SMaRT-PCR: Sampling with Mask and Reverse Transcriptase PCR, a promising non-invasive diagnostic tool for paediatric pulmonary tuberculosis

AUTHORS:
Ambreen Shaikh¹, Kalpana Sriraman¹*, Smriti Vaswani¹, Ira Shah², Vishrutha Poojari², Vikas Oswal³, Sushant Mane⁴, Sakina Rajagara⁴, Nerges Mistry⁴

AFFILIATIONS:
1. The Foundation for Medical Research, Dr Kantilal J. Sheth Memorial Building, Worli, Mumbai, Maharashtra, India
2. Pediatric TB Clinic, State Center of Excellence for Pediatric DR-TB, Department of Pediatric Infectious Diseases, B.J. Wadia Hospital for Children, Mumbai, Maharashtra, India
3. Vikas Nursing Home, Govandi, Mumbai, Maharashtra, India
4. National Center of Excellence for Tuberculosis, Grant Medical College, Sir JJ Group of Hospitals, Mumbai, Maharashtra, India

ORCID ID: Ambreen Shaikh - 0000-0001-6037-9137, Kalpana Sriraman – 0000-0001-8012-0149, Smriti Vaswani, Ira Shah, Vishrutha Poojari, Vikas Oswal, Sushant Mane, Sakina Rajagara, Nerges Mistry-0000-0003-3509-4994

RUNNING TITLE
Mask sampling for Pediatric TB

*CORRESPONDENCE TO:
Kalpana Sriraman
The Foundation for Medical Research (FMR)
Dr Kantilal J. Sheth Memorial Building
84-A, R. G. Thadani Marg, Worli, Mumbai 400 018
Tel: 91 22 24934989 / 24938601 Fax: 91 22 24932876
E-mail: fmr@fmrindia.org, Website: www.fmrindia.org

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Purpose:
Diagnostic challenges in pediatric TB, like difficulties obtaining sputum, need for invasive sampling, and suboptimal sensitivity of existing detection tools, advocate for sputum-free, child-friendly, and diagnostically accurate methods. This proof-of-concept study evaluates the diagnostic potential of non-invasively sampling patient bioaerosols using a mask combined with reverse transcriptase (RT)PCR (SMaRT-PCR) for pediatric TB detection.

Methods:
In this case-control study, we recruited 51 children (30 confirmed TB and 21 without TB) aged 2-15. Exhaled bioaerosols were captured on gelatin membrane-layered N-95 masks in a 10-minute process that involved talking, coughing, and breathing. Two mask samples were consecutively collected from children with TB and tested using GeneXpert and in-house RT-PCR for 16s and rpoB RNA. The control cohort underwent single mask sampling and testing with RT-PCR. Mask sampling acceptability was assessed using a questionnaire and a Likert-scale.

Results:
The sensitivity and specificity of SMaRT-PCR for detecting 16s and rpoB among 24 treatment naïve patients were 75% and 95%, respectively, comparable to GeneXpert testing in standard samples from the same patients. Mask sampling with GeneXpert had sensitivity of only 13%. Over 90% of children were comfortable with mask sampling, and > 80% were happy or very happy on the Likert scale with the procedure.

Conclusion:
This is the first study to provide evidence for testing patient bioaerosols as a promising alternative for detecting pediatric TB. SMaRT-PCR has potential in a hub-and-spoke model, where samples collected from remote locations can be centrally tested by RT-PCR at district-level laboratories, enabling equitable access to diagnostic care.

Keywords: Paediatric, Tuberculosis, Diagnosis, Mask Sampling, RT-PCR
Introduction

Tuberculosis (TB) in children is a leading cause of death and morbidity [1]. Every year, around 1.2 million children worldwide contract TB [2], with an estimated mortality of up to 96% if untreated [3]. High-burden countries like India, Indonesia, the Philippines, Pakistan, and Nigeria account for 60.2% of pediatric TB cases [2]. Although pediatric TB is estimated to account for 12% of all incidence cases globally, only 6.9% are notified to the National Tuberculosis Programs. Thus, the gap in pediatric TB notification is estimated at 54%, rising to 69.9% in children aged 0-4 years [2].

The disparity between TB burden estimates and notifications is primarily due to difficulties diagnosing TB clinically and microbiologic confirmation of the disease in children. Children often present with nonspecific clinical and radiological findings and have difficulties expectorating sputum [4, 5]. Thus, methods such as gastric lavage, broncho-alveolar lavage, or nasopharyngeal aspiration are used to collect samples for testing. Most of these methods are invasive, distressing for children and parents, and rarely available in resource-limited settings due to the need for infrastructure and skilled personnel [6-8]. Even after obtaining the sample, due to paucibacillary TB in children, microbiological testing by smear, culture, or nucleic acid detection has a lower sensitivity [9-12]. Consequently, in a high-burden country like India, less than 25% of children are microbiologically confirmed, and a majority are treated based on clinical diagnosis [13]. Given these challenges, there has been a continued emphasis on developing child-friendly tests that use non-sputum based samples, easily obtainable in children and can be collected non-invasively, in conjunction with sensitive and accurate molecular diagnostic assays [5, 14].

In recent years, TB detection in patient respiratory aerosols has gained traction [15-18]. Exhaled or expelled aerosol samples have easy accessibility and may be used as a substitute sample, especially in patients who are unable to produce sputum [15, 17, 18]. In adult pulmonary tuberculosis (PTB) patients, our group has demonstrated that respiratory aerosols can be captured non-invasively on modified N-95 masks to detect viable TB bacteria by RT-PCR [17]. In an extended pilot analysis of 55 TB patients, aerosol Sampling with a Mask, when paired with RT-PCR (hereafter referred to as SMaRT-PCR), detected TB with 96% accuracy (unpublished data). In 10% of these patients, Mycobacterium tuberculosis (Mtb) bacilli could be detected in aerosols even when the patients were unable to expectorate sputum, thus indicating the potential for application in children.
The aim of this study was to test the feasibility of using mask-based sample collection for the detection of PTB in children. Mask-collected aerosols were tested for TB in children using two methods. 1. In-house-developed reverse-transcriptase quantitative PCR and 2. GeneXpert. We compared the results of mask sampling to standard-of-care sampling like gastric lavage, sputum etc. We also assessed the challenges associated with collecting mask specimens from children.

Methods

Participants Recruitment:

Institutional Research Ethics Committees of The Foundation for Medical Research (FMR/IREC/TB/02/2019), Bai Jerbai Wadia Hospital for Children (BJWHC) (IEC/BJWHC/97/2019), and JJ Hospital (IEC/Pharm/RP/313/Feb-2020) approved the study. Between August 2019 and May 2021, we recruited 51 children 2-15 years of age (30 children with PTB and 21 children without TB) from three centres in Mumbai: two tertiary hospitals, - BJWHC and JJ, and a private TB clinic, Vikas Nursing Home. Written informed consent was taken from parents, and assent was taken from children aged 6-15. The TB patients included in the study either had a confirmed GeneXpert diagnosis or were clinically diagnosed based on a chest X-ray and were awaiting a GeneXpert diagnosis at the time of recruitment. Six of the 30 recruited TB patients had already started anti-TB treatment (1-3 days of treatment) by the time of study sample collection and hence were excluded from analysis for diagnosis comparison. The control group included children without a current or past history of TB for the last three years, who had a negative TST or normal chest X-ray and/or who visited the centre for alternative ailments. The TB patients had a median age of 12 (IQR 2.9-13) with 73% female, while controls had a median age of 9 (IQR 3-10) with 48% female. Supplementary Information Sheets 1 and 2 lists the clinical features of TB patients and the control group, respectively.

SMaRT-PCR Sample Collection and Processing:

We collected two mask samples from each TB patient (for RT-PCR and GeneXpert/Ultra) and one from control participant (for RT-PCR). For sampling, the participants wore a modified flat-fold (3M 9210) or cup-type (3M 8110s) N-95 mask with a 37-mm diameter gelatin membrane (Sartorius, Gottingen, Germany) attached to the inner surface of the mask. The participant performed directed tasks for ten minutes, including two rounds of talking, reading, or reciting for about 3 minutes based on the child's preference, one minute of coughing, and one minute of
tidal breathing. After 10 minutes, the membrane was removed with forceps and transferred to a collection cup containing 3 ml of RNAzol™ (Sigma-Aldrich, MO, USA) for RT-PCR testing or 4 ml of PBS for GeneXpert/Ultra (Cepheid, USA) testing. Mask-sampling acceptance among children was assessed using a questionnaire and a Likert scale survey tool (Supplementary Information Sheet 3).

All RT-PCR assays were performed at FMR and GeneXpert at BJWHC. For RT-PCR testing, the total RNA was extracted from RNAzol™ containing the dissolved gelatin membrane, purified using an RNeasy Micro RNA Isolation Kit (Qiagen, Hilden, Germany), treated with DNase I (New England Biolabs, Massachusetts, USA) and reverse transcribed using the Iscript cDNA Synthesis Kit (Bio-Rad, California, USA) as described earlier [17]. For the detection of Mtb, we evaluated the amplification (Ct values) and product-specific melt peaks of Mtb-specific genes \(16S\) and \(rpoB\) using SYBR green dye in the CFX96 Touch Real-time PCR detection system (Bio-Rad). The samples were denoted as positive if the \(16S\) and/or \(rpoB\) Ct values were < 40 and had a product-specific melt curve. For samples with a Ct value > 35 for either of the genes, the amplification was confirmed by running the qPCR product on a 2% agarose gel. All analysis for the diagnostic performance of SMaRT-PCR for TB was considered for two outcomes (positive for \(16S\) OR \(rpoB\), positive for both \(16S\) AND \(rpoB\)).

Results:

Comparison of SMaRT-PCR with GeneXpert in standard samples and mask samples for TB detection:

For the 24 treatment-naïve TB patients, GeneXpert was applied for diagnosis in sputum (14) or induced sputum (1), or gastric lavage (GL) (8), or nasal aspirate (1) samples. In these samples, GeneXpert detected TB in 17/24 (71%) patients. In the seven GeneXpert-negative patients, the TB diagnosis was made by smear AFB positivity (1), clinical presentation and chest X-ray (6).

In comparison, SMaRT-PCR detected TB in 23/24 (96%) patients when the condition for detection was the presence of either the \(16S\) or \(rpoB\) gene and in 18/24 (75%) when the condition was both genes (Supp Table S1). In the concomitantly collected second mask sample tested by GeneXpert, TB could be detected only in 3/24 (13%) patients. All three patients had only trace quantities detected, indicating that the GeneXpert sensitivity in mask samples was very low.

SMaRT-PCR of control patients:
Among the 21 control patients with no known TB, one gene (16S or rpoB) could be detected in 4 patients (Supp Table S2 Control Patients 2, 3, 11, and 17), and both genes (16S and rpoB) could be detected in 2 patients (Supp Table S2 Control Patients 2 and 17). Control patients in whom Mtb-specific genes were detected were followed up for a potential TB diagnosis. Patient 2 underwent a chest HRCT scan, which showed mediastinal adenopathy with bilateral axillary adenopathy. Since the patient's three siblings had EPTB, with one sibling on TB treatment, patient 2 was clinically diagnosed to have TB and was initiated on TB treatment. Control patient 17 underwent an HRCT scan of the chest, GeneXpert, and culture test from the GL sample. Both GL-GeneXpert and culture were negative for TB; however, the HRCT showed fibrotic changes in the right lower lobe with calcification, and the mediastinal lymph node showed signs of post-infection sequelae. Thus, the treating physician decided not to initiate TB treatment. Since control patient 2 was clinically diagnosed to have TB retrospectively, this patient was excluded from specificity analysis for SMaRT-PCR. The other control patients (patient IDs 3, 11, 17) with at least one gene detected were considered false positives by SMaRT-PCR.

Sensitivity and Specificity of SMaRT-PCR:

The SMaRT-PCR's sensitivity and specificity were calculated based on 24 treatment-naïve TB patients and 20 controls and at two conditions for detection- a) positive, if either 16S OR rpoB was detected; b) positive, only if both 16S AND rpoB were detected (Table-1). If 16S OR rpoB was present, SMaRT-PCR had 96% sensitivity and 85% specificity. If both 16S AND rpoB were considered, the sensitivity decreased to 75% while the specificity increased to 95%. GeneXpert had a sensitivity of 71% in our sample set and was reported to have 98% specificity in such samples [9].

SMaRT-PCR of TB patients under treatment:

Six of the 30 TB patients recruited (Supp. Table S1; patients #9-13 and 17) had received anti-TB treatment for 1-3 days by the time of study sample collection. All these patients were TB positive by GeneXpert in GL (patients 9-13) or BAL (patient 17) samples before treatment initiation. The TB positivity by SMaRT-PCR was 3/6 for 16S AND rpoB and 4/6 for 16S OR rpoB. The results indicate that SMaRT-PCR's ability to detect TB may decrease if the patients are initiated on appropriate anti-TB treatment.

Study participants of interest:
TB patient 20: This participant had 10 days of cough and weight loss for 90 days. The chest X-ray showed infiltrates in the left middle and lower lungs, suggesting primary progressive TB. The patient's consecutive sputum and nasal aspirate sample tested negative for TB by GeneXpert. However, the treating physician diagnosed TB based on clinical and X-ray presentation and initiated her on TB treatment. Interestingly, both mask samples collected from this patient were positive for TB by RT-PCR and GeneXpert, affirming the clinical diagnosis made without knowledge of mask sample results.

Control patient 2: This participant had no symptoms but underwent a chest X-ray as one of the participant’s siblings was being treated for EPTB at the time of approaching the physician, and two other siblings had completed their treatment for EPTB. His physical and chest X-ray examination was normal. Since the child was asymptomatic with a normal chest X-ray, the physician ruled out TB and referred him to us as a control patient. However, SMaRT-PCR was positive for both *16S* and *rpoB*. Following which, as mentioned before, the patient underwent chest-HRCT, which showed mediastinal adenopathy (1 node of 1.5x1.2 cm) and bilateral axillary adenopathy (2 enlarged nodes of 1.1x1 cm and 1x0.8 cm) and no involvement of lung parenchyma. Since the patient had three siblings who had EPTB in the recent past and an aunt with a history of PTB 4 years prior to the time of recruitment, the physician concluded that the child had TB and initiated him on TB treatment. After almost 3 months of anti-TB treatment, repeat HRCT showed only bilateral axillary adenopathy with multiple lymph nodes of 1.5x 1.6 cm. After 8 months of anti-TB treatment, the ultra-sonography of the axilla showed residual non-necrotic lymph nodes in the right axilla (1.3 X0.7cm; 0.5X0.5cm) and two necrotic lymph nodes in the left axilla (2 x0.8cm; 0.6x0.2 cm), suggesting a positive response to treatment.

Acceptability of sampling with mask:

The sample collectors noted the acceptability of the mask sampling method among the children (Table-2). Over 90% of children performed the directed tasks and were comfortable with the sampling procedure. A small proportion of TB patients (4/30) struggled to perform the tasks and/or complete the 10-minute sampling time, either due to tachypnea or difficulty comprehending the task requirement. Only 67% of the children expressed a willingness to repeat the test, indicating there may be some challenges to repeating tests if necessary.

Discussion
Microbiological confirmation of pulmonary TB in children often requires invasive sampling, and TB detection in these samples is suboptimal. The current study investigated the feasibility of diagnosing TB in children by capturing infectious aerosols exhaled/emitted by them while talking, coughing, and breathing using an adapted N95 mask. The sampling method was combined with the standard GeneXpert testing as well as an in-house RT-PCR to detect TB-specific RNA. Here, we showed for the first time that mask sampling can be a promising non-invasive alternative for pediatric TB detection. When paired with an in-house RT-PCR, the method detected TB with 75% sensitivity and 95% specificity in GeneXpert-positive or clinically diagnosed pediatric TB patients, comparable to the standard diagnosis method. Interestingly, the method detected TB in one patient where standard methods failed and in one control patient with undetected TB in the Lymph node. Other non-invasive specimens for detecting pediatric TB, like urine, stool, or oral swabs, have reported sensitivity and specificity between 37-63% and 85-98%, respectively [19-22]. The SMaRT-PCR performed better than these methods in sensitivity and had comparable specificity. However, authors concur that the current SMaRT-PCR results represent a limited sample size and that larger field trials in presumptive patients are imperative to evaluate the method's true diagnostic accuracy.

This study found that mask aerosol sampling with GeneXpert had low sensitivity (13%). Similar low sensitivity was also observed when oral swab sampling (21%, [23]) and tongue swab sampling (26%, [24]) were combined with GeneXpert for detecting pediatric TB. One possible explanation could be that GeneXpert is not optimized for detecting nontraditional samples like mask-captured aerosols or oral swabs. Our in-house RT-PCR outperformed GeneXpert in the mask specimen sensitivity (75% vs 13%). The increased sensitivity could be attributed to techniques like sample concentration [25, 26], precise RNA isolation, and longer RT-PCR amplification runs of up to 40 cycles [24, 27, 28], all known to improve sensitivity. Another possible reason could be the detection of abundantly expressed RNA by RT-PCR vs fewer copies of DNA detected in GeneXpert. SMaRT-PCR detects 16S rRNA, which has higher copy numbers compared to IS element copies in the GeneXpert-detected Mtb DNA [29]. All these factors suggest that molecular GeneXpert testing of atypical samples requires more optimization research.

The most significant feature of the SMaRT-PCR procedure is the non-invasive sample collection, which was well received by children who underwent mask sampling. Collecting aerosols on the mask is simple, quick, and painless, with low risk to the sample collector when an age-appropriate N95 mask is worn. Furthermore, the SMaRT-PCR assay has the potential to be used in a hub-and-spoke model, with its non-invasive and easy sample collection that
can be decentralized to the primary levels of the health system, and sample processing can be done at the district-level lab equipped with a real-time PCR machine. Sample collection decentralization will also enable SMaRT-PCR to reach more children in inaccessible areas, thus enabling equitable access. Although RT-PCR is a moderately complex technology, the capacity to use this technology has been strengthened globally during the COVID-19 pandemic. Alternatively, technologies like GeneXpert or TrueNat can also be adapted for performing RT-PCR, as shown for COVID-19 RT-PCR [30, 31]. We envision the SMaRT-PCR integrating with these up-skilled and strengthened facilities for future programmatic use.

The WHO target product profile (TPP) for non-sputum diagnostic tests for PTB in children requires sensitivity > 66% and 98% specificity for microbiologically confirmed TB [32]. Within our tested cohort, the SMaRT-PCR method met the requisite sensitivity but had a 95% specificity. TPP development and increased advocacy have led to the creation of several novel tests [33]. However, none of the available non-sputum samples like urine, stool, or oral swabs meets the complete TPP requirements [19-22]. Though no single test has the required sensitivity or specificity, larger studies combining two or more samples may provide better answers on how to integrate these diagnostic approaches in a complementary manner in an algorithm to reach the WHO TPP. A good example would be the proven 8-20% increase in GeneXpert’s diagnostic yield by testing an additional specimen [34].

Our proof-of-concept pilot study had certain limitations; the testing was done in a small cohort of confirmed TB patients, and thus we could not stratify patients by factors such as age or nutritional or HIV status, all of which could influence the SMaRT-PCR’s diagnostic accuracy. Treatment follow-up studies that could classify patients as unconfirmed or unlikely TB based on symptom resolution were not undertaken. Such long-term follow-up studies are necessary for proper diagnostic accuracy estimates [1]. This study was limited to mask sampling in tertiary hospitals within an hour of the sample processing lab, so it could not assess the impact of long-term sample storage and transport on diagnostic yield. Based on our learnings from the proof-of-concept study, we have refined and improved the SMaRT-PCR to enable remote sample collection with a simplified RNA isolation protocol and a probe-based, multiplex RT-PCR assay that can simultaneously detect multiple TB-specific genes from a small sample volume and determine TB drug resistance. This refined SMaRT-PCR awaits diagnostic performance evaluation in larger field studies.

Conclusion
Overall, our pilot investigation provides promising data on the potential application of a non-invasive SMaRT-PCR for detecting viable Mtb in aerosols exhaled or expelled by children. The use of a SMaRT-PCR workflow for children could aid in early TB confirmation, therefore possibly improving TB detection rates and paving the way for better treatment outcomes. Towards achieving this impact, in the short term, we propose to scale the refined workflow for multisite testing in a larger sample size with longitudinal follow-up throughout treatment to better evaluate diagnostic accuracy in presumptive pulmonary pediatric TB populations. The multisite studies would aid in: 1. comparing the performance of the SMaRT-PCR to existing molecular methods and the gold standard of TB culture. 2. examining any correlation between SMaRT-PCR positivity and patient demographics or disease features. 3. determining if SMaRT-PCR can be used as a standalone rule-in test or applied in complementary or cafeteria approach more suited for a specific population at a specific stage of TB.

Acknowledgements

This research study was supported through private donation to FMR from Mr. Nadir Godrej (Indian Industrialist) and FMR institutional funds. We thank Dr Varinder Singh, Director, Professor of Pediatrics, Lady Hardinge Medical College and Assoc Kalawati Saran Children's Hospital, New Delhi, India, for his support, inputs and initial encouragement to test it in children. We thank India Health Fund, which funded the testing initially in adults and facilitated association with central TB decision for the study. We thank Dr Raghuram Rao, Central TB division, for facilitating JJ Hospital as a site for the study. We sincerely appreciate the contribution of Mr Nilesh Shahasane, the field assistant at FMR, who collected and transported samples. Finally, we would like to thank all the participants of this study and their parents for their cooperation, patience, and support, without which this study would not have been possible.

References

Funding - This research study was supported through private donation to FMR from Mr. Nadir Godrej (Indian Industrialist) and FMR institutional funds.

Competing Interest - The authors have no relevant financial or non-financial interests to disclose.

Author Contributions (Contributor Roles Taxonomy)

Conceptualization: KS, NM. Data curation: AS, KS, SV, VK. Formal Analysis: KS, AS. Funding acquisition: KS, NM. Investigation: AS, SV, VK, SR. Methodology: AS, KS, IS. Project administration: KS, AS. Resources: IS, VO, SM. Supervision: NM, IS, VO, SM. Writing – original draft: AS KS. Writing – review & editing: All authors. IS, VO and SM are Senior Clinical Collaborators who have contributed substantially and equally to the study.

Data Availability statement - The data supporting this study's findings are available from the corresponding author upon reasonable request.

Ethics – The study was undertaken after the approval of the Institutional Research Ethics Committees of The Foundation for Medical Research (FMR/IREC/TB/02/2019), Bai Jerbai Wadia Hospital for Children (IEC/BJWHC/97/2019), and JJ Hospital (IEC/Pharm/RP/313/Feb-2020)

Consent – The authors affirm that parents of all research participants provided informed written consent to participate and publish.
<table>
<thead>
<tr>
<th>Participant type</th>
<th>Number of Patients</th>
<th>TB-RNA Positive</th>
<th>TB-RNA Negative</th>
<th>$16s \ OR \ rpoB$</th>
<th>$16s \ AND \ rpoB$</th>
<th>$16s \ OR \ rpoB$</th>
<th>$16s \ AND \ rpoB$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB Patients</td>
<td>24</td>
<td>23</td>
<td>18</td>
<td>1</td>
<td>6</td>
<td>96</td>
<td>75</td>
</tr>
<tr>
<td>Control Patients</td>
<td>20</td>
<td>3</td>
<td>1</td>
<td>17</td>
<td>19</td>
<td>85</td>
<td>95</td>
</tr>
</tbody>
</table>
Table 2: Patient Acceptability of Sample Collection

<table>
<thead>
<tr>
<th>Description</th>
<th>TB Group (%)</th>
<th>Control Group (%)</th>
<th>Overall (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test was comfortable</td>
<td>87</td>
<td>100</td>
<td>92</td>
</tr>
<tr>
<td>Perform directed tasks</td>
<td>93</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>Completed full 10 mins sampling</td>
<td>97*</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>Willingness to repeat the test</td>
<td>65</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>Remarks about the sampling by the child</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very happy (4 smileys)</td>
<td>37</td>
<td>47.5</td>
<td>41</td>
</tr>
<tr>
<td>Happy (2 smileys)</td>
<td>40</td>
<td>47.5</td>
<td>43</td>
</tr>
<tr>
<td>Neutral</td>
<td>17</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Sad (2 sad faces)</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Very sad (4 sad faces)</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

* One patient felt uncomfortable and removed the mask after 8 minutes both times