Understanding the role of adaptive immunity in a protective yet infection permissive immune response to the Cryptosporidium parasite

William A Petri¹, Biplop Hussain², Mamun Kabir², Hannah H So¹, G. Brett Moreau¹, Uma Nayak¹, Zannthan Noor², Masud Alum², Rashidul Haque², William A Petri Jr¹, Carol A Gilchrist¹

Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America¹, International Centre for Diarrheal Diseases Research, Bangladesh²

#Corresponding Author: William A Petri wap3g@virginia.edu

345 Crispell Ave, Carter Harrison Building (MR6) Rm1709A, Charlottesville, VA 22908
Abstract

Background:
Cryptosporidium is one of the top causes of diarrhea in Bangladesh infants. Cryptosporidium infections lead to the production of antibody immune responses, which were associated with a decrease in parasite burden and decreased disease severity in subsequent infections.

Methods:
We conducted a longitudinal study of cryptosporidiosis from birth to five years of age in an urban slum of Dhaka Bangladesh. We then retrospectively tested all available samples from the stool collected during 0-3 years from 54 children by enzyme-linked immunosorbent assay (ELISA). We also assessed the concentration of anti-Cryptosporidium Cp17 or Cp23 IgA and IgG antibodies in the childrens’ plasma (1-5 years).

Results:
The seroprevalence of both anti- Cp23 and Cp17 antibodies was high at ≤ one year of age and reflected the exposure of these children in this community to cryptosporidiosis. Elevated levels of the antibodies against the antigens were associated with protection from reinfection but gradually decreased over the study period. In Bangladesh, the prevalence of cryptosporidiosis is high during the rainy season (June to October) but decreases during the dry season. Fecal anti-Cp23 and anti-Cp17 levels were unchanged irrespective of seasonality however in younger infants’ plasma anti-Cp17 and Cp23 IgG and anti-Cp17 IgA levels were markedly higher during the rainy season.

Conclusions:
In Bangladeshi children, infection resulted in anti-Cp23 and anti-Cp17 IgA and IgG antibodies independent of the number of subsequent Cryptosporidium reinfections. This was associated with a decrease in both the number of reinfections and the amount of oocyst shed in child feces.
Summary:

We found that anti-Cryptosporidium plasma and fecal antibody levels in children could contribute to the decrease in new infections in this study population.

Keywords:

Cryptosporidium; Cryptosporidium hominis; Cp17; Cp23
Introduction

Cryptosporidium is one of the top causes of diarrhea and growth faltering in Bangladeshi infants. We previously carried out a natural history study of cryptosporidiosis, tracking infants’ infections from birth until they reached 3 years of age (National Clinical Trial Identifier: NCT02764918) (Gilchrist et al. 2018; Steiner et al. 2018, 2020, 2021). These infants were inhabitants of a lower-income neighborhood within Dhaka, Bangladesh. The intensive surveillance undertaken during years 1-3, combined with the high exposure to cryptosporidiosis in this population, allowed us to analyze the impact of repeated infections (sub-clinical and symptomatic) on Bangladeshi child health (Kabir et al., 2021). The children’s immunity to infection was lacking, as most children were reinfected before they turned 3 years of age. In this paper, we present the data gained by following the children up to 5 years of age. Diarrheal and sub-clinical cryptosporidiosis decreased rapidly during this time period. To investigate the potential role of mucosal and systemic immunity samples from a subgroup of 54 children previously infected before 1 year of age were examined. Antibodies against the Cryptosporidium antigens Cp23 and Cp17 were measured in both surveillance fecal samples collected between 0-3 years of age and in the plasma samples collected between 1-5 years.

Methods

Child cohort

500 children were enrolled before 1 week of birth within an impoverished neighborhood of Dhaka, Bangladesh between June 2014 and March 2016 (Figure 1). These children were monitored for diarrhea through bi-weekly visits to their home by trained field investigators (“Cryptosporidiosis and Enteropathogens in Bangladesh”; ClinicalTrials.gov identifier NCT02764918). In addition, monthly surveillance stool samples were also collected until 3 years
of age and bi-annually to identify non-symptomatic cases of infection. Diagnostic assays were performed on surveillance and diarrheal stool as described in depth elsewhere (Steiner et al. 2018). In accordance with WHO polio eradication protocols, stool samples collected prior to May 2016 were discarded after molecular diagnostic assays were performed to identify symptomatic and asymptomatic infections (Poliovirus Containment Advisory Group 2022).

Human Sampling and Specimen Testing

Stool samples collected fresh in the field were placed in ice and deposited into the icddr,b laboratory by the end of the same day, and they were subsequently frozen at -80 within 6 hours of collection. Blood samples were collected at the Study Clinic and were brought to the lab biobank for processing, freezing and storage. A subset of fifty-four children (Figure 2A) who were identified as infected with the Cryptosporidium parasite prior to one year in age were selected to investigate the anti-Cp23 and Cp27 IgA and IgG immune profile using the fecal samples collected after May 2016 and the plasma samples. Blood samples were collected biannually from the children during years 1-3 and annually at years 4 and 5 of age (Figure 2B).

ELISA Protocol to detect anti-Cp23 and Cp27 IgG and IgA antibodies

Fecal dilution buffer was first prepared consisting of PBS, with 0.5M EDTA pH 8, 50µg/ml of soy bean trypsin inhibitor, and 666µL of 100mM PMSF. Fecal samples were then thawed and an 1100 mg aliquot was combined 1:10 in Fecal Dilution Buffer. One capful of glass beads was added, and the sample was homogenized for 5 minutes. Samples were then centrifuged at 10,000 g for 5 minutes. Supernatants were collected and stored for ELISA antibody testing.

ELISA plates were coated with 50µL per well of the CP17 or CP23 antigen solution at a concentration of 5 µg/mL, diluted in PBS. The plate was covered and left to incubate overnight on a shaker at 4 degrees. The plate was then washed 3 times with PBS with 0.05% Tween 20 (PBST) wash buffer to remove any remaining coating buffer. 150 µL of ELISA blocking solution
was added to each well, and allowed to incubate for 1 hour at 37 degrees in a shaking incubator. The plate was then washed one more time. 50 µL of fecal sample diluted 1:4 in blocking buffer were added to each well on the plate. The plate was again incubated for an hour at 37 degrees in the shaking incubator. The plate was then washed 3 times in PBST wash buffer to remove the primary fecal sample. 50 µL of HRP antihuman conjugated secondary antibody (Southern Biotechnology) was added per well, and left to incubate for 1 hour at 37 degrees. The plate was then washed 3 times with PBST and 50 µL per well of TMB Elisa Turbo (Fisher ThermoScientific) Substrate was added. The plates were incubated at room temperature (RT) for 7.5 minutes, then 50 µL of stop solution (2N H2SO4) was added to each well. Absorbance was measured at 450 nm (corrected with absorbance at 570 nm). For plasma samples, the same procedure was carried out except that the dilution of the primary samples was 1500x for IgG and 150x for IgA. In all plates, a dilution series of a pool of strong positive samples was used to generate a standard curve and determine the relative antibody values.

Results:

Cryptosporidiosis frequency

Five hundred children were enrolled within the first week of birth, and of these 286 completed five full years of observation (Figure 1). Stool samples were collected monthly for all infants (0-3 years) and at the time of diarrhea (0-5 years). Although diarrheal samples continued to be collected from all of the children enrolled in the 5 years of the study, the monthly surveillance was continued for only approximately a third of the infants (n = 154; year 3) in years 3-5 with surveillance samples being collected at 6-month intervals for the rest of the cohort (Figure 1). The incidence of diarrhea-associated cryptosporidiosis decreased rapidly over this observation period (Figure 3) as did the frequency of sub-clinical disease (Figure 4).
Anti-Cryptosporidium Cp23 and Cp17 IgA and IgG Profiles

The 54 children selected for additional analysis (number of plasma samples analyzed n=378 and fecal samples n=1836) were randomly selected from among the children who had at least one cryptosporidium infection prior to one year in age. These children had a median of 3 Cryptosporidium infections over the 5 years tracked, with a minimum of 1 infection and a maximum of 6 infections. (Figure 2).

We tracked the relationship between stools collected that tested positive for Cryptosporidium, and stools collected that tested positive for both Fecal Cp17 and Cp23. Within the cohort of 54 pediatric subjects sampled across multiple time points the fecal samples marked with red dots indicated a positive Cryptosporidium infection diagnosis via qPCR. In contrast, the blue dots corresponded to fecal samples that tested positive for both CP17 and CP23 IgA (as displayed in Figure 2). One year post plasma collection, a significant proportion of pediatric subjects were serologically positive for CP17 IgG (74%) and CP17 IgA (65.8%) Cp23 IgG (73%) Cp23 IgA (43%). Interestingly, the prevalence remained stable until a noticeable decline was observed at the five-year mark, with 55.2% and 56.7% of children retaining the seropositivity for CP17 IgG and IgA, respectively (delineated in Table 1) with antibody levels also declining as shown in Supplemental Figure 1. Cryptosporidiosis in Bangladesh occurs more frequently in the rainy season (June -October) (Steiner et al. 2018a). We therefore examined our data not only by child age and antibody isotype but also depending on whether the samples were collected during the rainy or dry seasons. Early in life, the plasma IgG values and anti-Cp17 IgA values were markedly higher in younger children during the rainy season possibly reflecting an increased exposure to the parasite (Figure 5). This effect however appeared relatively short-lived as there was no age related effect in the linear regression analysis of the samples collected during the dry season. Fecal IgA values in both rainy and dry season were both higher early in life perhaps reflecting the higher levels of exposure of the gut immune system to this parasite (Figure 5).
Discussion

Previous studies have shown that the Cryptosporidium antigens Cp17 and CP23 in blood plasma are associated with protection from reinfection in children through 3 years of life. (Kabir et al. 2021) Here, we find continued protection through 200 days of life for CP23 IgG and IgA in the plasma in the 54 child sample group we analyzed (Supplemental Figure 2).

The key finding of this paper is that in younger children the levels of anti-Cryptosporidium antibodies to Cp17 and Cp23 are higher in fecal material but in plasma antibodies, this was only observed in samples collected during the rainy season when new infections were frequent and not observed the plasma samples collected during the dry season when new infections were less common. This observation suggested that the systemic antibody elevation effect was short-lived and due to new infections in naive individuals (Crompton et al. 2010). In the fecal material collected from the younger children IgA antibodies were high in samples collected during both rainy and dry seasons possibly reflecting the greater exposure of the gut-associated immune system to the enteric parasite. Thereafter, possibly due to differences in antibody affinity, only lower antibody levels were required for the development of a sterile immunity. The number of new cryptosporidium infections (diarrheal and sub-clinical) declined in the older children.

The current study had a few limitations to consider. One of them was the challenge of unequivocally linking a diarrhea episode to Cryptosporidium, as children in this community were concurrently infected with various enteropathogens (Taniuchi et al. 2013). In an attempt to rectify this issue, Cryptosporidium-associated diarrheal infections were defined as an episode of diarrhea that came with a new Cryptosporidium infection, indicated by the preceding stool sample, either from regular surveillance or from a diarrheal episode, testing negative for Cryptosporidium for at least 65 days prior. (Steiner et al. 2018)
Another constraint was that stool samples for surveillance were collected only on a monthly basis, which might have led to overlooking some subclinical infections. This could possibly lead to an underestimation of cryptosporidiosis infections.

Despite these limitations, the study did have significant strengths. These included its longitudinal design, which entailed a combination of routine and clinical specimen collection, complemented by qPCR and ELISA testing. The discovered correlation between high Cp23 IgA and IgG plasma antibody level and protection from reinfection through 200 days post birth raises the possibility that a cryptosporidiosis vaccine could significantly improve child health, even if it doesn't provide complete protection from infection.

Study approval

The study was approved by the Ethical and Research Review Committees of the International Centre for Diarrhoeal Disease Research, Bangladesh (PR-13092) and the Institutional Review Board of the University of Virginia (IRB# 20388). The ClinicalTrials.gov identifier is NCT02764918. Informed written consent was obtained from the parents or guardians for the participation of their child in the study.

Funding:

This work was supported by the National Institute of Allergy and Infectious Diseases (NIAID) grants awarded to CAG and WAP (R01 AI-043596), CAG (R21 AI-109118); and WAP (R21 AI154862) as well as the Bill and Melinda Gates Foundation Grant (OPP1100514) to ASGF. The funders had no role in study design, data collection and analysis or decision to submit for publication.

Acknowledgments: We wish to thank the field workers, nurses, laboratory staff of the Parasitology Laboratory of icddr,b who worked for this project, and parents and children at the
icddr,b study sites who participated in this study and without whom we could not have completed this research. We also want to thank our colleagues Farhad Hossain, and Sultan Mahmud for their assistance and advice during this project. Work at icddr,b is supported by the core donors (Government of the People’s Republic of Bangladesh, GAC, Sida, UKAid).

Author contributions:

Drafting of the manuscript was performed by WAOP and CAG. All authors edited and approved the final manuscript. CAG, WAP and RH conceived of the analysis plan and WAOP and BH performed the experiments WAP and RH founded the birth cohort and directed the study. UN curated and maintained the study database. Data analysis was performed by HHS and GBM. Fieldwork and data collection at the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) were performed by MA and MK, with supervision from ZN, ASGF and RH.

Conflicts of Interest:

The authors note no conflicts of interest.

References

Flow diagram of Birth COHORT Study

- Year-end visit was used as a surrogate market of active study participation
Figure 2 Infections and samples collected in a subset of infants selected for additional analysis
A) Infections Child Within 5 Years of Birth Y axis indicates the number of infections X axis the individual infants selected for this analysis B) On the X-axis is the child’s age in years. On the Y-axis is the Child’s unique ID. Green lines represent Plasma Collection time points, the red dots represent stool samples that tested positive for Crypto, and the blue dots represent stool samples that tested positive for both Cp17 and Cp23 IgA & IgG.
Figure 3 Incidence of Diarrheal Cryptosporidiosis in the Mirpur cohort. Data shown is only from the children who remained in the study for the entire 5 years; Diarrheal cryptosporidiosis phenotype is defined as an infection in which symptoms were coincident with the qPCR detection of Cryptosporidium in fecal DNA. Positive samples were classified as a separate infection only if occurring greater than 65 days after the preceding positive sample. Infections occurring within each 6-month interval were grouped and the number shown on the Y axis. X axis indicates child age in days. Although cryptosporidiosis was known to decrease in frequency diarrheal stool collection and analysis took place > 3 years of age although there was a decrease in surveillance. The COVID-19 pandemic may have affected diarrheal sample collection in 4.5–5-year-old children although the data used in this analysis focused on the 286 children who remained active in the study and completed the five-year study visit.
Figure 4: Decline in the frequency of sub-clinical cryptosporidiosis in the Mirpur cohort. A) Sub-clinical cryptosporidiosis phenotype is defined as an infection in which no symptoms were observed at the time of qPCR detection of Cryptosporidium in fecal DNA. Stool surveillance was decreased after the children reached 3 years of age with monthly stool samples being collected from only a third of the infants, all other collections occurred bi-annually. Y axis indicates the number of fecal samples collected during each 30.4-day window (year end is indicated by the filled bar). Sub-clinical cryptosporidiosis is therefore expressed as a percentage of the number of samples collected. B) Y-axis indicates the percentage of infections binned into 6-month intervals as shown on the X axis which indicates the child’s age in years. The dotted lines indicate the 95% CI of the non-linear curve fit line.

A

B

CC-BY-NC-ND 4.0 International license. The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Table 1 Prevalence of seropositive samples This table shows time post birth of the plasma collection, and the percent of children with a positive signal via ELISA for Cp17 IgG and IgA antibody % positives is shown in the brackets.

<table>
<thead>
<tr>
<th>Age Range (days)</th>
<th>Anti-Cp17 IgG</th>
<th>Anti-Cp17 IgA</th>
<th>Anti-Cp23 IgG</th>
<th>Anti-Cp23 IgA</th>
</tr>
</thead>
<tbody>
<tr>
<td>[182-365]</td>
<td>22 (73%)</td>
<td>8</td>
<td>11</td>
<td>19 (63%)</td>
</tr>
<tr>
<td>[365-548]</td>
<td>35 (67%)</td>
<td>17</td>
<td>20</td>
<td>32 (61%)</td>
</tr>
<tr>
<td>[548-730]</td>
<td>40 (68%)</td>
<td>19</td>
<td>27</td>
<td>32 (54%)</td>
</tr>
<tr>
<td>[730-913]</td>
<td>28 (85%)</td>
<td>14</td>
<td>18</td>
<td>24 (57%)</td>
</tr>
<tr>
<td>[913-1096]</td>
<td>46 (86%)</td>
<td>8</td>
<td>21</td>
<td>33 (61%)</td>
</tr>
<tr>
<td>[1096-1278]</td>
<td>18 (78%)</td>
<td>3</td>
<td>6</td>
<td>15 (71%)</td>
</tr>
<tr>
<td>[1278-1461]</td>
<td>14 (77%)</td>
<td>4</td>
<td>7</td>
<td>11 (61%)</td>
</tr>
<tr>
<td>[1461-1644]</td>
<td>17 (61%)</td>
<td>11</td>
<td>11</td>
<td>17 (61%)</td>
</tr>
<tr>
<td>[1644-1827]</td>
<td>8 (47%)</td>
<td>9</td>
<td>10</td>
<td>7 (41%)</td>
</tr>
<tr>
<td>[1827-2009]</td>
<td>8 (33%)</td>
<td>16</td>
<td>15</td>
<td>9 (38%)</td>
</tr>
</tbody>
</table>

Total number of plasma samples assayed n=455
Figure 5 Analysis of the seasonal IgG (A & B) and IgA antibodies (C-F) to the Cp17 (A,C,E) and Cp23 (B,D,F) antigens in plasma (A-D) and fecal material (E&F). Relative antibody levels are shown on the Y-axis with the children’s age in days shown on the X-axis. Blue symbols are samples collected during the Bangladesh rainy season (June to October); red symbols dry season. Linear regression P-values and R2 values are shown for IgG and IgA, as well as a line (colored per season) and confidence intervals (gray bands) fit to each.
Supplemental Figures

Supplemental Figure 1: Anti-Cryptosporidium antibody Levels Decrease in older children

On the X-axis is the days since the child’s previous PCR positive stool sample. On the Y-axis is the relative units of antibody concentration observed in that particular plasma sample (pink dot).
Supplementary Figure 2 Protective association of plasma anti-CP17 and Cp23 IgG and Cp23 IgA: On the X-axis is the number of days after 1 year of life. The Y-axis represents the percentage of children that were not reinfected over that period of time.