Title: Single-cell characterization of peripheral blood mononuclear cells from Crohn’s disease patients on vedolizumab

Short title: PBMC characterization of CD patients on VDZ

Andrew Y.F. Li Yim¹,²,³,⁴,⁵,⁶,*, Ishtu L. Hageman¹,²,³,*, Vincent Joustra²,³,*, Ahmed Elfiky¹,²,⁴, Mohammed Ghiboub¹,²,⁵,¹¹, Evgeni Levin⁸,⁹, Jan Verhoef¹,²,¹⁰,¹¹,¹², Caroline Verseijden¹, Iris Admiraal-van den Berg¹, Marcel M.A.M. Mannens⁶,⁷, Marja E. Jakobs⁶, Susan B. Kenter⁶, Alex T. Adams¹³, Jack Satsangi¹³, Geert R. D’Haens²,³, Wouter J. de Jonge¹,²,³,¹⁴,†, and Peter Henneman²,⁶,⁷,¹¹

¹Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands.
²Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
³Department of Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
⁴Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
⁵Emma Children’s Hospital, Pediatric Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
⁶Genome Diagnostics Laboratory, Department of Human Genetics, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands.
⁷Amsterdam Reproduction and Development, Amsterdam, Netherlands
⁸Department of Vascular Medicine, AmsterdamUMC location University of Amsterdam, Amsterdam, Netherlands
⁹Horaiizon BV, Delft, Netherlands
¹⁰Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Free University of Amsterdam, Amsterdam, Netherlands.
¹¹Amsterdam Infection & Immunity, Amsterdam, Netherlands
¹²Cancer Center Amsterdam, Amsterdam, Netherlands
¹³John Radcliffe Hospital, Translational Gastroenterology Unit, Oxford, United Kingdom.
¹⁴Department of Surgery, University of Bonn, Bonn, Germany.

*Equally contributing first authors.
†Equally contributing senior authors.

Grant support: This work was in part funded by the Helmsley Trust Foundation.

Corresponding author: Andrew Y.F. Li Yim

Email: a.y.liyim@amsterdamumc.nl

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Authors contributions:
Conduction of the study, laboratory, and writing of the manuscript: ALY, IH; study design: ALY, IH, VJ, WJ, PH; single-cell RNA-sequencing and analysis: ALY, IH, MJ, SK; mass cytometry analyses: JV, IH, ALY; flow cytometry analyses: ALY, IH, AE, CV, IAB; bulk RNA-sequencing and analysis: ALY, IH, AE, MJ; bioinformatics analysis: ALY, JV; patients samples collection: VJ, IH; sample preparation: IH, MG; supervision: PH, WJ, GD; reviewing and editing: WJ, GD, PH, EL, JS, AA, MM. All authors have read and agreed to the published version of the manuscript.

This work has been published as part of a thesis 1.

Abstract

Background & Aims. Vedolizumab (VDZ) is a monoclonal antibody approved for the treatment of Crohn’s disease (CD) by abrogating the gut-homing behavior of various leukocytes. Despite its efficacy, non-response to VDZ is common in clinical practice. Here, we performed an observational case-control study to interrogate the differences between responders and non-responders to VDZ during treatment.

Methods. CD patients on VDZ treatment were classified as steroid-free responder or non-responder based on endoscopic- (≥3 drop in Simple Endoscopic Score for Crohn’s Disease (SES-CD)), biochemical (≥50% reduction in C-reactive protein (CRP) and fecal calprotectin) and/or clinical response criteria (≥3 point drop in Harvey-Bradshaw Index (HBI)) during which peripheral blood was collected. Peripheral blood mononuclear cells (PBMCs) were isolated from a cohort of four responders and four non-responders which were then subjected to single-cell RNA-sequencing (scRNAseq) and mass cytometry by time of flight (CyTOF) analyses.

Results. The most prominent differences between responders and non-responders were observed in the T and myeloid compartment, which were more and less abundant, respectively, among non-responders. T cells from non-responders generally presented lower expression of inhibitors of the NFκB signaling pathway. Abundance-wise, a lower concentration of plasmacytoid dendritic cells (pDCs) was observed among non-responders, which could be correlated with a higher abundance of pDCs in lesional tissue based on a public dataset. Classical monocytes presented an different transcriptome, with non-responders presenting lower expression of genes involved in wound-healing and cytokine-cytokine receptor signaling.
Conclusions. Non-response to VDZ during treatment is associated with differences in abundance and expression of the T and myeloid compartment.

Keywords: single-cell RNA-sequencing, scRNAseq, cytometry by time of flight, CyTOF, vedolizumab, therapy response, T cell, pDC, classical monocytes.

Introduction
Crohn’s disease (CD) is an incurable, chronic, inflammatory condition of the gastrointestinal tract characterized by a relapsing-remitting transmural inflammation of the digestive tract belonging to the family of inflammatory bowel diseases (IBD). Current treatments for CD include the use of monoclonal antibodies that target mediators of inflammation with the goal of ameliorating the inflammatory phenotype and/or maintaining a state of clinical and endoscopic remission. One such monoclonal antibody is vedolizumab (VDZ), which was approved for use in CD patients in 2014 by the United States Food and Drug Administration as well as the European Medicines Agency.

VDZ targets the gut homing receptor complex integrin α4β7 (also known as lymphocyte Peyer’s patch adhesion molecule 1; LPAM-1) 3,4, which prevents it from binding mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1), a molecule expressed exclusively by the intestinal endothelial cells. By preventing integrin α4β7 from binding MAdCAM-1, the attachment and stabilization of circulating immune cells that express integrin α4β7 to high endothelial venules in the gut is destabilized, thereby abrogating gut-homing capabilities 5–7. While VDZ has traditionally been discussed within the context of the T cell lineage 8–11, more recent studies suggest that the myeloid 12,13 as well as B cells 14 are affected by VDZ treatment as well. Despite the advances VDZ therapy has provided patient care, the efficacy or therapy response rate is reported to be approximately between 30% to 45% 2,15–17 with a recent meta-analysis indicating that loss of response towards VDZ among CD patients was estimated at 47.9 per 100 person-years 18. To date, we have no proper understanding why only a subgroup of patient responds to therapy, nor do we have a prognostic biomarker for predicting response to VDZ therapy. To better understand how response to VDZ manifests, we conducted an exploratory case-control study to characterize the immune cell composition of peripheral blood mononuclear cells (PBMCs) from CD patients on VDZ treatment. Here, we compared the composition between responders and non-responders using single-cell RNA-sequencing (scRNAseq) and cytometry by time of flight (CyTOF).
Methods

Sample collection and preparation

Blood samples were obtained from patients included in the EPIC-CD study, which is a multi-center consortium with the goal of identifying prognostic biomarkers at the level of peripheral blood (PBL) DNA methylation capable of predicting response to adalimumab, infliximab, vedolizumab, and ustekinumab prior to treatment in CD patients. For the current study, 8 VDZ-treated CD patients (4 responders and 4 non-responders) were sampled for peripheral blood at a median of 26 weeks into treatment during routine care at the AmsterdamUMC hospital, location AMC, Amsterdam, Netherlands (Table 1). Patients were labeled as steroid-free responder to VDZ if they had measurable drug concentrations in serum and presented endoscopic- (≥3 drop in Simple Endoscopic Score for Crohn’s Disease (SES-CD)), biochemical (≥50% reduction in C-reactive protein (CRP) and fecal calprotectin), and/or clinical response criteria (≥3 point drop in Harvey-Bradshaw Index (HBI)) relative to their baseline measurements. Immediately after collecting peripheral blood, peripheral blood mononuclear cells (PBMC) were isolated by means of Ficoll (GE Healthcare) separation and IMDM medium (Gibco) supplemented with 10% DMSO and 50% FBS (Serana). Isolated PBMCs were stored overnight at -80 C in Mr. Frosty freezing containers (Thermo) where after they were transferred to liquid nitrogen until cohort completion.

Single-cell RNA-sequencing analysis

Samples were removed from the cryostat and thawed on ice. Thawed PBMCs were washed and then labelled using the hashtag oligo (HTO) antibodies for multiplexing purposes whereupon the oligo-tagged PBMC suspensions were then mixed and distributed across 6 GEM-wells on the Chromium controller (10X Genomics). Single-cell barcoded partitions were prepared using 10X chemistry v3 where after separate sequencing libraries were prepared for HTOs and the actual mRNA after size-selection. Libraries were sequenced on the Illumina HiSeq4000 in a 150 bp paired-ended fashion at the Core Facility Genomics, Amsterdam UMC. The mRNA libraries were sequenced on 150M reads per GEM-well, whereas the HTO libraries were sequenced to a depth of 50M reads per GEM-well. Raw data was imported and analyzed in R. A detailed overview as well as the data analyses can be found in the Supplementary Information.

Mass cytometry by time-of-flight

Concurrent with the single-cell RNA-sequencing analyses, mass cytometry by time of flight (CyTOF) was performed on a separate aliquot of the PBMC samples. Here, we measured the cell-surface expression of 37 proteins with a particular focus on the T cell lineage. Acquisition was performed on the Fluidigm Helios system. Sample was diluted in H2O and
supplemented with 10% v/v of EQ Four Element Calibration beads (Fluidigm). Staining, barcoding, data acquisition, and analyses were performed in R and are described in Supplementary Information. An overview of all the antibodies used and their clones can be found in Supplemental Table 1.

Flow cytometry of the plasmacytoid dendritic cells
In addition to using an aliquot of PBMCs of the same patients analyzed for scRNAseq and CyTOF, an additional two patients (1 responder and 1 non-responder) were included in the flow cytometry analyses. Upon thawing, PBMCs were washed in PBS and stained for a live/dead cell viability marker (LifeScience, Amsterdam, the Netherlands). Cells were subsequently stained for surface markers in FACS buffer (0.5% BSA, 0.01% NaN3 in PBS) using the following antibodies: CD11c-PerCP Cy5.5 (clone: S-HCL-3, BioLegend), HLA-DR-Alexa Fluor 700 (clone: LN3, eBioscience), CD123-FITC (clone: 6H6, BioLegend), CD1C-PE-Cy7 (clone: L161, BioLegend), pan-lineage (CD3/CD19/CD20/CD56)-APC (clones: UCHT1;HIB19;2H7;5.1H11, BioLegend), CD14-BD Horizon V500 (clone: M5E2, Becton Dickinson) and CD16-PE (clone: 3G8, Becton Dickinson). Acquisition was performed on the BD LSR Fortessa™, where plasmacytoid DCs (pDCs) were identified as (T/B/NK)Lin -HLA-DR+CD14-CD16-CD11c-CD123+. Analysis was performed using FlowJo (Treestar) and R. The gating strategy can be found in the Supplementary Information. An overview of all antibodies and their clones used can be found in Supplemental Table 2.

RNA-sequencing of the classical monocytes
Akin to the flow cytometric analyses, PBMCs were washed in PBS and stained for a live/dead cell viability marker (LifeScience, Amsterdam, the Netherlands) alongside the antibodies mentioned above. Cell sorting was conducted on the SH800 Cell Sorter (Sony). Classical, intermediate, and non-classical monocytes were identified as (T/B/NK)LinHLA-DR⁺CD14⁺⁺CD16⁺, HLA-DR⁺CD14⁺⁺CD16⁺, and HLA-DR⁺CD14⁺CD16⁺, respectively. The classical monocytes were sorted out and were subsequently processed for RNA sequencing. Due to low input material, classical monocytes mRNA was converted into cDNA using the Ovation RNA-seq System V2 kit (NuGEN; Agilent, Santa Clara, United States), whereupon sequencing libraries were prepared using the Ovation Ultralow System V2 kit (NuGEN; Agilent, Santa Clara, United States) and thereafter sequenced in a 150 bp paired-ended fashion on the Illumina NovaSeq6000 to a depth of 40 million reads at the Amsterdam UMC Core Facility Genomics. The data analyses can be found in the Supplementary Information.
Results

Cohort assembly

CD patients on VDZ treatment were followed at the AmsterdamUMC, location AMC as part of routine care. All included patients provided informed consent and the sampling was in accordance with the institutional ethics committee (METC reference number: NL53989.018.15). Response to treatment in the EPIC-CD consortium was defined as endoscopic- (≥50% drop in simple endoscopic score for Crohn’s Disease (SES-CD)) in combination with biochemical (≥50% reduction in C-reactive protein (CRP) and fecal calprotectin or an absolute CRP < 5.0 µg/g and fecal calprotectin < 250 µg/g) and/or clinical response (≥3 point drop in Harvey-Bradshaw Index (HBI)) in the presence of measurable drug serum concentrations and in the absence of corticosteroid usage. For this study, we selected a cohort of 8 CD patients at a median of 14 weeks into VDZ treatment, which were classified as responder (N = 4) and non-responder (N = 4) (Methods, Table 1, and Figure 1).

ITGA4 expression detected on all PBMCs

Single-cell RNA-sequencing (scRNAseq) and mass cytometry by time of flight (CyTOF) provided transcriptional and proteomic profiles of 15,981 and 16,000 (subsampled from 1,783,641) cells, respectively. Cells were annotated to 31 known cell types (Figure 2A-B) using a combination of automatic and manual curation based on canonical markers (Figure 2C-D). We observed general agreement between the two experiments (r = 0.73; Figure 2E). Interrogation of the protein expression of integrin α4 as well as its encoding gene ITGA4 were measurably expressed in all cell types (Figure 2F-G). By contrast, gene expression of ITGB7 was notably muted, with the plasma cells presenting the highest expression. Nonetheless, our observations confirm that genes encoding integrin α4β7 expression are active in many cell types and is hence not solely restricted to the T cells.
Circulating T cells from VDZ non-responders express lower levels of inhibitors of the NFκB signaling pathway

Differential abundance analysis of both the scRNAseq and CyTOF data indicated concordant differences between responders and non-responders (Figure 3A-C and Supplemental Table 3). Overall, we observed a significantly lower and higher concentration of myeloid (p-value = 4.6E-03) and T cells (p-value = 0.029), respectively, among the non-responders (Figure 3D). At a more granular level, a significantly higher proportion of CD8 T central memory (CD8 TCM) was observed through CyTOF (p-value = 0.01), which we could reproduce in direction, but not in significance, through scRNAseq (p-value = 0.89) (Figure 3E). At scRNAseq level, a significantly higher and lower proportion was observed for the mucosal associated invariant T cells (MAIT; p-value = 0.029) (Figure 3F) and plasmacytoid dendritic cells (pDCs; p-value = 0.041) (Figure 3G), respectively, which we were unable to reproduce using CyTOF as no markers were included for either MAIT or pDCs. As VDZ binds T cells in particular⁸, we investigated whether their transcriptome presented response-associated differences (Supplemental Table 4). We specifically interrogated ITGA4 and ITGB7 expression but found no differences in expression for ITGB7. By contrast, ITGA4 was found to be significantly higher in non-responders when looking at CD4 TEM, CD4 Treg, CD8 TCM, and CD8 TEM (Figure 3H). Notably, we observed for multiple T cell subsets that genes encoding inhibitors of the NFκB signaling pathway, such as TNFAIP3 and NFKBIA, were significantly lower in expression amongst non-responders (Figure 3H).

VDZ non-responders present higher concentrations of circulating plasmacytoid dendritic cells

As our CyTOF panel did not include markers for pDCs, we conducted flow cytometry analyses where we identified the (T/B/NK)Lin^HLA-DR^CD11c^CD123^ fraction (Figure 4A). Indeed, we observed a significantly lower proportion of circulatory pDCs among responders relative to the non-responders (Figure 4B). Comparing the transcriptome of responders with non-responders revealed no statistically significant response-associated differences after correcting for multiple testing (Figure 4C and Supplemental Table 5). However, interrogating the expression of ITGA4 and ITGB7 specifically indicated a notably lower expression of ITGB7 amongst non-responders albeit statistically non-significant (p-value = 0.32) (Figure 4D and Supplemental Table 5). We hypothesized that the diminished circulatory pDC concentration among non-responders was due to the recruitment of pDCs into the gastrointestinal tract thereby removing them from circulation. To corroborate our hypothesis, we interrogated the publicly available single-cell transcriptomic data from CD patients’ intestinal biopsies extracted from ileal lesions (involved) and adjacent non-lesional (uninvolved) tissue as published by Martin et al.³⁹. Upon identifying the pDC fraction (Figure
4E), we found that the pDC proportion relative to the total immune fraction was suggestively higher in lesional compared to non-lesional areas (p-value = 0.067) (Figure 4F), indicating that the concentration pDCs are higher under inflammatory conditions, thereby supporting our hypothesis.

Classical monocytes from VDZ non-responders present an altered transcriptome.

UMAP visualization of the monocytes indicated response-associated clustering (Figure 5A), which was most visible for the classical monocytes, suggesting transcriptome-wide differences. Differential expression analysis of the classical monocytes identified 30 statistically significant differentially expressed genes (DEGs) (Figure 5B and Supplemental Table 6). Notably, responders presented higher expression of several monocyte/macrophage-function related genes including genes encoding cytokines (CXCL2, CCL3, CCL4), mediators of host defense signaling (RIPK2), and macrophage scavenging receptor (MSR1), typically observed in M2-like macrophages. By contrast, complement factor D encoding gene CFD and negative regulator of NFκB signaling pathway VSTM1 were higher among non-responders (Figure 5C). We were able to confirm differential expression for CFD and MSR1 through bulk RNA-sequencing on sorted classical monocytes (Figure 5D and Supplemental Table 7). Specifically interrogating ITGA4 and ITGB7 indicated neither significant nor visible differences in the gene expression thereof (Figure 5E). Gene set enrichment analysis against the KEGG database identified general lower expression of the cytokine-cytokine receptor signaling pathway among non-responders (Figure 5F-G and Supplemental Table 8). We were therefore interested in identifying which other PBMCs were the sender/receiver to the differentially expressed cytokines produced by the classical monocytes. Among classical monocytes derived from responders, we observed a significantly higher expression of vascular endothelial growth factor (VEGF). Notably, VEGF receptor 1-encoding FLT1 was found to be higher in both the CD4T naïve as well as the classical monocytes (Figure 5H), suggesting a more wound-healing phenotype in classical monocytes obtained from responders.

Discussion

We demonstrate that VDZ-treated CD patients differ in cellular composition and intrinsic cellular behavior when comparing responders with non-responders. Interrogating the T cell compartment suggested a higher abundance of MAIT and CD8 TCM among non-responders. Notably, both T cells from non-responders appeared to be transcriptionally primed for NFκB signaling, a signaling pathway typically reserved for inflammation, by downregulating inhibitors thereof. The priming of the NFκB pathway would match the non-responding...
phenotype, where inflammation is still present despite treatment. While our results confirm that response to VDZ affects the T cell compartment, we also find response-associated differences within the myeloid compartment. We observed that the circulatory pDCs were less abundant amongst non-responders. The pDC population represents a unique cell type whose ontogeny and lineage affiliation remain under debate due to its similarity to both myeloid and lymphoid lineages. Previously, pDCs were called “natural interferon producing cell” as they can produce large amounts of type I interferons (IFN), which typically occurs in response to viruses. This in turn activates NK and B cells, thereby bridging the innate and adaptive immune system. Remarkably, pDCs constitute only 0.4% of all measured cells when looking at all measured PBMCs in our scRNAseq experiment and only 0.12% of the immune compartment when interrogating ileal tissue from Martin et al. Despite the rarity of this cellular population, they have been implicated in multiple immune-mediated inflammatory disorders (IMIDs). Currently, an ongoing phase II clinical trial is testing the efficacy of litifilimab, a monoclonal antibody against pDC-specific binding of blood dendritic cell antigen 2 (BDCA2), in systemic and cutaneous lupus erythematosus, where litifilimab is thought to dampen type I IFN production. However, the association of pDCs with CD is less well documented. Previous studies have indicated that the circulatory pDC population is significantly decreased in IBD patients with active disease, with subsequent research by the same authors showing increased infiltration into the colonic mucosa and mesenteric lymph node (MLN). This largely corroborates our own observations, as samples were obtained during treatment and the difference between responders and non-responders is, by definition, a difference in inflammation. However, controversy exists on what role pDCs play in the pathogenesis of IBD as experiments have yielded conflicting results. It has been reported that pDCs can aggravate, protect, or are dispensable in the development of experimental IBD. Accordingly, it remains unclear how pDCs might play a role in responsiveness towards VDZ.

Significant differences in expression were observed for the circulating classical monocytes, which presented a more scavenger-like, wound-healing phenotype amongst responders. By contrast, classical monocytes from non-responders appeared to present higher expression of CFD, a gene involved in the alternative complement pathway. Complement factor D cleaves factor B forming Bb, thereby activating the complement cascade. The alternative complement pathway is an important component of the innate immune response where it is typically used as first line defense against microbes. Our results would imply that the classical monocytes from non-responders are primed at activating the alternative complement pathway. Such monocytes could potentially be recruited into the intestinal compartment, where they would differentiate into macrophages. Intestinal inflammatory macrophages are one of the few macrophages that are purported to be supplemented by the
circulating monocyte population during inflammatory episodes. We show that monocytes indeed present the capability of forming integrin α4β7, based on their gene expression, which corroborates observations by Schleier et al. who showed that monocytes indeed present functional integrin α4β7 on their surface, with VDZ abrogating their interactions with MAdCAM-1 in vitro. While our observations do not indicate any difference in expression of either ITGA4 or ITGB7, we do note that the classical monocytes, alongside all other myeloid cells, were less abundant among non-responders, which we hypothesize is due to their recruitment out of circulation and into the intestinal compartment.

Taken together, it is evident that response to VDZ during treatment manifests itself at the single-cell level. While the current study provides novel insights into the diagnostic capabilities single-cell transcriptomics for elucidating response to VDZ, we appreciate the shortcomings of this study in terms of the limited sample size as well as the largely associative nature of the observations. More importantly, patient-samples taken during treatment do not hold prognostic value in predicting response to therapy. Future experiments would need to be conducted to validate the differences observed at the level of single-cell transcriptomics in a larger independent cohort to fully understand its utility as biomarker. Furthermore, to disentangle inflammation from VDZ-treatment, samples would need to be included prior to the start of treatment. Moreover, it is imperative to compare our observations with CD patient cohorts treated with other inflammatory-reducing medication to understand which observations VDZ-specific and which observations are inflammation-associated. Such an approach would not only allow for the identification of prognostic biomarkers for VDZ response, but also provide potential targets that might be involved in the manifestation of drug non-response. Taken together, we demonstrate that patients on VDZ treatment present differences in the cellular heterogeneity of PBMCs. Further confirmatory studies are necessary to understand the full potential of the observed differences.

Data Transparency Statement

The data that support the findings of this study are available under controlled access. The raw sequencing data can be found at the European Genome-phenome Archive EGAS00001007328 and EGAS00001007361 for the single-cell RNA-sequencing data and the bulk RNA-sequencing on classical monocytes, respectively. All scripts can be found at https://github.com/ND91/HGPRJ0000008_EPICCD_anti_a4b7_sc.

Funding

This work was partly funded by the Helmsley Foundation as well as local funds from the Department of Human Genetics and the Tytgat Institute for Liver and Intestinal Research.
AmsterdamUMC University of Amsterdam, Amsterdam, Netherlands. The study sponsors had no role in study, design, collection, analysis, or interpretation of data.

Conflicts of interest

The following authors disclose the following within the past 5 years. ALY received speaker fees from Janssen, Johnson & Johnson and was employed by GSK. WJ received speaker fees from Janssen, Johnson & Johnson. GRD received speaker fees from Janssen, Johnson & Johnson. The remaining authors disclose no conflicts.

Acknowledgements

We are thankful to all the participants included in the EPIC-CD study as well as the Core Facility Microscopy and Cytometry and the Core Facility Genomics located at the AmsterdamUMC for their expert assistance in the single-cell RNA-sequencing, mass cytometry, and flow cytometry experiments and analyses.

Legends

Figures

Figure 1. Sampling strategy. Peripheral blood samples were obtained from 4 CD patients that responded to VDZ and 4 CD patients that did not respond to VDZ. Response was defined based the Harvey Bradshaw Index (HBI), C-reactive protein (CRP), fecal calprotectin (fCalpro), and simple-endoscopic score CD (SES-CD). From peripheral blood, peripheral blood mononuclear cells (PBMCs) were isolated which were subsequently used for single-cell RNA-sequencing and mass cytometry by time of flight (CyTOF) using the Chromium controller (10X Genomics) and CyTOF3-Helios systems (Fluidigm), respectively. Created with BioRender.

Figure 2. ITGA4 is expressed by all cell types. Uniform manifold approximation and projection (UMAP) visualization of the PBMCs from CD patients on VDZ that respond (R; N = 4) and that do not respond (NR; N = 4) colored by the cellular identity as obtained through (A) single-cell RNA-sequencing (scRNAseq) and (B) mass cytometry by time of flight (CyTOF). Visualization of the marker expression used to annotate the PBMCs at the level of (C) gene expression through a dotplot where size and color intensity represent the percentage cells with measurable expression and the median expression, respectively, and (D) protein expression through a heatmap with the color representing the median expression. (E) Scatterplot representing the percentage cell types per sample relative to all PBMCs for scRNAseq on the X-axis and CyTOF on the Y-axis colored by lineage show general
agreement between the scRNAseq and CyTOF experiment. UMAP (left) and boxplot (right) visualization of the gene expression for (F) ITGA4, ITGB7, as well as (G) the protein expression for integrin α4 per cell type shows that gene and protein expression of ITGA4 can be found on all cell types, whereas ITGB7 expression is more muted.

Figure 3. T cells present response-associated differences in abundance and expression. Boxplot visualizations of the cell type abundances relative to all measured PBMCs colored by response for (A) scRNAseq and (B) CyTOF. (C) Scatterplot comparing the differences in abundance based on scRNAseq on the X-axis and CyTOF on the Y-axis. Values represent log2-transformed responder:non-responder ratios per cell type and colors represent the parent lineages of each cell type. (D) Boxplot visualizations of the mean scRNAseq-CyTOF log2-transformed responder:non-responder ratios shows that T and myeloid cells are significantly more and less abundant amongst non-responders, respectively. Asterisks denote statistical significance using a one-sample t-test against 0. * p<0.05; ** p<0.01. Boxplot visualizations of the abundance (E) CD8 T central memory (CD8 TCM) in the (left) CyTOF experiment and (right) scRNAseq experiment, (F) mucosal associated invariant T (MAIT) cells, and (G) plasmacytoid dendritic cells (pDC) relative to all PBMCs. P-values were calculated using the t-test implementation in speckle::propeller. (H) Dotplot visualization representing the most significant differentially expressed genes, as well as ITGA4 and ITGB7 per T cell subset. Size represents statistical significance, transparency the significance threshold, and color whether the gene is upregulated in either responders (green) or non-responders (orange). A notable lower expression of TNFAIP3 and NFKBIA can be observed among non-responders.

Figure 4. Lower abundance of plasmacytoid dendritic cells in PBMCs of non-responding patients.

(A) Flow cytometry strategy used to identify and quantify the HLA-DR⁺CD14⁻CD16⁻CD11c⁻ CD123⁺ pDCs where red boxes indicate selected events. (B) Boxplot visualizations of the pDC abundances relative to all measured PBMCs annotated with the p-value obtained through t-test. (C) Volcanoplot comparing pDCs from responders with non-responders where the X-axis represents the log2(fold-change) and the Y-axis the −log10(p-value). Highlighted in red are ITGA4 and ITGB7. (D) Boxplot visualizations of the ITGA4 and ITGB7 expression in pDCs showing visible but no statistical significant differences between responders and non-responders. P-values were calculating using the t-test implementation in speckle::propeller. (E) UMAP visualization of GSE134809 showing (left) the identification strategy of the PTPRC[CD45]⁺EPCAM⁺HLA-DRA⁺ITGAX[CD11c] IL3RA[CD123]⁺CLEC4C[BDC2A]⁺ pDCs, (right) as highlighted by the red box. (F) Boxplot
visualization of the ileal pDC abundance relative to all immune cells colored by whether they originate from lesions (involved) or outside a lesion (uninvolved) shows that lesional pDCs are more abundant than non-lesional pDCs.

Figure 5. Classical monocytes from non-responding patients present lower expression of cytokine-cytokine signaling. (A) UMAP visualization of the monocytes colored by colored by response as dots (left) and a density plot (right) shows distinct clustering by response for the classical monocytes in particular. (B) Volcanoplot comparing classical monocytes from responders with non-responders where the X-axis represents the \log_2(fold change) and the Y-axis the $-\log_{10}(p$-value). Statistically significant differences (p-value$_{BH-adjusted}<0.05$) are depicted in black. (C) Boxplot visualizations of CFD and MSR1 expression in classical monocytes colored by response and grouped by patient where each dot represents an individual cell. Boxplot visualizations of (D) CFD and MSR1, and (E) ITGA4 and ITGB7 where the Y-axis represents gene log-transformed (left) normalized pseudobulk expression from our scRNAseq experiment and (right) normalized expression obtained through bulk RNAseq analysis on classical monocytes colored and grouped by response. P-values were obtained through Wald test as implemented in DESeq2. (F) Volcanoplot comparing classical monocytes from responders with non-responders where the X-axis represents the normalized enrichment score (NES) and the Y-axis the $-\log_{10}(p$-value). Statistically significant differences (p-value$_{BH-adjusted}<0.05$) are depicted in black with pathways of interest highlighted in red. (G) Heatmap visualization genes belonging to the cytokine-cytokine receptor interaction pathway. Values represent the pseudobulk expression per sample, where color is proportion to the level of expression. (H) Dotplot visualization of a receptor/ligand interaction analysis of the differentially expressed cytokines representing ligands and receptors are colored in blue and purple, respectively. Depicted in the dotplot are the binding partners of the cytokines found to be differentially expressed by the classical monocytes for each cell type found in PBMCs. Size of the dots represents statistical significance, transparency the significance threshold, and color whether the gene is upregulated in either responders (green) or non-responders (orange). We find that VEGFA receptor FLT1 is significantly higher expressed among the CD4 naïve and classical monocytes of responders.

Tables

Table 1. Patient characteristics scRNAseq and CyTOF analyses. Overview of the demographics of the included patients.

<table>
<thead>
<tr>
<th></th>
<th>Responders (N = 4)</th>
<th>Non-responders (N = 4)</th>
</tr>
</thead>
</table>

This preprint is licensed under a Creative Commons BY-NC 4.0 International license. The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female, N (%)</td>
<td>3 (75)</td>
<td>4 (100)</td>
</tr>
<tr>
<td>Age, years, median (IQR)</td>
<td>40 (35-48)</td>
<td>48 (36.5-61.25)</td>
</tr>
<tr>
<td>Disease duration, years, median (IQR)</td>
<td>10.5 (7.5-18.5)</td>
<td>7 (4.5-23)</td>
</tr>
<tr>
<td>Ethnic background, N (%)</td>
<td>- Caucasian 3 (75)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>C-reactive protein, mg/L, median (IQR)</td>
<td>9.8 (6.5-14.35)</td>
<td>2.2 (1.4-2.8)</td>
</tr>
<tr>
<td>Faecal calprotectin, μg/g, median (IQR)</td>
<td>329 (168-850)</td>
<td>263 (189-305)</td>
</tr>
<tr>
<td>Disease location, n (%)</td>
<td>- Ileal disease (L1) 3 (75)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>- Colonic disease (L2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- Ileocolonic disease (L3)</td>
<td>1 (25)</td>
<td>3 (75)</td>
</tr>
<tr>
<td>Disease behavior, N (%)</td>
<td>- Non structuring/penetrating (B1) 1 (25)</td>
<td>2 (50)</td>
</tr>
<tr>
<td>- Stricturing (B2)</td>
<td>2 (50)</td>
<td>2 (50)</td>
</tr>
<tr>
<td>- Penetrating (B3)</td>
<td>1 (25)</td>
<td>-</td>
</tr>
<tr>
<td>- Perianal disease (p)</td>
<td>1 (25)</td>
<td>-</td>
</tr>
<tr>
<td>Previous IBD-related surgery, N (%)</td>
<td>2 (50)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Concomitant medication, N (%)</td>
<td>- Immunomodulators</td>
<td>-</td>
</tr>
<tr>
<td>- Prednisone</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Previous biological treatment, N (%)</td>
<td>- Immunomodulators 3 (75)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>- Anti-TNF (ADA or IFX)</td>
<td>1 (25)</td>
<td>3 (75)</td>
</tr>
<tr>
<td>Smoking, N (%)</td>
<td>- Never 1 (25)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>- Active</td>
<td>-</td>
<td>3 (75)</td>
</tr>
<tr>
<td>- Former</td>
<td>3 (75)</td>
<td>-</td>
</tr>
</tbody>
</table>

Supplementary Tables

Supplemental Table 1. Marker panel mass cytometry. The cell-surface exposed markers assayed in the mass cytometry experiment annotated by the metal, target protein, alternative names, uniprot identifier, and notes.

Supplemental Table 2. Marker panel flow cytometry. The cell-surface exposed markers assayed in the flow cytometry experiment alongside the antibody and clone.

Supplemental Table 3. PBMC differential abundance analysis. Results of the differential abundance analysis on the major lineages as conducted using the propeller function in speckle. Columns represent the cell type, the mean proportion for all samples (“BaselineProp.Freq”), non-responders only (“PropMean.Non.responder”), and responders only (“PropMean.Responder”), the ratio responder/non-responder (“PropRatio”), the
associated T statistic ("Tstatistic") as well as the p-values ("P.Value" and "FDR"). Tabs separate the results from scRNAseq and CyTOF analyses.

Supplemental Table 4. T cell scRNAseq pseudobulk differential gene expression analysis. Results of the differential expression analysis performed on PDCs using DESeq2. Columns represent the gene, the average expression ("baseMean"), the log2(fold change) ("log2FoldChange"), the associated standard error ("lfcSE"), the Wald statistic ("stat") as well as the p-values ("pvalue" and "padj"). Each tab represents a different T cell subset.

Supplemental Table 5. pDC scRNAseq pseudobulk differential gene expression analysis. Results of the differential expression analysis performed on PDCs using DESeq2. Columns represent the gene, the average expression ("baseMean"), the log2(fold change) ("log2FoldChange"), the associated standard error ("lfcSE"), the Wald statistic ("stat") as well as the p-values ("pvalue" and "padj").

Supplemental Table 6. Classical monocytes scRNAseq pseudobulk differential gene expression analysis. Results of the differential expression analysis performed on classical monocytes using DESeq2. Columns represent the gene, the average expression ("baseMean"), the log2(fold change) ("log2FoldChange"), the associated standard error ("lfcSE"), the Wald statistic ("stat") as well as the p-values ("pvalue" and "padj").

Supplemental Table 7. Classical monocytes bulk RNAseq gene expression analysis. Results of the differential expression analysis performed on classical monocytes using DESeq2. Columns represent the gene and Ensembl ID, the average expression ("baseMean"), the log2(fold change) ("log2FoldChange"), the associated standard error ("lfcSE"), the Wald statistic ("stat") as well as the p-values ("pvalue" and "padj").

Supplemental Table 8. Classical monocytes scRNAseq pseudobulk KEGG gene set enrichment analysis. Gene set enrichment analysis as performed by fgsea. Columns represent the gene set ("Pathway"), the p-values ("pvalue" and "FDR"), the log2 standard error ("log2err"), the enrichment score ("ES"), the normalized enrichment score ("NES"), and the total number of genes in the gene set ("size").

References

T1: Pretreatment
Start biological

T2: Into treatment
Response assessment (~Week 26-52)

Regular care

Responder (N = 4)

Non-responder (N = 4)

<table>
<thead>
<tr>
<th>Response Criteria</th>
<th>CRP</th>
<th>fCalpro</th>
<th>SES-CD</th>
<th>HBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔCRP ≥50% OR [CRP] < 5.0 µg/g</td>
<td>ΔfCalpro ≥50% OR [fCalpro] < 250 µg/g</td>
<td>ΔSES-CD ≥50%</td>
<td>ΔHBI ≥3</td>
<td></td>
</tr>
</tbody>
</table>
CyTOF

subsampled to 16,000 cells
A

- **B**
 - **C**
 - **D**
 - **E**
 - **F**
A Monocytes

B Classical monocyte differential expression

Responders relative to non-responders

Significance: NS, Significant

C scRNAseq (pseudobulk)

D Bulk RNAseq

E scRNAseq (pseudobulk)

F Differently enriched KEGG pathways

Responders relative to non-responders

G Cytokine-cytokine receptor interaction genes

H Ligand/receptor differential expression

Effect size

Group: Non-responder, Responder

Significance: NS, Significant

$-\log_{10}(p\text{-value})$