Improved specificity of glutamate decarboxylase 65 autoantibody measurement using luciferase-based immunoprecipitation system (LIPS) assays

Short running title: Using luciferase-tagged GAD65 tracers improves the specificity of GADA measurement

R.C. Wyatt1*, S.L. Grace1*, C. Brigatti2, D. Liberati3, B.T. Gillard1, I. Marzinotto2, D. Shoemark4, M. A-M Chandler1, P. Achenbach5, L. Piemonti3, The BOX Study Group1, A.E. Long1, K.M. Gillespie1, V. Lampasona3, A.J.K. Williams1†

1. Diabetes and Metabolism Unit, Translational Health Sciences, University of Bristol, Bristol, UK.
2. Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
3. Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
4. School of Biochemistry, University of Bristol, Bristol, UK
5. Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany; and Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Forschergruppe Diabetes, Munich, Germany.

Correspondence to –

Dr Anna Long
Diabetes and Metabolism, Level 2 Learning and Research, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, United Kingdom.

Tel: +44 (0)117 414 7900, Fax: +44 (0)117 414 8070

Email: Anna.Long@bristol.ac.uk

Word Count: 2,382

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract (200 words)

Autoantibodies to glutamate decarboxylase (GADA) are widely used in the prediction and classification of type 1 diabetes. GADA radiobinding assays (RBAs) using N-terminally truncated antigens offer improved specificity but radioisotopes limit the high-throughput potential for population screening. Luciferase-based Immunoprecipitation System (LIPS) assays are sensitive and specific alternatives to RBAs with the potential to improve risk stratification.

The performance of assays using the Luciferase (Nluc-) conjugated GAD_{65} constructs, Nluc-GAD65(96-585) and full length Nluc-GAD65(1-585) were evaluated in 434 well-characterised sera from recent-onset type 1 diabetes patients and first-degree relatives.

Non-radioactive, high-throughput LIPS assays are quicker and require less serum than RBAs. Of 171 relatives previously tested single autoantibody positive for autoantibodies to full-length GAD_{65} by RBA but had not progressed to diabetes, fewer retested positive by LIPS using either truncated (n=72) or full-length (n=111) antigen. The Nluc-GAD65(96-585) truncation demonstrated the highest specificity in LIPS assays overall but in contrast to RBA, N-terminus truncations did not result in a significant increase in disease-specificity compared with the full-length antigen. This suggests that binding of non-specific antibodies is affected by the conformational changes resulting from addition of the Nluc antigen. Nluc-GAD65(96-585) LIPS assays offer low blood volume, high specificity GADA tests for screening and diagnostics.
Introduction

Autoantibodies to glutamate decarboxylase (GADA) detected using radioimmunoprecipitation studies showed that 80% of patients with type 1 diabetes were positive (1). Today, GADA are widely used in prediction and classification of type 1 diabetes and are often used as a preliminary screen for islet autoimmunity.

The most commonly used methods for measuring GADA include radiobinding assay (RBA) (2) and ELISA (3). Despite efforts to improve and standardise GADA measurement, many who test single GADA positive are unlikely to develop diabetes (4). There is consensus that type 1 diabetes associated GADA primarily recognise epitopes located in the middle and C-terminal regions of GAD$_{65}$, while autoantibodies specific to the N-terminal alone have little association with progression to disease (5). We previously showed that the first 142 amino acids of GAD$_{65}$ do not significantly contribute to epitopes recognised by autoantibodies associated with type 1 diabetes (6). Using the N-terminally truncated GAD$_{65}$ radiolabels $^{35}$S-GAD$_{65}(96-585)$ and $^{35}$S-GAD$_{65}(143-585)$ improved the specificity of RBAs without detrimentally impacting sensitivity. In relatives of patients with type 1 diabetes, autoantibodies measured with these constructs were more closely associated with diabetes risk (7).

However, radioactivity is costly and time consuming with environmental implications, meaning this method has limited long-term sustainability. Alternative methods of measuring GADA including electrochemiluminescence (8) or Luciferase-based Immunoprecipitation System (LIPS) assays (9) are, therefore, increasing in popularity.

Immunoprecipitation of tailor-made luciferase-tagged antigens bound to islet autoantibodies have been used successfully to measure insulin (10, 11) and islet-antigen 2 (12) autoantibodies (IAA and IA-2A, respectively) associated with type 1 diabetes, with good performance compared with equivalent RBAs.

Using a well-characterised cohort from the Bart’s Oxford (BOX) family study (13), we aimed to evaluate how GADA levels and positivity measured by LIPS, using full-length and truncated GAD antigens, compared with the equivalent RBAs and potential implications for determining risk of diabetes.

All rights reserved. No reuse allowed without permission.
Research Design and Methods

Population

Screening cohort

To initially assess the sensitivity and specificity of the Nluc-GAD$_{65}$ constructs, 11 patients with recent-onset type 1 diabetes [5 (45.5%) male; median diabetes duration 43 days (range - 1 to 84 days)] and 25 low-risk GADA(96-585) positive first-degree relatives (FDRs) of patients with type 1 diabetes [8 male (32%)] were selected. The FDRs were considered to have low diabetes risk as they have not developed diabetes during follow-up [median 19 years (range 1.2-29.7 years)] and did not have additional islet autoantibodies. These samples had been tested for GADA previously by RBA using full-length GAD$_{65}$ and five truncated GAD$_{65}$ constructs (6).

Evaluation cohort

Serum samples with sufficient volume from participants in the BOX type 1 diabetes family study were selected for detailed evaluation of the LIPS assay, based on previous studies (6, 7). These included 156 patients with recent-onset type 1 diabetes (2 had insufficient sera for Nluc-GAD$_{65}$(96-585) analysis and were excluded) and 740 FDRs followed prospectively for disease development by annual questionnaire (Table 1).

Of the 740 FDRs, 278 (37.6%) were previously found GADA positive by a local radioimmunoassay and 69 (25%) of these developed diabetes, 254 (91%) had follow-up data for survival analysis and 7 did not have sufficient sera for Nluc-GAD$_{65}$(96-585) analysis and were excluded from the study. The remaining 462 FDRs previously tested GADA negative (no survival analysis). This population was enriched with 32 (6.9%) FDRs who developed diabetes but 1 was excluded due to insufficient sera (Table 1).

All samples were previously tested for GADA using the harmonised RBA protocol with the full-length $^{35}$S-GAD$_{65}$(1-585) and N-terminally truncated $^{35}$S-GAD$_{65}$(96-585) antigens (7). Data on additional islet autoantibodies [IA-2A, IAA and zinc transporter 8 autoantibodies (ZnT8A)] were also available.

Recombinant luciferase tagged GAD$_{65}$ antigen production

Comparable to the harmonised RBA protocol (14) recombinant Nanoluc® luciferase (Nluc) tagged GAD$_{65}$ antigens (Figure 1a) were encoded in a pCMV'TnT™ plasmid vector
(Promega, Madison WI, USA) downstream of the SP6 promotor and synthesised using the SP6 TnT quick coupled in vitro transcription and translation kit (Promega) using 1 microgram of antigen and a 1.5hr incubation at 30°C. The recovered antigen was purified using a NAP5™ desalting column (packed with Sephadex™ G-25 – Illustra, supplied by VWR, UK) and Tris buffered saline with Tween-20 buffer (TBST; 20 mM Tris, 150 mM NaCl, pH 7.4, and 0.5% Tween-20), by collecting 3 fractions (400, 200 and 500µl). The luciferase activity was quantified in light unit equivalents (LU) by measuring the emitted bioluminescence of 2µl of the antigen mixed with 40µl of Nano-Glo® substrate (as per manufacturer instructions, Promega) in a Berthold Centro XS3 luminometer (Berthold Technologies GmbH & Co. KG, Bad Wildbad, Germany) for 2 seconds per well. A typical reaction yielded between $10^6$ and $10^7$ LU/µl of antigen in a total volume of 600µl pooled from the first two fractions. The antigen was divided into 10µl aliquots and stored at –70°C until use.

**GADA LIPS assay**

The Nluc-GAD65 antigen (full length or n-terminally truncated (96-585) was diluted in TBST + 0.1% BSA, to a concentration of 4.0x10^6 LU/25µl (±200,000 LU). Sera (1µl, 2 replicates) were pipetted into a 96-well plate (Sarstedt, Nümbrecht, Germany) and incubated with 25µl diluted Nluc-GAD65 antigen for 2.5hr at room temperature protected from light. Immunocomplexes were precipitated using a 25% Protein A Sepharose 4 fast flow (PAS) suspension [6.25µl/well washed four times in TBST + 0.1% BSA; GE Healthcare Life Sciences, Amersham, UK] and a 1hr incubation with orbital shaking (~700 rpm) at 4°C. After incubation, excess Nluc-GAD65(96-585) was excluded by centrifugation (500 x g at 4°C for 3 mins) and five serial washes with TBST using an automatic immunoassay washer (BioTek Elx405, Agilent, Santa Clara, California, United States), and then transferred into a 96-well OptiPlates™ (Perkin-Elmer, Waltham, MA, USA). Optiplates™ were centrifuged (500 x g at 4°C for 3 mins) and aspirated to remove excess buffer for a final volume of 30µl. Nano-Glo® substrate (40µl) was injected into each well immediately prior to LU determination using a standardised protocol on the Berthold Centro XS3 luminometer (inject, shake 5 seconds/well, detect 2 seconds/well).

In the 2020 Islet Autoantibody Standardization Program (IASP) workshop, the adjusted sensitivity at 95% specificity (AS95) for GADA(1-585) and GADA(96-585) measured by
radioimmunoassay was 78% and 84%, respectively. For GADA(1-585) and GADA(96-585) measured by LIPS, the AS95 was 76% and 86%, respectively.

**Antibody quantification and thresholds**

For all assays logarithmic standard curves was generated from assay standards established from the National Institute of Diabetes and Digestive and Kidney disease (NIDDK) harmonisation programme, allowing quantification of autoantibody levels (DK units/ml) (14)

Thresholds for GADA measured by RBA and LIPS were set at the 97.5th percentile of 221 healthy schoolchildren. This was equivalent to 13.5, 12.8, 7.3 and 10.7 DK units/ml for 35S-GAD65(1-585), 35S-GAD65(96-585), Nluc-GAD65(1-585) and Nluc-GAD65(96-585), respectively.

**Statistical Analysis**

Wilcoxon matched-pairs signed-rank test was used to compare antibody levels and McNemar’s test with Yate’s correction was used to compare antibody status with different GAD65 constructs and assay formats. Kaplan-Meier curves with Mantel-Cox log-rank test were used to compare survival between groups. For all analyses, a two-tailed P value of <0.05 was considered significant. The partial area (90th percentile) under the curve (pAUC) of the receiver operating characteristic (ROC) with 95% CI was calculated assuming a nonparametric distribution of results using R software, Version 3.2.2. Other statistical analyses were performed using GraphPad Prism Version 6.

**Results**

**Construct screening**

Antibodies to GAD were measured in sera from the screening cohort using LIPS assays with the four Nluc-GAD65 constructs (Figure 1a) and the results compared with those for GADA(96-585) obtained by RBA. Median antibody levels with the Nluc constructs were similar to 35S-GAD65(96-585) in type 1 diabetes patients (p>0.05 for all comparisons) (Figure 1b).

In 25 low-risk single GADA (by either RBA) positive relatives, median GADA levels, were lower when measured by LIPS than when measured by RBA with 35S-GADA(96-585) (p<0.01 for all comparisons) (Figure 1b).
Additional constructs tested (Nluc-GAD$_{65}$(143-585) & Nluc-GAD$_{65}$(188-585)) did not improve discrimination further (data not shown). Therefore, Nluc-GAD$_{65}$(1-585) and Nluc-GAD$_{65}$(96-585) were selected for detailed evaluation compared with the highly diabetes-specific RBA using $^{35}$S-GAD$_{65}$(96-585).

**Assay evaluation**

The sensitivity of Nluc-GAD$_{65}$ constructs were comparable to the higher specificity $^{35}$S-GAD$_{65}$(96-585) construct in patients with recent-onset type 1 diabetes and high-risk relatives. Of 154 patients, 125 (81%) were positive for $^{35}$S-GADA(1-585), and 125 (81%) for $^{35}$S-GADA(96-585). When Nluc-tagged antigens were used, 129 (84%) were positive for Nluc-GADA(1-585) and 116 (75%, p=0.0036) were positive for Nluc-GADA(96-585). There was very good correlation between $^{35}$S-GADA(96-585) and Nluc-GADA(1-585) [r=0.91 (95% CI 0.87-0.93), p<0.0001] and Nluc-GADA(96-585) [r=0.87 (95% CI 0.83-0.90), p<0.0001] (Figure 2a).

Receiver operator characteristic (ROC) analysis showed that Nluc-GADA(1-585) and Nluc-GADA(96-585) could discriminate between patients and healthy schoolchildren with comparable sensitivity and specificity to $^{35}$S-GADA(1-585) and $^{35}$S-GADA(96-585). Partial area under the curve values (at specificities >90%) were 0.082 (95% CI 0.075-0.088), 0.081 (95% CI 0.074-0.087), 0.084 (95% CI 0.077-0.089) and 0.082 (95% CI 0.076-0.088) for $^{35}$S-GADA(1-585), $^{35}$S-GADA(96-585), Nluc-GADA(1-585) and Nluc-GADA(96-585), respectively (Figure 2b).

Of 100 relatives who progressed to diabetes during follow up and/or had autoantibodies to additional islet antigens, 84 (84%) were positive for all four specificities. Ninety-three (93%) were positive for $^{35}$S-GADA(1-585), 90 (90%) for $^{35}$S-GADA(96-585), 94 (94%) for Nluc-GADA(1-585) and 88 (88%) for Nluc-GADA(96-585) (ESM 1a).

Fewer single GADA positive relatives who have not developed diabetes were positive for GADA measured using LIPS assays.

74 (43%) of the 171 GADA positive relatives who had no additional islet antibodies and had not progressed to diabetes during follow-up had antibodies to Nluc-GAD$_{65}$(96-585). This was a lower proportion than for $^{35}$S-GADA(1-585) (156, 90%; p<0.0001), $^{35}$S-GADA(96-585) (108, 62%; p<0.0001) or Nluc-GADA(1-585) (112; 65%, p<0.0001), respectively (ESM 1b).
Of the 430 relatives who originally tested GADA(1-585) negative and remained diabetes-free during follow-up 12 (3%) were found positive for $^{35}$S-GADA(1-585), 6 (1%, p>0.05) for $^{35}$S-GADA(96-585), 17 (4%, p>0.05) for Nluc-GADA(1-585) and 10 (2%, p>0.05) for Nluc-GADA(96-585) (ESM 1b).

Nluc-GAD65 antigens offer improved discrimination of risk in $^{35}$S-GADA(1-585) positive relatives

In 254 relatives, with follow-up data who tested GADA positive using the harmonised RBA with $^{35}$S-GAD$_{65}$(1-585), the 15-year risk of diabetes was 25% (95% CI 20%-31%). Within this group, positivity for $^{35}$S-GADA(96-585), Nluc-GADA(1-585) and Nluc-GADA(96-585) further stratified risk of diabetes (p<0.0001, for all comparisons). Individuals positive for $^{35}$S-GADA(96-585) had a 32% (95% CI 25%-40%) risk of developing diabetes within 15 years, while individuals positive for Nluc-GADA(1-585) had a 30% (95% CI 24%-38%) risk and positivity for Nluc-GADA(96-585) had a 30% (95% CI 23%-39%) risk (Figure 3).

Discussion

The LIPS assay platform provides a high-performance alternative to the well-established GADA RBAs, widely used in type 1 diabetes natural history studies. We focused on comparing LIPS Nluc full length GAD$_{65}$(1-585) and truncated GAD$_{65}$(96-585) assays with the equivalent RBAs, particularly the truncated GADA(96-585) RBA which has demonstrated improved specificity in type 1 diabetes and LADA (7, 15). Unexpectedly the full-length GADA(1-585) LIPS assay performed almost as well as the truncated GADA(96-585) LIPS assay and much better than the equivalent RBA.

The sensitivity of GADA measurement by LIPS using Nluc-GAD$_{65}$(1-585) and Nluc-GAD$_{65}$(96-585) was comparable to RBAs using $^{35}$S-GAD$_{65}$(1-585) and $^{35}$S-GAD$_{65}$(96-585) in patients and high-risk relatives. The specificity of the LIPS assay using the Nluc constructs was also improved compared with the harmonised RBA using $^{35}$S-GAD$_{65}$(1-585) and/or $^{35}$S-GAD$_{65}$(96-585). Relatives who were positive for GADA using LIPS were at increased risk of developing diabetes within 15 years compared with those who were positive for GADA(1-585) by RBA and had a similar risk to those positive using $^{35}$S-GAD$_{65}$(96-585). In the RBA, we previously showed that removing up to 142 amino acids from the N-terminus of GAD$_{65}$ improves the specificity of GADA measurement without impacting assay sensitivity (6). The sensitivity of GADA measurement was maintained using $^{35}$S-GAD$_{65}$(143-585) compared
with $^{35}\text{S-GAD}_{65}(1-585)$ and $^{35}\text{S-GAD}_{65}(96-585)$. Specificity for type 1 diabetes was improved compared with $^{35}\text{S-GAD}_{65}(1-585)$, but was similar to $^{35}\text{S-GAD}_{65}(96-585)$. We therefore focused on GAD$_{65}(96-585)$ for comparison with LIPS assays.

A strength of this study included the large population size, comprised of a range of recent-onset patients and high- and low-risk FDRs from the well-characterised BOX family study, with up to 30 years of follow-up. Although samples were pre-screened by RBA, a large cohort of GADA negative FDRs was included to overcome this selection bias.

Overall, fewer low risk-relatives were positive for GADA(1-585) when measured by LIPS than RBA although future studies in an independent cohort are merited. Nluc-GAD$_{65}$ antigens were fused to the N-terminus of the GAD$_{65}$ constructs which may explain why assay performance was improved in the Nluc-GAD$_{65}(1-585)$ compared with the $^{35}\text{S-GAD}_{65}(1-585)$ test. Primary type 1 diabetes associated epitopes of GAD$_{65}$ are located in the middle and C-terminal domains (16, 17, 18, 19, 20, 21) while minor N-terminal reactivity results from epitope spreading (22, 23). Nluc enzyme fusion may have obscured non-specific, linear epitopes and may support the stability and/or solubility of the antigens which may also help account for the enhanced performance observed (24).

RBAs have dominated islet autoantibody measurement for the last 20 years but are disadvantaged by the high cost, short shelf life, tight regulation and environmental impact resulting from the use of radiolabels. Although alternative, sensitive and specific, non-radioactive methods are available for GADA measurement, these too have their own limitations, such as large serum requirements and/or the need for specialist equipment and reagents (8, 25). The LIPS format was designed to be a simple replacement for the harmonised fluid-phase GADA RBA, using common techniques based on the precipitation of autoantibodies bound to cognate tracer antigens. Laboratories already set up to perform RBAs can, therefore, easily adopt this method which uses equipment and reagents that are widely available. Luciferase-tagged antigens are also safe to use and can be produced in-house with potentially long half-lives, giving greater control over label variability and eliminating reliance on radiolabels. The protocol can be completed within one working day and has the lowest serum requirement of all the widely available tests (2µl for testing in duplicate). This is critical for high-throughput testing of low-volume samples, for instance capillary blood collection for general population screening (26, 27). We have also
demonstrated the flexibility of the LIPS method, which can use a range of GAD antigens to facilitate with epitope analysis.

These assays were also among the top performers participating in the 2018, 2020 and 2023 IASP workshops. Individuals positive for truncated GAD$_{65}$ antigens have a higher risk of diabetes development. Future intervention trials and natural history studies may, therefore benefit from using this method and/or truncated antigens to measure GADA for identifying high-risk subjects.
References


## Tables

<table>
<thead>
<tr>
<th></th>
<th>Patients (n=154)</th>
<th>GADA Positive Relatives (n=271)</th>
<th>GADA Negative Relatives (n=461)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Progressor (n=64)</td>
<td>Non Progressor (n=207)</td>
</tr>
<tr>
<td>Males</td>
<td>94 (60%)</td>
<td>31 (48%)</td>
<td>100 (48%)</td>
</tr>
<tr>
<td>Median age, years (range)</td>
<td>11.7 (1.3-20.9)</td>
<td>33.3 (5.7-52.9)</td>
<td>30.6 (1.3-57.4)</td>
</tr>
<tr>
<td>Median age at diagnosis, years (range)</td>
<td>15.3 (2.7-100)</td>
<td>37.5 (11.7-69.8)</td>
<td>-</td>
</tr>
<tr>
<td>Median follow-up, years (range)/ Median diabetes duration, days (range)</td>
<td>1 (-7-90)</td>
<td>7.56 (0.2-27.8)</td>
<td>17.6 (0.6-30.8)</td>
</tr>
<tr>
<td>Additional autoantibodies*</td>
<td>140</td>
<td>34</td>
<td>37</td>
</tr>
<tr>
<td>IA-2A</td>
<td>120</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>IAA</td>
<td>71**</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>ZnT8A</td>
<td>111</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>

Data are number of first-degree relatives (%) or median (range).
*Additional autoantibodies are from IA-2A, IAA and ZnT8A.
**57 patients not tested for IAA as the sample was taken more than two weeks after diagnosis and any antibodies measured may be to endogenous insulin from insulin therapy induction.
***Not tested for ZnT8A

## Figure Legends

### Figure 1

(a) Diagram of the NanoGlo® luciferase (Nluc) GAD65 constructs which were assessed for the sensitivity and specificity of GADA measurement by Luminescence Immunoprecipitation System (LIPS) assay.
(b) A plot of 25 low-risk single GADA(96-585) positive relatives who had not developed diabetes during follow-up (grey circle) and 11 recent-onset patients with type 1 diabetes (black triangle) who were measured for GADA using $^{35}$S-GAD$_{65}$(96-585) in radioimmunoassay and Nluc-GAD$_{65}$(1-585) & Nluc-GAD$_{65}$(96-585) in LIPS assays. Filled triangles and circles indicate positives by that construct by individual assay thresholds. Dotted line indicates positivity threshold for $^{35}$S-GADA(96-585). In patients, the median antibody levels (DK units/ml) for $^{35}$S-GADA(96-585), Nluc-GADA(1-585) and Nluc-GADA(96-585), were 341.29 (range, 157.2-1267.3), 494.4 (range, 60.4-1072.5) and 357.8 (range, 73.8-988.1), respectively. In relatives, the median antibody levels were 42.0 (range, 18.3-368.5), 5.16 (range, 0.39-25.6) and 9.5 (range, 3.2-63), respectively.

**Figure 2**

(a) A plot of $^{35}$S-GADA(1-585) (grey circles), Nluc-GADA(1-585) (orange triangles) and Nluc-GADA(96-585) (teal triangles) levels against $^{35}$S-GADA(96-585) levels in 154 patients with recent-onset type 1 diabetes. Overall, correlation of $^{35}$S-GADA(1-585), Nluc-GADA(1-585) and Nluc-GADA(96-585) with $^{35}$S-GADA(96-585) was excellent (r=0.99, 0.91 and 0.87, respectively, p<0.0001 for all).

(b) Receiver operator characteristic curve for $^{35}$S-GADA(1-585) (black line), $^{35}$S-GADA(96-585) (grey line), Nluc-GADA(1-585) (orange line), and Nluc-GADA(96-585) (teal line) measured by radioimmunoassay or LIPS based on data from 156 patients with newly diagnosed type 1 diabetes and 221 healthy schoolchildren. The area under the curve was 0.94 for $^{35}$S-GADA(1-585), 0.93 for $^{35}$S-GADA(96-585), 0.93 for Nluc-GADA(1-585) and 0.93 for Nluc-GADA(96-585). The partial AUC (at specificities >90%, within the grey box) was 0.082 for $^{35}$S-GADA(1-585), 0.081 for $^{35}$S-GADA(96-585), 0.084 for Nluc-GADA(1-585) and 0.082 for Nluc-GADA(96-585).

**Figure 3**

A Kaplan-Meier survival curve for first-degree relatives positive for $^{35}$S-GADA(1-585) according to positivity for $^{35}$S-GADA(96-585) (black lines), Nluc-GADA(1-585) (orange lines) and Nluc-GADA(96-585) (teal lines). $^{35}$S-GADA(96-585), Nluc-GADA(1-585) and Nluc-GADA(96-585) identified relatives at increased risk of diabetes progression. Individuals positive for $^{35}$S-GADA(96-585) had a 32% risk of developing diabetes within 15
years, while individuals positive for Nluc-GADA(1-585) or Nluc-GADA(96-585) had a 30% risk.
Figure 1

A) N-terminal  Middle (PLP)  C-terminal

B) DK units/ml

All rights reserved. No reuse allowed without permission.

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint this version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.03.23292157 doi: medRxiv preprint
Figure 2

A) Scatter plot showing the relationship between \(^{35}\text{S-GADA(96-585) DK units/ml}\) and \(\text{DK Units/ml}\).

B) ROC curve comparing sensitivity and specificity.

All rights reserved. No reuse allowed without permission.

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprint this version posted July 6, 2023. ; https://doi.org/10.1101/2023.07.03.23292157 doi: medRxiv preprint
Figure 3

Diabetes Free (%) vs. Follow-up (years)

- **35S-GADA (96-585) +ve**
- **35S-GADA (96-585) -ve**
- **Nluc-GADA (1-585) +ve**
- **Nluc-GADA (1-585) -ve**
- **Nluc-GADA (96-585) -ve**
- **Nluc-GADA (96-585) +ve**

<table>
<thead>
<tr>
<th>Follow-up (years)</th>
<th>35S-GADA (96-585) +ve</th>
<th>35S-GADA (96-585) -ve</th>
<th>Nluc-GADA (1-585) +ve</th>
<th>Nluc-GADA (1-585) -ve</th>
<th>Nluc-GADA (96-585) -ve</th>
<th>Nluc-GADA (96-585) +ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>191</td>
<td>63</td>
<td>204</td>
<td>50</td>
<td>159</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>118</td>
<td>55</td>
<td>132</td>
<td>40</td>
<td>103</td>
<td>67</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>