gradually raised from 0 with 0.1-mA steps. For each of these steps, participants were asked to report sensation intensity on a 0 to 10 scale where 0 corresponded to an absence of perception and 10 corresponded to an uncomfortably intense sensation. The tests with an increasing stimulation amplitude continued until the score of 10 was reached. Next, stimulation amplitude was gradually decreased with 0.1-mA steps and the participant reported the felt stimulation intensity.

For the reported stimulation intensity equal to 5, patients were asked to fill a PerceptMapper questionnaire (A. Nanivadekar et al., 2020), where they marked the perception location on a drawing of a hand shown on a computer display, and described the sensation in terms of painfulness and naturalness (Soghoyan et al., 2023). Then, another electrode pair was selected and tested. The participants used sliders to report the naturalness of the stimulation-evoked sensation naturalness, and they used the terms suggested in the questionnaire to describe these sensations.

Two classes of sensations were reported by the patients: naturalistic and non-naturalistic. Sensations of pressure, touch, prick, shock, urge to move and itch were categorized as naturalistic. Sensations of electric shock, pulsing, vibration and flutter were categorized as non-naturalistic. Statistical distributions were calculated for the counts of different kinds of reported sensations. Normalization by the number of trials per day was applied. This analysis was used to assess the efficacy of PNS for evoking natural sensations.

To measure the changes in evoked sensations that occurred over the course of these experiments, sessions of sensory mapping were conducted in the beginning, in the middle and at the end of the study. In these sessions, we determined referred sensation sites and the descriptions of sensations and their intensity. In order to estimate average localization of stimulation projections over all pictures collected in one experiment session we interpreted each image as a matrix size of 1080x1080 pixels filled by the maximum value of 255 at the spots where a patient marked phantom sensation and zeros otherwise. Further we calculated the average localization picture of the session finding individual means in each of the matrix cells. Considering each image as a matrix we evaluated the mean picture over all trials. During these tests, we did not ask a patient to mark the sensation zone precisely, because of it we are providing results about perception presence or absence in a particular field of the palm.
This fact lets us apply simple morphological operations for image processing to present results in a proper way. We used the results for approximate location assessment of particular electrode pair projections rather than for quantitative characteristics of them. That’s why we applied several morphological operations of image processing, that slightly change the area of the shaded area but make it more connected, for receiving more explicit pictures at the end.

SCS

Patients S12 and S13 were implanted with the electrodes for spinal cord stimulation, which gave us an opportunity to compare the effects of SCS and PNS. SCS mapping was arranged the same way as the mapping using PNS, including using hand images for mapping, reporting the felt intensity of stimulation with sliders, and having the subjects describe their sensations using the questionnaire terms. SCS mappings were conducted once for each patient on the 3rd and 8th days of testing in S12 and S13, respectively.

Active exploration task

Experimental design

In our previous publication (Soghoyan et al., 2023), we introduced an active exploration task where participants explored invisible objects using artificial tactile sensations provided by TENS and PNS. Here, we used a similar protocol, but with the use of auditory feedback instead of TENS. Thoroughly, patients used their intact limb to scan the tablet surface using a stylus and searched for an invisible object. Whenever the stylus made contact with the object, sensory feedback was provided through sound or electrical stimulation. The objects could be in the shape of a square, circle, or pentagon and were randomly selected for each trial along with two types of sensory feedback: PNS or Auditory. To increase the difficulty of object recognition, the rotation angle of the object varied for each trial.

For trials with auditory feedback, each time the stylus touched an invisible object, 1000-Hz sound was turned on. For PNS trials, two modes of stimulation were employed, namely baseline and target, with identical frequency and pulse width but varying amplitudes. The amplitude in the baseline mode remained below the sensory threshold while it surpassed the threshold in the target mode. The NimEclipse was linked to the laptop, which was connected to the tablet. Upon tapping the screen area that corresponded to the invisible shape, the Python script transitioned from baseline to target stimulation mode, thereby enabling the subject to perceive the shape. S12 and S13 utilized a stylus held in the intact limb to interact with the tablet. For both S12 and S23, stimulation settings were chosen individually to elicit tactile sensations in the fingers of the phantom limb.

The active-exploration sessions were held on post-surgery days 8 and 20 for each subject. On each of these days, the experiment consisted of two sessions: a learning session and an evaluation session. During the learning session, participants saw the history of their touches of the screen as black lines. For learning session completion, it was required that the subject to correctly guess each object twice for both auditory and PNS feedback. Each time when an
object was recognized correctly, the respectful trial was eliminated from the list of unguessed yet trials. Next trial was randomly selected from that list.

Statistical analysis

In the analyses of these data, we assessed the performance in the learning session by counting the total number of trials required to complete it. Then, we compared the accuracy metrics during the evaluation session.

Additionally, we measured trial durations. These measures were then compared among feedback types (PNS vs Auditory feedback) and days of testing (day 1 vs day 2). An ANOVA was used to statistically assess these factors and their interaction, followed by a post-hoc Tukey test for pairwise comparisons. The Python library statsmodels were used to run these tests.

Object Size detection

Experimental design

In the task that required detecting an object size using PNS feedback, cylinders of different diameter were grasped by a prosthetic hand. Simultaneously, the signals from the prosthetic sensor of aperture were converted into PNS patterns. The cylinders were shown to the patients before the experiments. They came in three sizes: small (20mm in diameter), medium (40mm) and large (60mm). The participants initiated the prosthetic grasping by pressing a button with the intact hand. When a patient initiated the grasping movement, the change of prosthesis aperture led to increased amplitude respectively (See section Stimulation settings for sensorimotor tests for details). We call the sensations they experienced artificial proprioception because they mimicked sensing of hand configuration. In this artificial proprioception, measurements from prosthetic finger encoders provided the information about the prosthesis aperture.

The object-grasping sessions were conducted on postsurgery days 11 and 20 (Fig. 2A). Each session consisted of three parts: (1) evaluation before training, (2) training, and (3) evaluation after training. During the evaluation (parts 1 and 3 of the session), subjects wore a blindfold and noise-isolating headphones (3m Peltor) (Fig. 2B). Each patient was instructed that an object would be grasped by the prosthetic hand and his task would be to determine whether the object size was small, medium or large. Each trial started with PNS amplitude being lower than the sensory threshold. A new cylinder was placed by an experimenter in front of the prosthetic hand, which took about 3 s. Then, the experimenter gently taped the patient’s intact arm with a pen to indicate the beginning of a trial. Alternatively, during the training period (part 2 of the session), participants had a full vision of the prosthetic hand and the cylinders. They could also hear the sound of the prosthetic-hand motor.
Figure 2. Object size detection experimental design and chronology. Object size detection was conducted thrice on day 11, day 20, and day 25. Each time experiment was held in three stages: Evaluation before training, Training, and Evaluation after training. Before training and after training subjects differentiated objects of different sizes using neurostimulation feedback that caused a sense of phantom hand grasping. (A) - During day 11 and day 20 S12 and S13 completed the task using PNS. (B) - Subject was wearing a mask and soundproof headphones in evaluation sessions (C) - During day 25 S12 completed the task using feedback from SCS.

Notably, during evaluation before training (part 1) the subjects did not have any experience in this task. Thus, It was tested if subjects can by associating the level of PNS magnitude to the level of prosthetic aperture guess the object’s size. We hypothesized that the stimulation can be matched with the natural kinesthetic sensation in the wrist, and a subject could recognize an object even without visual precondition.

Additionally, S12 completed the same task the third time on day 25, but using SCS as feedback.

Statistical analysis

For each session, accuracy metrics and confusion matrices of object size prediction were computed. Permutation tests were used to assess statistical significance of prediction accuracy. Namely, the subjects’ answers were randomly shuffled 700 times to compute a statistical distribution of random accuracy. Next, the real experimental accuracy was compared with the permutation distribution to obtain the p-value. We used the Wilcoxon test from Scipy library to compare the mean accuracy from the random permutations with an actual value of accuracy observed in a session of object size recognition.

Rigidity detection

Experimental design

In the rigidity detection test, we determined how well patients could use a combination of PNS and TENS to discriminate objects of different rigidity. A soft object was assembled by wrapping a 20-mm rigid core with a soft foamed polyethylene of 2-mm thickness (Fig 3A).
For the rigid object, the inner core diameter made up about 58-mm. Both objects in non-compressed state were approximately 60 mm in outer diameter.

![Diagram of rigid and soft objects](image)

Figure 3. Rigidity detection experimental design. (A) Participants needed to differentiate between rigid and soft objects. The soft object was assembled by wrapping a 20-mm rigid core with a soft foamed polyethylene of 2-mm thickness. For the rigid object, the inner core diameter made up about 58-mm. Both objects in non-compressed state were approximately 60 mm in outer diameter. (B) Experiment was conducted in four stages: Proprioception I, Proprioception plus Tactile I, Proprioception plus Tactile II, Proprioception II. During the experiment, the subjects differentiated object rigidity using PNS stimulation only in sessions of Proprioception I and Proprioception. In sessions of Proprioception plus Tactile I and Proprioception plus Tactile II using PNS and TENS stimulation simultaneously.

The neurostimulation was constructed to mimic two somatosensory modalities. The TENS component served to mimic proprioception, which provided a patient with the information about the aperture of the prosthetic hand. The PNS component mimicked tactile sensations from the fingertips, and the appropriate signals were derived from the pressure sensors of the prosthetic fingers. For both TENS and PNS, amplitude modulation was used to convey the signal to the patient (for additional details look at section *Stimulation settings for sensorimotor tests*).

The sequence of task events was similar to the object size detection task. An experimenter placed an object in front of the prosthetic hand and then gently taped the patient’s arm to signal the trial start. The patient next pressed a button, which started the prosthetic grasping and neurostimulation.

The experimental session consisted of four sessions of object rigidity recognition with a training procedure in between (Fig. 3B). We call the first part (1) “Proprioception I” because only the proprioceptive mode was turned on, and a subject needed to differentiate objects using only PNS feedback. In the second part (2) “Proprioception plus Tactile I” we turned on the TENS stimulation allowing the patient to have both sensory streams during recognition of object rigidity. A patient was wearing a mask and soundproof headphones like in the Object size detection task. Prior to these sessions, the subject did not have any experience in this
task, so we consider the results of these two sessions as a pure performance without any perceptual learning.

Then, the subject was free of headphones and mask to have a (3) training session. During this period, he was allowed to freely manipulate objects having both TENS and PNS encoded both somatosensory sensations. Afterwards, again a patient wore a mask, headphones and completed another session of (4) "Proprioception plus Tactile II" when both TENS and PNS amplitude modulation guided the subject during object rigidity recognition. Finally, the TENS stimulation was turned off and with remaining PNS that encoded tactile domain intensity he completed the session (5) "Proprioception II".

Statistical analysis

Similarly to Object size detection, accuracy metrics and confusion matrices of recognition were computed. Permutation tests were used to assess statistical significance of recognition accuracy. As in object size detection, the Wilcoxon test from Scipy library was applied to compare the mean accuracy from the random permutations with an actual value of accuracy observed in a session of object size recognition.

Stimulation settings for sensorimotor tests

For each sensorimotor test, stimulation parameters were selected based on the preceding sensory mapping. An electrode pair was used that evoked tactile or proprioceptive sensation in the phantom wrist. The range of stimulation amplitude was chosen to be comfortable to the subject. This range corresponded to psychometric-scale values from 1-2 to 7-8.

The readings from prosthetic finger encoders provided a measure of the prosthetic-hand aperture, which changed from 0% (fully closed) to 100% (fully opened). This signal was converted into the amplitude of PNS. The pressure sensors (Optical Tensometers by Motorica LLC) were located on the prosthetic fingertips. The signals from the pressure sensors were converted into the TENS amplitude within the range that was comfortable for the patients. The signal from the pressure sensors were converted into the stimulation amplitude with a linear transfer function where stimulation amplitude did not exceed the psychometric values of 7-8 (Fig. 4). The corresponding processing was done using a laptop computer and NimEclipse simulator.
Figure 4. Functional binding principle for Rigidity and Object size Detection Test between measured pressure and electrostimulation. Pressure values, measured with 12-bit ADC ([0..4095] range), were then translated to electrostimulation amplitude linearly between Minimal Sensitive Stimulation threshold (1-2 Pts) and Maximal Comfortable Stimulation threshold (7-8 Pts). The stimulation was performed in trains of 10 pulses 100µs each, with pulse rate of 100Hz and train rate 4.6 Hz.

In the Object Size test, the proprioceptive information controlled level of PNS in sessions with S12 and S13, and SCS for one experimental session with S12.

In the Rigidity Detection test, programmatically, aperture was sampled at 30Hz and pressure readings were sampled at 100 Hz whereas the PNS and TENS amplitudes were updated variably at 10-30 Hz depending on the stimulator latency. Due to the hardware requirements (Medtronic Nim Eclipse Intraoperation Monitor), the highest frequency for triggering the stimulation trains was 4.6 Hz for two-channel stimulation. Accordingly, this frequency was used for both PNS and TENS. The stimulation was arranged as trains composed of 10 pulses with a width of 100 µs presented at 100 Hz. The trains were presented at 4.6 Hz.

EEG recordings

Experimental design

EEG recordings were conducted using the standard 10-20 montage system with 32 channels. An NVX-136 amplifier (Medical computer systems) was used. The ground electrode was located in the forehead. The mean of A1 and A2 channels was subtracted as a reference.

A patient was comfortably seated in a chair while neurostimulation was delivered. Electrical stimuli with constant frequency (100Hz) and pulse width (900mcs) were provided using peripheral nerve stimulation (PNS) and spinal cord stimulation (SCS). The amplitude was selected individually according to the subject report. Mainly, we replicated the procedure described in the Sensory mapping section and selected amplitudes that caused sensation at the level 5-7 from psychometric scale.
The recording was held in two sessions that differed from each other with the duration of stimulus. For S13 stimuli were 1s (Long) and 500ms (Short) while for S12 they were 1s (Long) and 300ms (Short). Each stimulus appeared with the subsequent synchro impulse that was transmitted via LSL protocol from the experimental software to the Neorec Software.

During the experimental session, each stimulus was presented 100 times with the variable interstimulus interval (3.6 - 4.4 seconds). A Python-based software was used to control experimental sequences.

Processing of EEG

The data analysis was performed using MNE Python (Gramfort et al., 2013). Data was notch filtered at 50 Hz. The data was filtered (1-40Hz) and ICA was applied, with the use of the ALICE toolbox (Soghoyan et al., 2021) to remove the artifactual components of eye movements. Noisy channels were dropped from the recording. Then, epochs for each condition were extracted using threshold-based (150μV) removal of contaminated epochs. All epochs were split into four conditions PNS_long, PNS_short, SCS_long and SCS_short. The evoked response potential (ERP) for each condition was computed by averaging over remaining epochs. We estimated the components N1 and, as an average value in the window of 30ms of negative peak in ERP and P1 peak in the window of around positive peak.

Statistical analysis

For the condition PNS_long and SCS_long, we calculated the value of lateralization. We took an average activity in the region of interest (ROI) area of the somatosensory cortex: electrodes 'C4', 'CP2', 'CP6' of the right hemisphere and 'C3', 'CP1', 'CP5' of the left hemisphere. We calculated the amplitudes of components N1 and P1 between the two hemispheres for PNS and SCS separately. Additionally, we examined the change in the ERP components over the course of the experimental session. The data for conditions PNS_long and SCS_long was split into two halves. Next, we compared the first half to the second to obtain a measure of response change over time. All statistical comparisons were conducted using the paired t-test programmed in Python Scipy. Then, all statistics were adjusted using FDR correction for multiple comparisons.

Embodiment

To test whether neurostimulation-based feedback had an effect on the prosthetic hand embodiment, S12 and S13 were asked to fill the appropriate questionnaire (Marasco et al., 2011). The questions were translated to Russian because the patient was a native Russian speaker. The questionnaire was completed four times:

1. On day 9 when the patient used the prosthetic hand for the first time without sensory feedback in S12 and S13
2. On day 11, that is after the first session of object size detection in S12 and S13.
3. On day 20, that is after the second session of object size detection in S12 and S13.
4. On day 25, that is after the first trial of object size detection with SCS-based feedback in S12 only.
The survey quantified a participant's agreement with 9 statements: 3 statements of predicted phenomena (like "I felt the touch of the investigator on the prosthetic hand") and 6 control statements (like "I could sense the touch of the investigator somewhere between my residual limb and the prosthetic hand"). We added one more statement: “I felt that during the work with prosthesis my phantom limb pain decreased” to estimate the state of phantom limb pain during the active tasks. The subject estimated the level of agreement with the statements on the scale from -3 (totally disagree) to 3 (totally agree).

Results

Site mapping

Peripheral nerve stimulation

During the site mapping sessions, it was revealed that some pairs of electrodes were capable of producing consistent sensations at the same regions of the phantom hand for a duration of 30 days following the surgical implantation. We excluded several stimulation sites that evoked chaotic perceptions over experiments from further sensorimotor tests.

For S12, stimulation of all electrode pairs evoked sensations in the thumb and 19% of reports from 5 various electrodes were concentrated in other fingers (Fig. 5a). These sensations were initially concentrated in the base of the thumb but around day 12 shifted to the fingertips of the thumb and the pointing finger. As this shift happened, the patient started to report proprioception-like sensations, that is sensations of the thumb being flexed during PNS. Notably, naturalistic sensations started to be reported more frequently. By the third session (i.e., day 22) the rate of naturalistic descriptions increased to 33% from 11% in the beginning (Fig. 5c).
Unlike patient S12, neurostimulation-evoked sensations did not change substantially in S13. In S13, it was possible to evoke sensations in the tip of the thumb and the middle of the palm with a pair of electrodes (Fig. 5b). Although the patient mostly reported non-naturalistic perceptions there were still parameters of stimulation that resulted in sensations of touch, pressure and itch sensations, which were classified as natural. The proportion of naturalistic sensations did not change substantially over the course of the experiments (Fig. 5d).

Spinal cord stimulation

In this section we are presenting results of PNS versus SCS comparison in terms of naturalness and localization of projections for both patients individually. SCS was not as selective as PNS with respect to the sensations that could be evoked in different locations of the phantom hand. We found out that for S12 SCS evoked only 20% of all phantom sensations localized on the palm while for PNS each trial was associated with perceptions in the thumb or pointing finger (Fig. 6a). In contrast to S12, we observed 36% of reports located in hand
regions for S13 in comparison to 68.8% for PNS (Fig. 6b). Many electrode pairs during SCS mapping gave projections to the chest and shoulder.

![Diagrams](image)

Fig. 6 Site mapping with spinal cord stimulation results (A) Projection for S12 (B) Projections for S13 (C) The ratio of naturalistic and non-naturalistic answers during the sessions

With respect to sensation naturalness, SCS tend to be less naturalistic than PNS. Only 8% and 17% of sensations evoked by SCS were marked as natural for S12 and S13 respectively (Fig. 6c). S12 rarely reported a sense of movement that was typical for PNS sessions, whereas for S13 characteristics of SCS were similar to the PNS.

Active exploration task

During day 8, both subjects met the requirements for completing the learning part of the task. S13 needed 7 trials to complete the training with only one mistake made (Fig. 7b). S12 completed the learning session after performing 20 trials. During the evaluation part of the session: S12 performed with an accuracy of 17%, and S13 with an accuracy of 67%. The chance level was 33%.
Fig 7. *Active exploration task results.* (A) Patients completed the active exploration task by scanning the tablet with a stylus. During the first trials, subjects attempted to differentiate between objects attempting to draw the entire figure; the trajectory of their movements can be seen in the first column. In the last trials, subjects completed trials estimating the borders of hidden objects. (B) The accuracy of shape prediction in day 1 and day 2 for different stimulation types during session of learning and session evaluation. (C) The duration of trial completion varied among day 1 and day 2, and feedback type.

During day 20, S12 completed the training session in 16 trials. S13 completed the training session in 8 trials. During the testing session, performance improved in both subjects compared to day 1. Performance accuracy was 44% and 75% in S12 and S13, respectively. In S12, accuracy was 22% when using auditory feedback and 67% when using PNS feedback, while in S13 accuracy made up 67% and 83% respectively. S12 mentioned that he felt as if his phantom limb touched the table screen when the PNS-based feedback was used.

We conducted a comparison of the number of seconds taken by patients to complete the trial (trial duration) using ANOVA, considering two factors: the type of feedback (PNS vs Auditory) and the day of the experiment (day 8 vs day 20). The analysis for S12 revealed near significant difference among means of trial duration for two feedback types ($F_{st(1)}=4.167568$; $p_{value}=0.045927$; two-way ANOVA), for different days ($F_{st(1)}=3.646682$; $p_{value}=0.061309$; two-way ANOVA) and for the factor interaction ($F_{st(1)}=3.393133$; $p_{value}=0.070766$; two-way ANOVA) (Fig. 7c). For S13 the mean trial time was different for different feedback types ($F_{st(1)}=4.681291$; $p_{value}=0.035964$; two-way ANOVA) and day-feedback type interaction ($F_{st(1)}=3.345151$; $p_{value}=0.074186$; two-way ANOVA), no significant difference was observed for different days ($F_{st(1)}=0.008421$; $p_{value}=0.927299$; two-way ANOVA).
After the pairwise comparison analysis, we revealed that S12 needed less time to complete auditory feedback trials during the day 20 in comparison with auditory feedback trials in day 8 (Mean diff.=-58.4792; p-adj=0.0495; Tukey HSD); PNS trials in day 20 (Mean diff.=-59.4498; p-adj=0.039; Tukey HSD); PNS trials on day 8 (Mean diff.=-57.5598; p-adj=0.0719; Tukey HSD). Similarly, S13 completed auditory feedback of day 20 faster than in PNS trials of day 20 (Mean diff.=-73.937; p-adj=0.0354; Tukey HSD).

Eventually, S12 had lower accuracy of object recognition in auditory trials, despite the increased speed. By contrast, S13, having a shorter duration of auditory trials, completed the active exploration task with the higher accuracy in both types of feedback.

Object size detection

Both subjects successfully differentiated the objects with performance accuracy exceeding the chance level of 33% (Fig. 8). Within day 11, S12 improved accuracy from 28% to 57% after the training procedure. During the “Evaluation after training” session, he erroneously marked medium objects as large ones. During day 2, this miscategorization disappeared without the need for retraining; his accuracy was at 67%. Particularly, accuracy for medium objects increased to 23.33% (out of 33.3%) from 6.67%. The final score following the training on day 2 was 73.33%. Accuracy was lower in S13 than in S12 during the first day of the experiment. Before the training, he could not match the neurostimulation-evoked sensation with the object’s size and skipped all trials. After training, his overall accuracy was at 34%. Nevertheless, on day 2 his accuracy increased to 85% even without additional training.

Fig. 8 Object size detection. Each square plot represents a confusion matrix during one of the sessions of object size detection. During day 11 both subjects started to differentiate between different object sizes with higher accuracy in after training session. During day 20 both subjects completed the task with accuracy above 65% even without training. On the 25th day S12 differentiated between objects of different sizes using SCS as feedback with accuracy above 55%.
In the control session without stimulation, none of the subjects could recognize the objects.

During the “Evaluation before training” session, subjects needed to associate the neurostimulation-evoked sensations to the object size without any previous training. S13 could not distinguish the objects without training and canceled all the trials of the session. S12 made attempts to recognize the objects. During the first trials, he was also skipping the answers, but then he started to make guesses and they were correct. Starting from the 10th trial, accuracy was above the level of random performance (Fig. 9) estimated using permutation tests.

![Fig. 9 Object size detection in S12 evaluation before training.](image-url)

Fig. 9 Object size detection in S12 evaluation before training. In the first session of “Evaluation before training” on day 11, S12 guessed the object's size without initial training. The accuracy of his predictions was increasing in trials; this moving accuracy is shown with a purple line. Using 10 permutations over his answers, we estimated the distribution of accuracy for random predictions in each set of trials. The mean random accuracy (moving permutation) is represented in blue with a transparent shadow that represents st. error.

In the SCS sessions S12 recognized objects before training with accuracy of 55% and after the training with accuracy of 53% (Fig. 8C).

Rigidity detection

S12 could differentiate objects with the accuracy of 75% before the training using only proprioceptive-based feedback (Fig. 10). After the appearance of the second sensory channel, his accuracy decreased to 47.5% which was lower than the chance level of 50%. The training procedure was effective in S12 whose accuracy increased to 75%. When the task was switched back to Proprio-only mode his performance made up 32.5% which was again lower than chance.
Fig. 10 Rrigidity size detection. (A, C) - Each histogram plot represents the distribution of random accuracy obtained from permutations where a red line shows the real accuracy value obtained from original experimental data, (A) - illustrates permutation distribution obtained from answers of S12, (C) - illustrates permutation distribution obtained from answers of S13. (B, D) - Each square plot represents a confusion matrix during one of the sessions of rigidity size detection, (B) - illustrates confusion matrices in sessions of S12, (D) - illustrates confusion matrices in sessions of S12.

For S13, the first session was shorter due to technical reasons but in the completed trials he was skipping answers without any guesses about the object's rigidity. By contrast, with an additional TENS feedback that encoded tactile mode he differentiated objects with an accuracy of 80%. After the training, we observed a similar result with 77.7% accuracy for this dual-sensory paradigm.

Embodiment

For S12, the embodiment increased on day 11 after the first session of the object size recognition test, and then it decreased back (Figure 11). The major changes were indicated for three questions from the group of control. Similarly, S13 reported changes for five out of six control questions. At the same time, we observed an increasing agreement for the first three statements in S13. The most prominent change was related to the affirmative “I felt as if the object caused the touch sensations that I was experiencing” which switched from “Totally disagree” to “Agree”. Both subjects noted that PLP was suppressed during the tests.
Fig. 11 Prosthetic embodiment estimation. S12 and S13 were asked to fill the embodiment questionnaire which tests if neurostimulation-based feedback had an effect on the prosthetic hand embodiment. These measurements were taken after each test of size and rigidity detection. The control values were measured before all the experiments. The color of the matrix represents the level of agreement with the statement from -3 (Totally disagree) to 3 (Totally agree).

EEG

The stimulation projected in somatosensory evoked response potential (ERP) in subject S12. ERP tended to be more powerful in SCS conditions than in PNS conditions (Figure 12A), and tended to be more powerful during the longer stimulation conditions. In S13 we could not detect evoked response potential. Since that the following analysis was done with S12 data.

Comparing long SCS and long PNS the stronger lateralization can be indicated for the PNS condition for the component N1 (t(98)=-4.605, pvalue 0.000, paired t-test) and P1 (t(99)=2.892, pvalue 0.017, paired t-test) (Figure 12B). The lateralization was less prominent in SCS for N1 (t(98)=-0.073, pvalue 0.942, paired t-test) and P1 (t(98)=2.797,
pvalue 0.017, paired t-test). A sensory adaptation to PNS was observed for the components P1 (t(49)=2.265, pvalue 0.056, paired t-test) which had a higher amplitude in the first half of trials than in the second half of trials (Figure 12C). For SCS, the sensory adaptation for P1 was not observed (t(48)=1.374, pvalue 0.234, paired t-test).

Phantom limb pain

PLP was suppressed in both subjects during neuromodulation treatment (Fig. 13) with an average value of 46.00% ± 22.98% (Mean ± St. dev) for S12, and 17.20% ± 8.84% (Mean ± St. dev) for S13. Both subjects reported that pain varied during a day without any systematic pattern. For S13, the level of pain started an additional diminishment after the combined PNS and SCS was turned on on day 13.

![Fig 13. PLP suppression.](https://example.com/fig13)

The percent of pain suppression during 25 days of neurostimulation treatment.

Discussion

In this study, with the use of PNS and SCS, we evoked somatosensory sensations in the phantom wrist of two of the patients. The naturalness of sensation improved as the patients practiced with neurostimulation, with better results for the PNS mapping sessions. Using EEG recordings, we showed that PNS stimulation resulted in more lateralized responses with an adaptation observed in component P1. Neurostimulation-induced sensations were employed as prosthetic feedback which allowed patients to discriminate between objects of different sizes grasped by a bionic hand. Notably, these artificial sensations allowed them to perform sensory tasks better from session to session. With PNS mimicking tactile sensations and TENS mimicking proprioception, sensations of object softness were enabled.
PNS as a neuroprosthetic sensation

Somatosensory substitution systems were previously developed with the use of vibratory motors and haptics devices (Muijzer-Witteveen et al., 2016). As an alternative, PNS-based systems could enable object size detection (Soghoyan et al., 2023). In the current study, we showed that PNS-based sensations could be improved further, with accuracy of sensory discrimination reaching 85% during prolonged use of the neuroprosthetics system. One of the participants (S12) was able to differentiate three object sizes even without any prior learning of the task. To our knowledge this is the first time when PNS-based prosthetic systems do not require any prior perceptual learning to allow appropriate accuracy in sensory discrimination tasks. We assume this is the strongest argument for the possibility to restore naturalistic kinesthetic sensation in the phantom limb using PNS. Such systems are crucial for the upper-limb amputees who are in need of sensory feedback to operate their prosthesis (Kyberd et al., 2007). Moreover, all patients reported in the embodiment questionnaires that their PLP was suppressed during the sensorimotor tasks. Thus, we conclude that the daily use of such a system with an instant sensory discrimination by PNS is expected to treat PLP.

The other invasive-neurostimulation approach that is used to provide sensory feedback is SCS (Chandrasekaran et al., 2020; A. C. Nanivadekar et al., 2022). Here we showed that with SCS as sensory feedback one patient (S12) was able to discriminate the size of three objects. This adds evidence in favor of the SCS-based neuroprosthetic devices previously proposed in several case studies. Here for the first time we implemented PNS and SCS for sensory discrimination in the same participant. We showed that the success in sensory discrimination using PNS can be transferred to success in the same task with SCS.

In the previous study, we showed that active exploration tasks can be completed with an equal accuracy using PNS and TENS feedback (Soghoyan et al., 2023). Currently, in similar experimental conditions we showed that these tasks can be completed with auditory feedback. One participant, S13, reached a higher accuracy in the recognition of shapes with auditory stimulation spending less time for the trial in comparison with PNS feedback trials. Previously, the main benefits of PNS based feedback in behavioral tasks were summarized by (Raspopovic et al., 2021).

In the same active exploration task, the other patient, S12, had a higher score in PNS trials, than in auditory feedback trials. Since our work was completed with two patients only, it is hard to make general conclusions, but we observe a clear difference between these two subjects. Mainly, we explain it by two factors. Firstly, S12 who had a higher score in PNS trials could have a higher adaptation to PNS stimulation, since it was used in his treatment program. Secondly, S12 experienced PNS as more natural during the sensory mapping. At the same time, these factors can be associated since longitude PNS stimulation in neuroprosthetics results in an increased sense of naturalness (Cuberovic et al., 2019). Thus, other sensory feedback devices could be used to allow feature recognition without surgery associated with risks at least for some upper-limb amputees.
Dual-stream integration

The direct integration of proprioceptive and tactile submodalities of somatosensation (Delhaye et al., 2018; Iwamura, 1998) in primates is localized in the Brodmann area 2. Despite much is unknown about the mechanisms of somatosensory incorporations, the lesion in this area results in disability to perform the motor coordination tasks (Delhaye et al., 2018). Thus, development of neuroprosthetics systems that restore both modalities is extremely important. To identify an object's softness we require both components since the information about tactile intensity should be associated with the level of the hand's grasp. Previously, such tasks with amputees were completed only by systems assembled with the use of TMR and vibromotors (Marasco et al., 2021). To our knowledge we provide the first system that incorporates PNS and TENS for this type of task. In our study, S13 successfully used these two sensory streams to differentiate between soft and rigid objects with the accuracy of 80% even without visual training. Notably, he was not able to complete this task using only PNS that mimicked the proprioceptive domain. Surprisingly, S12 was able to differentiate between two objects with different rigidity using only TENS feedback that mimicked the aperture level. When both types of feedback were turned on, his performance decreased to 47.5%, but after visual training it again increased to 75%. This rapid adaptation to the new types of feedback can be explained by effective perceptual learning (Bedford, 1993).

Naturalness

The naturalness of evoked somatosensory sensations as a phenomenon in the somatosensory restoration is mainly being assessed with questionnaires (Chandrasekaran et al., 2020; Cuberovic et al., 2019; Heming et al., 2010). To achieve a higher naturalness, in some studies the stimulation current is modeled to mimic the normal sensory nerve action potential (SNAP) (Okorokova et al., 2018). Such biomimetic approaches seem to provide more natural feedback and allow a higher performance in motor tasks with prosthesis (George et al., 2019).

Another approach to enhance naturalness using PNS stimulation is the development of specific electrode configurations that provide focal stimulation of distinct nerve fibers (Charkhkar et al., 2019; Clark et al., 2014; Yildiz et al., 2020). Although, even with the development of transverse intrafascicular multichannel electrodes (TIME) it is still unknown how to localize the electrode so it causes activation of nerve fibers of expected specificity (Planitzer et al., 2014). The methods of immunofluorescent staining allow to differentiate afferent and efferent fascicles (Zhou et al., 2021), though it cannot be applied for the field of neuroprosthetics.

By contrast, in the behavioral data we observed that naturalness can increase in time without specific affection. In the only case study (Cuberovic et al., 2019) reports that the sensation of naturalness was increasing during daily use of PNS-based prosthesis during the first month of use. We observed a similar trend of growing naturalness among the sensory mapping sessions for S12. This pattern of increasing naturalness resembles the effects of cochlear implantation (Carlson, 2020). Notably, patients who use these devices experience mechanical and high-pitched sounds during the first 3-6 months of use. Thus, in
the first six months rehabilitation implies active adaptation to the new way of sound. Additionally, in this period their devices are being adjusted by a team of clinicians. Such changes in natural perception may be explained by the mechanisms of sensory normalization and sensory adaptation which exist in the somatosensory domain too (Brouwer et al., 2015). Some short-term adaptation to PNS stimulation was indicated in this study using EEG ERP, but additional long-term changes are in high interest for the following studies.

Since our patients were implanted with both PNS and SCS electrodes, we are the first to show the difference in sensations induced by these types of neurostimulation for the same participants. S12 reported the sensations felt as more natural in PNS sensory mapping. This might have happened because medical specialists applied PNS as the main neuromodulation technique for his PLP suppression. To summarize, we suppose that sensation naturalness can be obtained by: (1) appropriate spatial localization of electrodes, (2) biomimetic current characteristics and (3) rehabilitation that induce sensory adaptation.

Embodiment

One of the key benefits of PNS and SCS based feedback is an increased sense of embodiment that was reported in many case studies (Raspopovic et al., 2021; Rognini et al., 2019). The sense of embodiment is also important since the increasing number of wearable devices and attempts to full immersion into virtual reality (Nelson et al., 2020). Though, the complex phenomenon of embodiment seems to have an ambiguous definition (Zbinden et al., 2022). From one perspective, it is defined as the process by which a foreign object becomes integrated into the existing neural infrastructure that supports the body. On the other hand, it is described as “subjective experiential correlate” that implies the accumulation of a sense of ownership and sense of agency (Zbinden et al., 2022).

In our research we estimated it using the questionnaire from (Marasco et al., 2011), which is a common approach for estimation of prosthesis embodiment. It was originally developed from a rubber hand illusion (RHI) questionnaire, and it contains a set of target and control questions. Surprisingly, we observed that in both subjects agreement increased mainly in the set of control questions making the result of the questionnaire controversial. We explain this by inexperience in prosthesis usage in our participants during the first measurement of embodiment. None of them used prosthesis before our study, making the baseline estimation of embodiment inaccurate. Though, some critics to the control questions of RHI questionnaire were already mentioned, especially for studies with amputees (Riemer et al., 2019). To avoid such issues, we highly suggest switching to an implicit way of embodiment estimation, using such phenomenons as sensory attenuation or cross-modal congruency (Zbinden et al., 2022). Ultimately, the sense of embodiment might be associated with naturalness of sensation, but additional research is needed in this topic with the use of objective methods to prosthesis embodiment estimation.
EEG

The direct stimulation of peripheral nerves is a well-known method for the investigation of somatosensory ERP (Aminoff, 1987; Muzyka & Estephan, 2019). Though, it was not previously used for the comparison of effects of PNS and SCS. We observed that PNS has a more laterialized response in comparison with SCS. This effect is in high agreement with the behavioral data of laterialized responses that were collected during PNS sensory mapping. The reported decrease in P1 component during the recording for PNS stimulation seems to be the result of somatosensory adaptation (McLaughlin & Kelly, 1993). At this moment, we did not collect data about the stimulation perception during EEG recording to correlate the perceived intensity with the component's amplitude, but such direct association was shown in previous studies (Johnson et al., 1975). These electrophysiological markers of stimulation can result in more objectified sensory mapping procedures that will be employed in the next iteration of research. Also, the objective representation of stimulation can be used for a closed-loop neurostimulation that will adjust stimulation amplitude to cause the required level of perceived sensation. Previously we suggested using EEG biomarkers to adjust stimulation for the treatment of PLP (Kleeva et al., 2022).

Pain suppression

The use of PNS as a tool for PLP suppression is still in need of additional validation (Knotkova et al., 2021). We demonstrated the efficiency of such stimulation in our previous study (Soghoyan et al., 2023) and we prove it now with the case of S12. Remarkably, in S13 an additional decrease in PLP level was observed when simultaneous PNS and SCS were included in his treatment program. Classically neuromodulation for neuropathic pain is treated within one paradigm of stimulation. Thus, a combination of two types of neurostimulation could improve the treatment.

Day 11, PNS feedback

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation before training</td>
<td>Training</td>
<td>Evaluation after training</td>
</tr>
<tr>
<td>Closed eyes</td>
<td>Open eyes</td>
<td>Closed eyes</td>
</tr>
<tr>
<td>Object recognition task without preliminary experience</td>
<td>Free object interaction</td>
<td>Object recognition task</td>
</tr>
<tr>
<td>PNS amplitude is led by level of grasp</td>
<td>PNS level correlates with grasp</td>
<td>PNS amplitude is led by level of grasp</td>
</tr>
</tbody>
</table>

Day 20, PNS feedback

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation before training</td>
<td>Training</td>
<td>Evaluation after training</td>
</tr>
<tr>
<td>Closed eyes</td>
<td>Open eyes</td>
<td>Closed eyes</td>
</tr>
<tr>
<td>Object recognition task</td>
<td>Free object interaction</td>
<td>Object recognition task</td>
</tr>
<tr>
<td>PNS amplitude is led by level of grasp</td>
<td>PNS level correlates with grasp</td>
<td>PNS amplitude is led by level of grasp</td>
</tr>
</tbody>
</table>

Day 25, SCS feedback

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation before training</td>
<td>Training</td>
<td>Evaluation after training</td>
</tr>
<tr>
<td>Closed eyes</td>
<td>Open eyes</td>
<td>Closed eyes</td>
</tr>
<tr>
<td>Object recognition task without preliminary SCS experience</td>
<td>Free object interaction</td>
<td>Object recognition task</td>
</tr>
<tr>
<td>SCS amplitude is led by level of grasp</td>
<td>SCS level correlates with grasp</td>
<td>SCS amplitude is led by level of grasp</td>
</tr>
</tbody>
</table>
A

Rigid Object

Soft Object

Rigid Core

Foamed PE

PLA

B

(1) Proprioception I
- Proprioception is mimicked by TENS.
- No feedback for tactile domain.
- Rigidity recognition task without preliminary experience.

(2) Proprioception + Tactile I
- Proprioception is mimicked by TENS.
- Tactile domain is mimicked by PNS.
- Rigidity recognition task without preliminary experience.

(3) Training
- Patient is free from mask and headphones.
- He is allowed to freely take object in to learn the patterns of sensory feedback.

(4) Proprioception + Tactile II
- Proprioception is mimicked by TENS.
- Tactile domain is mimicked by PNS.
- Rigidity recognition task without preliminary experience.

(5) Proprioception II
- Proprioception is mimicked by TENS.
- No feedback for tactile domain.
- Rigidity recognition task.
I felt the touch of the object on the prosthesis hand.
It seemed as if the object passed the touch sensations that I was experiencing.
I felt as if the prosthesis hand was my hand.
I felt as if my residual limb was moving towards the prosthesis hand.
I felt as if I had three arms.
I could sense the touch of the object somewhere between my residual limb and the prosthesis hand.
My residual limb began to feel scratchy.
It was almost as if I could see the prosthesis moving towards my residual limb.
The prosthesis started to change shape, colour and appearance so that it started to visually resemble the residual limb.
I felt that during the week with prosthesis my phantom limb pain decreased.