Title

The association between family structure and adolescent physical activity levels: A systematic review of literature published since 2010

Authors
Elena Mylona, Maartje Kletter¹, Helen M Jones², Marie Murphy³, Richard Lampard⁴, Oyinlola Oyebode⁵

Correspondence to: Elena Mylona, University of Warwick, Department of Sociology, Coventry CV4 7HL, Coventry, United Kingdom

e.mylona@warwick.ac.uk

+44 24 7657 4880

¹School of Health Sciences, University of Manchester, Manchester, United Kingdom

²School of Life Sciences, Coventry University, Coventry, United Kingdom

³Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom

⁴Department of Sociology, University of Warwick, Coventry, United Kingdom

⁵Centre for Public Health and Policy, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom

Keywords
Adolescent, Exercise, Sports, Nuclear family, Single parent, Systematic Review

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

Adolescent physical activity is influenced by biological, psychological, sociocultural, and environmental factors; however, no review has yet explored the effect of family structure (usually defined based on the relationships between people living in a household) on adolescent physical activity levels.

Methods

Databases MEDLINE, EMBASE, Web of Science, PsycINFO, CINAHL, and Sociological Abstracts were searched for peer-reviewed studies with a quantitative component published since 2010, with no restrictions on language, country, and year of data collection. Study screening, data extraction, and quality assessment occurred in duplicate. SWiM guidelines guided the narrative synthesis. PROSPERO protocol CRD42020221090.

Results

Thirty studies met inclusion criteria: 17 looked at global physical activity, 13 at leisure physical activity, and sport participation. All studies used cross-sectional designs and 27 assessed outcomes through a survey. Sixteen (10 of good quality) reported a significant association between family structure and adolescent physical activity. Of these, three did not specify the direction of this association while nine found adolescents in ‘traditional’ (two-parent) families were more physically active compared with other family structures. This association was stronger in studies of leisure-time physical activity. Two studies reported that adolescents with single mothers achieve more physical activity than adolescents living with neither parent. Two studies, focused on school physical exercise classes and active transport, found adolescents in single-parent households engaged in more physical activity than those living with two parents.

Conclusion

High-quality accelerometry, time diary, and longitudinal studies are needed to investigate the effect of family structure on adolescent physical activity and health sequelae. An improved understanding of social determinants of adolescent physical activity could inform health promotion strategies.
BACKGROUND

Physical inactivity is a leading cause of several noncommunicable diseases like obesity, coronary heart disease and type 2 diabetes, increasing the risk of chronic illnesses and early deaths (1, 2). Promoting physical activity is a public health priority for the World Health Organisation (WHO), aiming at improving individuals’ physical and mental health, as well as creating more sustainable societies, as part of the Sustainable Development Agenda 2030 (3). Based on an international study funded by WHO that surveyed 1.6m students from 146 countries, adolescents aged 11-17 appear to be rather inactive, with four-fifths failing to meet recommended physical activity levels (4). Behavioural patterns and habits formed at a young age tend to carry over into adulthood, so encouraging physical activity for children and adolescents is paramount (5).

A systematic review of reviews shows that the amount of physical activity a person achieves is influenced by biological, psychological, sociocultural, and environmental factors (6). Published reviews have focused on several of these factors, their sub-factors, and their associations with physical activity levels (7, 8); however, no review has explored explicitly the effect of family structure on adolescent physical activity levels.

It is thought that children who grow up in a non-traditional/non-nuclear family structure, broadly defined as a non-two-parent biological/adoptive household, tend to experience more time and financial constraints, as well as less parental involvement and support; however, this has not been thoroughly investigated in terms of physical activity engagement (9, 10). With non-traditional, broadly referred to as ‘diverse’, family structures prevalent and proliferating (11), it is important to study the effect of family structure, as a major social determinant of various adolescent health outcomes.

A preliminary search using MEDLINE, PROSPERO and Cochrane Database of Systematic Reviews was conducted, to ensure that there was no current or in-progress review on this topic. This systematic review aims to identify and synthesize evidence on the effect of family
structure on adolescent physical activity levels in quantitative observational cohort and cross-sectional studies, published since 2010, given the quality of life improvement of some forms of non-traditional families in the past decade due to changing (increasingly liberal) social attitudes (12). In the past, some of the barriers to physical activity for adolescents in non-traditional families may have been related to social conversative attitudes and these may no longer be relevant.

METHODS

This systematic review has been registered with the International Prospective Register of Systematic Reviews (PROSPERO) (registration number: CRD42020221090) and was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Synthesis without meta-analysis (SWiM) guidelines (13, 14).

Search strategy

A search of MEDLINE using the key terms “adolescence”, “family structure” and “physical activity” was used to identify relevant articles. Key terms found in the titles, abstracts and index terms were used in development of the full MEDLINE strategy. Searches were developed with the advice of an academic librarian.

We searched six databases: MEDLINE, EMBASE, Web of Science, PsycINFO, CINAHL and Sociological Abstracts for studies published from 2010 up to and including the 8th of February 2022, with no language restriction imposed. The search strategy was adapted for each of the included databases, including all identified key terms and the use of index terms where available. The detailed MEDLINE search strategy and terms can be found in the Additional file 1. Title and abstract screening was conducted independently in duplicate by EM, and MK, MM, HMJ and OO, using Rayyan.ai (15). Assessment of full-texts was performed independently in duplicate by EM, and MK and OO. Any discrepancies were resolved via discussion, and when necessary, through arbitration by OO.
Eligibility criteria for inclusion

The population of interest is adolescents, defined by the WHO as individuals aged 10-19 (16). Studies using a wider age range were included only if the mean age was reported, or could be calculated from reported data, and fell in the 10-19 age range. This review included any peer-reviewed quantitative observational study, including prospective and retrospective cohort, and cross-sectional, studies. Mixed-method studies were also included if a quantitative component was present. Other study designs are included, if the studies look at the association of family structure and adolescent physical activity levels. Studies published in all languages were considered for inclusion.

Grey literature, case studies, reviews, editorials, PhD theses, conference abstracts, commentaries, and qualitative studies, were excluded.

Exposure of interest

The exposure of interest is family structure. Family structure is defined as:

“A term that describes the members of a household who are linked by marriage or bloodline and is typically used in reference to at least one child residing in the home under the age of 18.” (17). This is often operationalised based on the number of parents (adoptive or related by blood) living in the household with the child.

Outcomes

The outcomes of interest include any measure of physical activity behaviour, including, but not limited to, frequency (e.g. in days in the last or in a typical week), duration (e.g. in minutes/hours) or intensity (e.g. in METs (metabolic equivalents)). We also included studies examining sports participation, as a form as leisure time physical activity.

Quality assessment

All studies retrieved were assessed independently by at least two reviewers (EM, MK, OO) for methodological quality using the National Institutes of Health (NIH) Study Quality Assessment
Tool for Observational Cohort and Cross-Sectional Studies (18). This NIH tool uses 14 distinct criteria that are marked with "yes", "no" or “cannot be determined” (not applicable or not reported). The results of the critical appraisal were reported by the reviewers who completed a quality evaluation table and rated each study as Good, Fair, or Poor based on their final score. Any disagreements between reviewers were resolved through discussion and involved a third reviewer, when necessary. Regardless of methodological quality, all studies meeting the inclusion criteria underwent data extraction and synthesis.

Data synthesis

As anticipated, a meta-analysis was not conducted given the high heterogeneity of studies, mainly in terms of methods, age groups, family structure categories and physical activity outcomes. The Synthesis Without Meta-analysis (SWiM) guidelines were used to guide the narrative synthesis (14, 19).

Changes in protocol

Despite not having a restricted year of publication in the protocol registration, the authors decided to look at studies published from 2010 onwards (without, however, excluding studies in which the data collection took place before 2010), given the quality of live improvement of some forms of non-traditional families in the past decade, as their rates of social exclusion, housing and material deprivation and low working intensity have decreased compared to previous years (12). The search strategy in Sociological Abstracts was applied only to titles, abstracts, and key-words, as applying the searches to full-texts returned a very large number of irrelevant studies because of the use of our search terms in other contexts within the discipline (e.g.: “exercise” of power). For similar reasons the database Scopus was not used despite being in the protocol registration.
Results

Study selection and characteristics

The literature search identified 15151 records and after removing the duplicates, 9361 underwent title and abstract screening allowing 9233 further studies to be excluded. In total, 128 full-text articles were assessed for eligibility and 30 met the inclusion criteria. The study selection process can be found in Figure 1.

Figure 1 PRISMA flow chart.

Studies included in this systematic review examined family structure and its association with adolescent physical levels; however, the studies differed in their focus, with 17 looking at global physical activity (i.e.: physical activity accrued in leisure time as well as at school, and
for travel) and 13 looking at leisure-time physical activity and/or sport participation only (Tables 1 and 2 respectively, show the studies' characteristics).

For global physical activity, most studies were conducted in Brazil (n=5), followed by the United States (US) (n=3); China (n=2); and Saudi Arabia, Norway, Germany, United Kingdom (UK), Canada, South Korea, and Turkey (n=1). The sample sizes ranged from 40 to 64076, and most studies used secondary analysis of existing regional/national datasets (n= 13). There were two studies that only looked at females (20, 21).

For leisure physical activity and sport participation, most studies were conducted in Canada (n=3), followed by the US (n=2); and UK, Italy, Switzerland, Belgium, Nepal, and Australia (n=1). Only one study included populations from (nine) different countries (22) and one looked at females only (23). The sample sizes ranged from 381 to 48437 for single country studies, and 165899 for the cross-national study (22), and the majority of studies used secondary analysis of existing regional/national datasets (n= 8). Age ranges and means varied across studies.

Risk of Bias

Risk of bias was assessed using the NIH Study Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies (18), and 14 studies were classified as good, 11 as fair and five as poor. Half of the studies used a variable with more than two family structure categories, and 90% of studies used a validated instrument for measuring physical activity or accelerometry. Approximately one third of the studies controlled for all relevant key confounders: gender, a measure of socio-economic status, ethnicity, and age (or specified the population of interest the sample was drawn from). The individual quality score of each study is presented in Tables 1 and 2, and the detailed quality assessment table can be found in the Additional file 1.
Global Physical Activity

Meeting the weekly guidelines

Seven studies examined the association between family structure and meeting weekly guidelines, ≥ 60 minutes a day, either every day or 5 days a week, or ≥ 300 minutes a week. Five studies reported significant findings, with two studies, one (good) in South Korea (mean age 15) and one (fair) in Germany (mean age 10.1), reporting an association between family structure and meeting the weekly guidelines (24) (25). Two studies conducted in Brazil, with one (good) looking at 13-15 year olds (fully-adjusted model segregated by gender, findings were only significant for girls) (26) and one (fair) at 11-17 year olds (27), reported that adolescents living with their mothers only have higher odds of meeting the guidelines when compared to adolescents living with neither parent. A (good) study in China, looking at 9-19 year olds, reported that adolescents living with their grandparents as their primary caregivers have lower odds of meeting the weekly guidelines (28).

Two studies reported no statistically significant findings, one (good) study from Brazil using accelerometry and self-report for 14-18 year olds (29), and a (fair) US study (mean age 12) (30).

Days of ≥60 daily minutes of moderate-to-vigorous physical activity (MVPA) in a week

Two good quality studies, one conducted in the US (age 15) (31), and one in Norway (11-16 years) (32), used multivariable regression to predict the amount of physically active days (≥60 daily minutes) per week. Both studies reported significant associations between family structure and this outcome, showing that adolescents living with both parents are more likely to be physically active for more days a week (compared to living with not married/cohabiting parents, and living with a single parent and reconstituted families respectively). A fair quality study conducted in Brazil (mean age 14.4) reported no statistically significant findings (33).
Daily minutes of MVPA

Four studies looked specifically at daily minutes of MVPA. Three reported no significant findings; a (poor) US study of African American girls aged 13-18, exploring the association with having a resident father or not (21), a (fair) Brazilian study looking at the total daily minutes of physical activity of 14-18 year olds (34), and a (fair) UK study using accelerometry to predict daily MVPA minutes at age 11 (35). In contrast, a (good) accelerometry study conducted in China (36) using multivariable regression, showed that 10-16 year old adolescents in single parent families are more likely to engage in more MVPA daily minutes per week, when compared to those living with both parents; the same holding true for those living with stepparents, when compared with those living with their biological parents, and for those who live with no grandparents, when compared with those living with one or two grandparents.

Yearly MVPA

A (good) Canadian study examined 12-17 year olds achieving 60 daily minutes of MVPA over the last 12 months. The study only showed an unadjusted model for family structure, reporting that adolescents living with both parents have higher odds of achieving 60 daily minutes of MVPA in a year, when compared to those living with no biological parents (37).

Low, moderate, or high levels of Physical Activity

A (good) study looked at the association between family structure and 10-15 year old girls’ engagement in low, moderate, or high levels of physical activity in Saudi Arabia, reporting no statistically significant results (20).
<table>
<thead>
<tr>
<th>Reference and Country</th>
<th>Sample size and Age (years)</th>
<th>Study Design and Data Collection Year (Data Source if available)</th>
<th>Family structure variable</th>
<th>PA Outcome variable</th>
<th>Confounders</th>
<th>Method; Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antonacci Condessa et al., 2019 (26)</td>
<td>109104</td>
<td>CS, 2012, PeNSE</td>
<td>Live with the mother and the father; Only with the father; Only with the mother; Do not live with father or mother</td>
<td>SR: Insufficiently active (< 300 min/week) and active (≥ 300 min/week), using “How many days did you have PA for at least 60 minutes (one hour) on the last seven days?”</td>
<td>Age group, skin colour, current adolescent work, mother’s schooling, report of insomnia, regular consumption of healthy foods, regular use of tobacco and alcohol in the last 30 days, if they ever tried drugs, frequency of meals in the presence of the mother, father or guardian, family supervision, report of domestic physical aggression with the adolescent as the victim, reaction of parents or guardians if the adolescent arrived drunk</td>
<td>Binary logistic regression: Lives with neither parent (ref.), Only father 1.18; Only mother 1.15*; Both parents 1.07. Results reported only for girls due to absence of significance for boys.</td>
</tr>
<tr>
<td>Brazil</td>
<td>13-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alharbi, 2019 (20)</td>
<td>464</td>
<td>CS, 2018, Only girls</td>
<td>Nuclear (small family); Nuclear (large family); Extended family</td>
<td>SR: Low (≤2.3), moderate (2.4–3.7), and high (≥3.8) levels of PA using the PAQ, which has nine items that are used to recall 7-day PA</td>
<td>n/a</td>
<td>One-way ANOVA: Not significant F=0.89 ∴ not included in the regression model</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>10-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vazquez and Schuler, 2020 (31)</td>
<td>1927</td>
<td>CS, 2015, Fragile Families and Child Wellbeing Study (FFCWS)</td>
<td>Married/cohabiting; Not married/cohabiting AND ≥ 1 grandparent in the home; No</td>
<td>SR: Days in the past week they were physically active for a total of at least 60 min per day</td>
<td>Mother’s age at birth; Child’s sex; Mother’s education; Cohabiting status; Resident grandparent; Friend/family encouragement of PA</td>
<td>Linear regression: Not married or cohabiting (ref.) Married/cohabiting: 0.28*; Adjusted with interactions 0.25 AND No grandparent in the home (ref.) ≥ 1 grandparent in the home: 0.06; Adjusted with interactions -0.03</td>
</tr>
<tr>
<td>Country</td>
<td>Sample Size</td>
<td>Year(s)</td>
<td>Study Details</td>
<td>Measurement</td>
<td>Data Description</td>
<td>Statistical Method</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>US</td>
<td>15</td>
<td></td>
<td>Grandparent in the home</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blackshear, 2019 (21)</td>
<td>40</td>
<td>CS, NR, African American adolescent girls</td>
<td>Resident fathers; Non-resident fathers</td>
<td>Seven-day period and asked participants to report amounts of strenuous, moderate, and mild PA of 15 minutes or longer. GLTEQ ranged from 0 to 83 METS.</td>
<td>n/a</td>
<td>One-way ANOVA: Resident fathers (M=48.21 – NR if significant), non-resident fathers (M=40.24 – not significant)</td>
</tr>
<tr>
<td>US</td>
<td>13-18 (x̄:16.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duke et al., 2012 (30)</td>
<td>64076</td>
<td>CS, 2007, NSCH</td>
<td>Lives in 2-parent household (Yes/No)</td>
<td>SR: An activity variable representing 5 or more days of activity vs. less than 5 days of activity in the past week</td>
<td>Gender; Race, Ethnicity; Age (years: mean, SD); Household at or below poverty level; Parent highest education achieved; Coursework and/or degree beyond high school</td>
<td>Binary logistic regression: Two-parent household (ref.), Unadjusted 1.07; Adjusted 0.94</td>
</tr>
<tr>
<td>US</td>
<td>6–17 (x̄: 12.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langøy et al., 2019 (32)</td>
<td>4509</td>
<td>CS, 2013/2014, Norwegian sample of Health Behaviour in School-aged Children (HBSC) study</td>
<td>Both parents; Single parent; Reconstituted families</td>
<td>SR: Active in the past 7 days for at least 60 minutes (continuous variable with 8 responses and binary if active for 7 days or not)</td>
<td>Sex, age, maternal affluence, Siblings, BMI</td>
<td>Linear regression (60 MIN MVPA (days): Both parents (ref.), Single parent -.39*; Reconstituted -.31*</td>
</tr>
<tr>
<td>Norway</td>
<td>11–16</td>
<td></td>
<td>Presence of parents in the household; Single mother; Mother and father; Single father; Neither mother nor father</td>
<td>Adolescents who accumulated 300 or more minutes of PA in the week</td>
<td>By sex: Age, type of school, family income, schooling of the head of the family, overweight adolescent and adult, active adult in the household</td>
<td>Binary logistic regression (Less than 7 days 60 MIN MVPA): Single parent 1.36* Reconstituted 1.36</td>
</tr>
<tr>
<td>Ramos et al., 2017 (27)</td>
<td>1015</td>
<td>CS, 2008-2009, Saúde em Beagá study</td>
<td>Presence of parents in the household; Single mother; Mother and father; Single father; Neither mother nor father</td>
<td>SR: Adolescents who accumulated 300 or more minutes of PA in the week</td>
<td></td>
<td>Poisson regression: Girls: Neither mother nor father (ref.), Single mother 0.74; Mother and father 0.63; Single father 0.85 AND Boys: Single mother 1.63*; Mother and father 1.47; Single father 0.75</td>
</tr>
<tr>
<td>Brazil</td>
<td>11-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Sample Size</td>
<td>Country</td>
<td>Study Design/Population Description</td>
<td>Model/Statistical Test</td>
<td>Additional Information</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>----------</td>
<td>--</td>
<td>------------------------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Idler et al., 2015 (24)</td>
<td>3356</td>
<td>Germany</td>
<td>Single parenthood (Yes/No)</td>
<td>n/a</td>
<td>χ²-test: Significant</td>
<td></td>
</tr>
<tr>
<td>Solomon-Moore, 2019 (35)</td>
<td>745</td>
<td>UK</td>
<td>No. of parents/carers at home: 1; 2+</td>
<td>ACC: ? number of MVPA minutes per day: all waking hours on five days, including two weekend days.</td>
<td>Linear regression: 1 parent/carer (ref.), 2+ parents/carers at home: Boys (Weekdays: 3.16(model 1); 1.36(model 2) and Weekends: 10.82(model 1); 6.32(model 2)) and Girls (Weekdays: -1.85(model 1); -3.70(model 2) and Weekends: 1.47(model 1); 0.15(model 2))</td>
<td></td>
</tr>
<tr>
<td>Lévesque et al., 2016 (37)</td>
<td>4837</td>
<td>Canada</td>
<td>Live with no biological parents; Live with 1 biological parent; Live with both biological parents</td>
<td>n/a</td>
<td>Binary logistic regression: Live with no biological parents (ref.), Live with 1 biological parent 1.28; Live with both biological parents 1.42*</td>
<td></td>
</tr>
<tr>
<td>Fan et al., 2019 (28)</td>
<td>38988</td>
<td>China</td>
<td>Living with both biological parents only; living with one biological parent only; family members include grandparent/grandparents, and they are the primary caregivers for young children</td>
<td>Children’s chronological age, BMI and family socioeconomic status (SES)</td>
<td>Binary logistic regression: Unadjusted: Both parents (ref.), One parent 0.87, Grandparents 0.80; Adjusted: One parent 0.89; Grandparents 0.83*</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Sample Size</td>
<td>Design/Methodology</td>
<td>Population Characteristics</td>
<td>Measures</td>
<td>Statistical Analysis</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>da Costa et al., 2020 (29)</td>
<td>837 for SR and 688 for ACC</td>
<td>CS, 2019, ELEVA: Longitudinal study of the lifestyle of adolescents</td>
<td>Live with both parents; Single-parent; Does not live with parents</td>
<td>ACC and SR: Meeting the 60 daily minutes per week</td>
<td>Sex; Age (years); SES score; Number of people in the household; Highest education among parents</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mixed-effects logistic regression:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR: Live with both parents (ref); Single-parent 1.13; Does not live with parents 0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACC: Single-parent 1.05; Does not live with parents 0.7</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park and Lee, 2020 (25)</td>
<td>59096</td>
<td>CS, 2019, 14th Wave of Korean Youth Risk Behavior Web-based Survey (KYRBS)</td>
<td>Two-parent family (intact family); Single-mother family; Single-father family; Restructured family</td>
<td>SR: 7 days (≥72 h) per week</td>
<td>n/a</td>
<td>Complex sample analysis:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Korea</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang and Qi, 2016 (36)</td>
<td>612</td>
<td>CS, NR</td>
<td>Number of parents: Single-parent; Both parents; No biological parents AND Nature of parents: Biological parents; Step parents; Adopted parents and relatives AND Number of grandparents: One or two grandparents; No grandparents</td>
<td>ACC: Worn for seven consecutive days during their waking hours, removing them upon bathing, taking a shower, or swimming, reported in MVPA min/day</td>
<td>Age, Sex, Parental SES, Number of siblings</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>10-16</td>
<td></td>
<td></td>
<td></td>
<td>Hierarchical regression:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Both parents (ref.), Single-parent 0.10*, No biological parents −0.03 AND Biological parents (Ref.), Step parents 0.12*, Adopted parents or relatives −0.03 AND No grandparents (ref.), One or two grandparents −0.17*</td>
<td></td>
</tr>
<tr>
<td>Haddad et al., 2019 and 2015 (33)</td>
<td>165,447 and 165,899</td>
<td>Two cross-sectional studies, 2012 and 2015, PeNSE</td>
<td>Living with both parents; Living with one parent or other relatives</td>
<td>SR: Frequency of PA (days with ≥ 60 mins of PA per week) AND information on daily PA (≥ 60 in mins) performed during transportation to and from school on foot or bicycle, attending physical exercise classes at school</td>
<td>Body weight, Attitudes for losing/gaining weight, Public school, Gender, Age, White or yellow ethnicity, Mother ≥ college degree, Meals whilst watching TV, SES</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>X: 14.4</td>
<td></td>
<td></td>
<td></td>
<td>OLS regression:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SR PA: Living with one parent or other relatives (ref.), Living with both parents: 0.0028</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>N</td>
<td>Country</td>
<td>Family Type</td>
<td>Description</td>
<td>SR</td>
<td>PA: Living with both parents: -0.0247*</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>Gonçalves Galdino da Costa et al., 2021 (34)</td>
<td>731</td>
<td>Brazil</td>
<td>CS, 2019, ELEVA project</td>
<td>Live with both parents; Live with mother; Live with father; Other</td>
<td>SR: Total PA (min/Day): Three variables were calculated 1) the total volume of PA (sum of the volume of each activity), 2) the volume of sports (comprising soccer, etc.), and 3) the volume of non-sport activities (comprising capoeira, etc.).</td>
<td>Sex, age, SES score, dietary behavior, alcohol use in the last 30 days, tobacco use in the last 30 days, illicit drug experimentation Multilevel regression: Live with both parents (ref.), Live with mother: 5.51, 3.25, Live with father: 4.66, 0.08, Other: 0.85, 2.73</td>
</tr>
<tr>
<td>Kefeli Çol and Altay, 2021 (49)</td>
<td>378</td>
<td>Turkey</td>
<td>CS, NR</td>
<td>Nuclear family type; Extended family type; Fragmented family type</td>
<td>SR: Mentions PA as part of the Healthy Lifestyle Behaviours Scale II without explicitly stating how it was measured</td>
<td>ANOVA: Not significant F=2.862 Nuclear family type 17.3±5.0, Extended family type 16.0±5.1, Fragmented family type 14.9±5.5</td>
</tr>
</tbody>
</table>

Notes:
Significance at 0.05, 0.01 and 0.001 indicated with an asterisk.
Leisure Physical Activity and Sport Participation

Leisure Physical Activity

In total, nine studies looked at leisure physical activity. Six studies reported no significant findings: two were conducted in the US, one of good (38) and one of fair quality (39), looking at 10-17 and 10-19 year olds respectively, one (good) study from Italy (40), looking at 14-17 year olds, one (fair) in Switzerland (41), looking at 13-14 year olds, using parent-report, and two poor quality studies, one in Australia (42), looking at 13-17 year olds, and one in Canada (43), looking at 13-15 year olds.

A (fair) study conducted in Nepal, looked at 17-year-olds and ‘any form of leisure time PA for more than 10 minutes in any day of a week’. Statistically significant results were reported for females, showing them more likely to engage in more exercise when in nuclear families, compared with joint/extended families (44). A (good) Canadian study used a binary outcome for yearly involvement in leisure physical activity, and reporting that 12-17 year olds in traditional families are more likely to engage in more leisure time physical activity in a year compared with children in lone parent or other types of families (45). A (poor) study conducted in the UK looked at daily minutes spent on the previous day in leisure-time physical activity of 11-14 year olds. They report no significant findings for boys or girls on weekends, nor for girls on weekdays, but report that boys in intact couple families spend more time in leisure-time activities than those in a single-parent family (46).

Organised Sport Participation

Four studies looked explicitly at organised sport participation (22, 23, 47, 48), three of which found a significant association between family structure and organised sport participation. A (good) study in Canada (47), a (fair) one in Belgium (48) and a (good) study using data from 9 different countries (22) used multivariable regression, with the last two reporting significant findings, showing that adolescents aged 11-15 in nuclear families have higher odds of participating in organised sports, when compared with other family structures, while the Canadian study reported no significant findings. A (poor) Portuguese study reported a
significant association between family structure and organised sport participation of 10-14 and 15-18 year old females who fulfil physical activity recommendations, using accelerometry (23).

Other outcomes

Active travelling to school and Physical Education

A (fair) study conducted in Brazil (33) reported significant findings, with adolescents (mean age 14.4) living with one parent or other relatives doing slightly better compared to those living with both parents when it comes to daily physical activity (≥ 60 in minutes) performed during transportation to and from school on foot or bicycle and/or attending physical education classes at school.

Unspecified outcome

A (poor) study conducted in Turkey included data on physical activity collected as part of the ‘Healthy Lifestyle Behaviours Scale II’, without explicitly stating how it was measured, reporting no significant association between family structure and physical activity of 14-18-year-olds (49).

Discussion

This review has examined evidence on the association between family structure and adolescent physical activity levels. Despite ample research on social determinants of adolescent physical activity levels, only 30 quantitative studies published since 2010 included family structure as one the determinants examined. Evidence was gathered from cross-sectional observational studies, from a range of different countries.

There is some evidence (16 studies, 10 of good quality) of an association between adolescent physical activity and family structure. Of these 16 studies, three of mixed quality did not specify the effect size or direction of this association (23-25). Nine (seven of which good quality), showed that adolescents in ‘traditional’ families engage in more physical activity when
Table 2. Leisure Physical Activity and Sport Participation

<table>
<thead>
<tr>
<th>Reference and Country</th>
<th>Sample size and Age (years)</th>
<th>Study Design and Data Collection Year (Data Source if available)</th>
<th>Family structure variable</th>
<th>PA Outcome variable</th>
<th>Confounders</th>
<th>Method; Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yelick, 2017 (38)</td>
<td>7447</td>
<td>CS, 2009-10, HBSC</td>
<td>Single parent; Stepparent; Multi-generational; Two-parent</td>
<td>SR: Exercise patterns: None to low level; Moderate level; High level week using three variables: (1) number of days exercised per week, (2) how often in general does the participant exercise, and (3) number of hours per week the participant exercises.</td>
<td>BMI, age, gender, race/ethnicity</td>
<td>Ordinal regression: Two-parent (ref.), Single parent -0.111; Step parent -0.026; Multi-generational 0.144</td>
</tr>
<tr>
<td>US</td>
<td>10-17 (x̄: 13.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morton et al., 2012 (43)</td>
<td>857</td>
<td>CS, NR</td>
<td>Single parent; Dual parents</td>
<td>SR: Number of times they participate in strenuous, moderate and light exercise during a typical week (for more than 15 minutes). A total score was calculated by multiplying the weekly frequencies of strenuous, moderate, and light activities by 9, 5, and 3, respectively, for a total metabolic equivalent intensity value.</td>
<td>Gender, ethnicity, family transformational parenting; Adolescent perceptions' of higher family transformational parenting scores</td>
<td>Hierarchical regression: −3.791 (Reference category NR explicitly)</td>
</tr>
<tr>
<td>Canada</td>
<td>13-15 (x̄: 14.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mazzuco and Meggiolar, 2014 (40)</td>
<td>NR</td>
<td>Waves of CS data, 2005-2009, Multipurpose survey "Aspects of Daily Life"</td>
<td>Both married biological parents, married; Both unmarried biological parents, cohabiting; Step-families; Widowed single-parent families; Separated single-parent families</td>
<td>SR: A binary categorical variable: those who habitually play sports, play sports only occasionally, engage only in some kinds of PA, and sedentary individuals.</td>
<td>n/a</td>
<td>χ²-test: Not significant They proceed in predicting sedentary behaviour (yes/no).</td>
</tr>
<tr>
<td>Italy</td>
<td>14-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarmby et al., 2011 (46)</td>
<td>381</td>
<td>CS (part of a mixed-methods study), NR</td>
<td>Intact couple; Single parent; Stepfamily</td>
<td>SR: Cumulative lifetime activity time in the previous day (min) (Walk; Swim; Cycle; Run; Dancing; Martial arts)</td>
<td>n/a</td>
<td>Non-parametric testing (Kruskal-Wallis and Mann-Whitney U): Family structure on activity in the week (H(2) = 9.70*). Children from single-parent families spent less time active during the week (173 cf. 141; intact,</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Study Name</td>
<td>Sample Size</td>
<td>Population</td>
<td>Measures</td>
<td>Statistical Test</td>
<td>Results</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Wilk et al., 2018 (45)</td>
<td>CS, 2012, Aboriginal Peoples Survey (APS)</td>
<td>4790</td>
<td>Couple with children; Lone parent; Other types</td>
<td>SR (or PR): "At any time during this school year, did you (or your child) participate in a sport or a PA or played organized sports (including taking lessons)." Those who replied positively to this question were classified as those who participated in S/PA.</td>
<td>Sex; Age; Indigenous Identity; Residential School Attendance – Grandparents, Mother, Father; Knowledge of Aboriginal language; Spending Time with Elders; Participated in Indigenous Cultural Activities; Participation in Art, Drama and Music Groups Participation in Clubs; Volunteering in Community; Worked during School Year; Health Status; Smoking Behaviour; Drinking Behaviour; Parental Involvement in School Activities; Siblings under 18; Family Ties; Educational Attainment – Mother, Father; Household Income; Positive School Environment; Negative School Environment; Community Type</td>
<td>Binary logistic regression: Couple with children (ref.), Lone parent 0.75*; Other types 1.10, Adjusted: Lone parent 0.77*; Other types 1.22</td>
</tr>
<tr>
<td>Chung et al., 2018 (39)</td>
<td>CS, 2009/2010, Survey of Health Behavior in School-Aged Children (HBSC)</td>
<td>2835</td>
<td>Living with one or two parents</td>
<td>SR: Spending 7 or more hours in exercise during a week (yes/no)</td>
<td>Gender; Ethnicity; Family affluence scale; Frustrated with appearance; Feeling sad; Monitoring by parents; No. of same-sex friends; No. of opposite-sex friends; Communication with opposite-sex friends; Days spending with friends; Evenings spending with friends; Providing PA in school</td>
<td>Binary logistic regression: Single parents (ref.), Living with parents 1.22</td>
</tr>
</tbody>
</table>

Single). There were no differences between intact couple families and stepfamilies during the week (U = 5981, z = –0.01, r = –0.00) or single-parent families and stepfamilies (U = 2989, z = –1.90, r = –0.14). Family structure on boys’ weekday lifetime activity time (H(2) = 9.72*). For boy’s weekday activity, no differences between intact couple and stepfamilies (U = 1544, z = –1.08, r = –0.09) or stepfamilies and single-parent families (U = 846, z = –1.04, r = –0.11). An effect of family structure between intact couple and single-parent families was seen for boys’ weekday lifetime activities (U = 2992* z = –3.11, r = –0.23). Mean rank data suggested that boys in intact couple families spent more time in lifetime activities than those in a single-parent family (104 cf. 79; intact, single).
<table>
<thead>
<tr>
<th>Study</th>
<th>Year(s)</th>
<th>Country</th>
<th>Sample Size</th>
<th>Family Type</th>
<th>SR/PR Question</th>
<th>SR/PR Measure</th>
<th>Analysis Type</th>
<th>Relative Difference</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bringolf-Isler et al., 2010 (41)</td>
<td>401</td>
<td>Switzerland</td>
<td>13-14</td>
<td>Two-parent; Single-parent family</td>
<td>PR: Weekly time their child spent on average vigorously playing outdoors on weekdays and weekends. Similar information was requested for quiet and moderately intensive play.</td>
<td>n/a</td>
<td>Relative difference: Two-parent family (ref.), Single-parent family: −0.1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>McMillan et al., 2016 (47)</td>
<td>2120</td>
<td>Canada</td>
<td>11-15</td>
<td>Traditional; Reconstituted with irregular visitation; Reconstituted with regular visitation; Single-parent with irregular visitation; Single-parent with regular visitation</td>
<td>SR: Organized sport participation was assessed by a question that asked participants whether they were involved in any “sport club or team”, with two response options (“yes” or “no”).</td>
<td>Number of siblings, immigration status, ethnicity, grade, and perceived family wealth</td>
<td>Binary logistic regression: Traditional (ref.), Boys: Reconstituted with irregular visitation 0.48*/0.51*, Reconstituted with regular visitation 0.78/0.80, Single-parent with irregular visitation 0.58*/0.62*, Single-parent with regular visitation 0.73*/0.77* and Girls: Reconstituted with irregular visitation 0.53*/0.57*, Reconstituted with regular visitation 0.63*/0.64*, Single-parent with irregular visitation 0.54*/0.58*, Single-parent with regular visitation 0.72*/0.77*</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Vandermeerschen et al., 2015 (48)</td>
<td>2016</td>
<td>Belgium</td>
<td>13-18</td>
<td>Single parent family (yes/no)</td>
<td>SR: Club-organised sports participation; Yes/No</td>
<td>Highest educational achievement of the parents; Income poverty; Age; Gender; Parents’ sports participation</td>
<td>Two-level logistic regression (second-order PQL estimates): Two parents (ref.), Single parent family 0.90</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Paudel et al., 2014 (44)</td>
<td>405</td>
<td>Nepal</td>
<td>8: 17</td>
<td>Nuclear; Joint/Extended</td>
<td>SR: Students who did at least any form of leisure time PA for more than 10 minutes in any day of a week were categorized as “LTPA” and who did not do such activities were categorized as “No LTPA”.</td>
<td>By sex: age, place of residence, family type, economic status, type of school, mode of transport to school, playground and extra-curricular activities in school, neighbourhood walkability, playground/parks near home and sitting time.</td>
<td>Binary logistic regression: Unadjusted: Joint/Extended (ref.), Female 1.55, Male 1.02: Adjusted: Female 2.16*, Male 1.18</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Macniven et al., 2016 (42)</td>
<td>996</td>
<td>Australia</td>
<td>13-17</td>
<td>Dual parent household (yes/no)</td>
<td>SR: Outside school hours MVPA Participation of a frequency of ‘every day’ or ‘4-6 times a week’ and ‘7 or more hours a week’ and ‘about 4-6 hours a week’.</td>
<td>n/a</td>
<td>χ²-test: Not significant</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>N</td>
<td>Design</td>
<td>Country</td>
<td>Outcomes</td>
<td>Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
<td>--------</td>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Badura et al., 2021 (22)</td>
<td>48437</td>
<td>CS, 2017-18, HBSC</td>
<td>Armenia, Belgium, Canada, Czechia, Latvia, Republic of Moldova, Poland, Russia, Slovakia</td>
<td>Nuclear family; Single-parent family; Stepfamily; Non-parental family</td>
<td>Sex, age, family affluence scale, country, school</td>
<td>Binary logistic regression: Nuclear family (ref.), Single-parent family 0.77*, stepfamily 0.78*, non-parental family 0.68*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Júdice et al., 2021 (23)</td>
<td>2179</td>
<td>CS, 2017-18</td>
<td>Portugal</td>
<td>Living with 2 parents (yes/no)</td>
<td>ACC: Structured sport participation of females who fulfil PA recommendations</td>
<td>χ2-test: Significant</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Significance at 0.05, 0.01 and 0.001 indicated with an asterisk.

CC-BY-NC-ND 4.0 International license
It is made available under a is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
(which was not certified by peer review) The copyright holder for this preprint this version posted July 5, 2023. ; https://doi.org/10.1101/2023.07.04.23292220 doi: medRxiv preprint
compared to other family structures (22, 28, 31, 32, 37, 44-47). This association was stronger in studies of leisure time physical activity. In addition, two studies (one good, one fair) reported that adolescents with single mothers are more likely to report higher levels of physical activity, when compared to adolescents living with neither parent (26, 27). However, one fair study found adolescents living in single-parent households engaged in more physical exercise classes at school (33), and a further good study found that adolescents in single-parent households undertook more active travel to and from school, when compared with those living with two parents (36).

These findings suggest that adolescents, ages ~14-17, growing up in single-parent households in some contexts may undertake less physical activity than adolescents in traditional family structures. However, it is possible that the association between family structure and physical activity varies depending on the type of activity, with those in non-traditional families being less likely to undertake leisure time physical activity and more likely to accrue active travel time (9, 10). This might be due to time pressures of financial pressures for a single parent making it harder to support an adolescent to access or afford leisure time physical activity opportunities.

Most studies used self-report questionnaires, and even though most used validated instruments, they are prone to measurement error. Therefore, many of these studies were identified as ‘good’, despite inherent weaknesses due to their study designs. There is thus an evidence gap that requires employing measures less prone to measurement error to estimate the effect of family structure on adolescent physical activity, such as accelerometry studies or studies using time-diary data, but also studies using longitudinal data, to provide stronger evidence to support future policy decisions.

A major strength of this systematic review is the rigorous approach to identifying literature, including consulting an academic librarian to develop the search strategy. Selection of studies and quality appraisal were conducted in duplicate by two independent reviewers, with data extraction conducted by one reviewer and checked by a second, improving the reliability of
the data synthesis. This review has possibly missed evidence published in grey literature, as it focused on studies in peer-reviewed journals, published since 2010, aiming at synthesizing the latest available evidence to reflect social changes and adolescent activity patterns changing across decades. Included studies were also restricted to quantitative analysis, potentially missing out on qualitative evidence. However, this systematic review is to date the most comprehensive, with searches conducted in six different databases, covering a wide range of Social Science literature, not only the field of Health Science.

Conclusion

Based on the available evidence, it is unclear whether adolescents in traditional family structures do better in terms of physical activity, when compared with adolescents living in (broadly defined) ‘non-traditional’ family structures. There is evidence that adolescents in nuclear families engage in more leisure time physical activity. Those designing or implementing interventions to increase leisure time physical activity should consider how feasible or accessible these interventions are to adolescents from non-traditional family structures. It is possible that any causal effect of family structure on adolescent physical activity levels is specific to the wider social and cultural context which would explain the lack of consistency in the literature identified. More studies employing measures less prone to measurement error are required to estimate the effect of family structure on adolescent physical activity, such as more accelerometery studies or studies using time-diary data. There is also a substantial evidence gap when it comes to long-term effects, requiring stronger evidence to support future policy decisions. The need for this evidence is likely to be growing, as the number of non-traditional families continues to increase.
Declarations

Ethical approval

No ethical approval was required for this study as data used were obtained from previously peer-reviewed published studies.

Competing interests

The authors declare that they have no competing interests.

Funding

Elena Mylona is a PhD student at the Department of Sociology, University of Warwick, funded by the Midlands Graduate School Doctoral Training Partnership, Economic and Social Research Council (ESRC), grant award number: ES/P000711/1. ESRC did not provide funding for this specific study and had no influence on its conduct.

Authors' contributions

EM: Study concept and design, literature searches, full-text screening, data extraction, quality ratings, interpretation of data, drafting and writing of manuscript, critical revision of manuscript. MK: Study screening, full-text screening, quality ratings. HJ: Study screening and critical revision of manuscript. MM: Study screening and critical revision of manuscript. RL: Interpretation of data and critical revision of manuscript. OO: Study concept and design, study screening, quality ratings, interpretation of data and critical revision of manuscript. All authors have reviewed the final manuscript submitted for publication.

Acknowledgements

We would like to thank Ms Samantha Johnson, our academic librarian, who has helped in developing the search strategy for this study’s protocol.
References

