RESEARCH ARTICLE

The public health impact of Paxlovid COVID-19 treatment in the United States

Yuan Bai¹,²†, Zhanwei Du¹,²†, Lin Wang³, Eric H. Y. Lau¹,², Isaac Chun-Hai Fung⁴, Petter Holme⁵,⁶, Benjamin J. Cowling¹,², Alison P. Galvani⁷, Robert M. Krug⁸, Lauren Ancel Meyers⁹,¹⁰*

Affiliations:

¹WHO Collaborating Center for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, HKSAR, China

²Laboratory of Data Discovery for Health Limited, Hong Kong Science Park, HKSAR, China

³Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK

⁴Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA

⁵Department of Computer Science, Aalto University, Espoo, FI 00076, Finland

⁶Center for Computational Social Science, Kobe University, Nada, Kobe 657-8501, Japan

⁷Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT 06510, USA

⁸Department of Molecular Biosciences, John Ring LaMontagne Center for Infectious Disease, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA

Santa Fe Institute, Santa Fe, NM 87507, USA

These authors contributed equally to this work.

*Corresponding author: Lauren Ancel Meyers

Email: laurenmeyers@austin.utexas.edu
Abstract (150 / 150 words)

The antiviral drug Paxlovid has been shown to rapidly reduce viral load. Coupled with vaccination, timely administration of safe and effective antivirals could provide a path towards managing COVID-19 without restrictive non-pharmaceutical measures. Here, we estimate the population-level impacts of expanding treatment with Paxlovid in the US using a multi-scale mathematical model of SARS-CoV-2 transmission that incorporates the within-host viral load dynamics of the Omicron variant. We find that, under a low transmission scenario ($R_e \sim 1.2$) treating 20% of symptomatic cases with Paxlovid would be life and cost saving, leading to an estimated 0.26 (95% CrI:0.03, 0.59) million hospitalizations averted, 30.61 (95% CrI:1.69, 71.15) thousand deaths averted, and US$52.16 (95% CrI:2.62, 122.63) billion reduction in the US. Rapid and broad use of the antiviral Paxlovid could substantially reduce COVID-19 morbidity and mortality, while averting socioeconomic hardship.
Introduction

In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China and rapidly spread internationally. The World Health Organization (WHO) declared a pandemic on March 11, 2020. As of March 25, 2022, over 200 countries or territories have reported 476 million coronavirus disease 2019 (COVID-19) cases and 6.1 million deaths. Worldwide, five variants of concern (VOC) and eight variants of interest (VOI) have been identified by the WHO. Some of these variants are thought to spread more easily or cause more severe infection than the wild-type SARS-CoV-2 virus; others may evade immunity provided by prior infection or vaccines. As both the virus and our arsenal of medical countermeasures continue to evolve, the future of the pandemic is highly uncertain.

Throughout the COVID-19 pandemic, non-pharmaceutical interventions have been implemented to slow transmission and save lives. Such interventions include social distancing, school closures, bans on mass gatherings and non-essential activities, stay-at-home orders, travel restrictions, face mask requirements, and extensive testing, contact tracing and isolation programs. In many cities, these efforts have been insufficient to prevent the spread of the virus and have been undermined by the premature relaxation of orders, inconsistent messaging, and lack of public compliance. In December 2020, the first vaccines against SARS-CoV-2 were approved for emergency use by authorities in the United States (US), the United Kingdom and the WHO. As of March of 2022, over 11 billion vaccine doses have been administered worldwide.

Antiviral drugs can substantially reduce morbidity and mortality from human infections. For example, antiretroviral therapy has prevented millions of HIV/AIDS deaths globally since the late 1980s. During the 2009 H1N1 influenza pandemic, oseltamivir was widely administered in the US (28.4 prescriptions/1,000 persons); rapid treatment following symptom onset reduced the risk of hospitalization by an estimated 63% (95% CI: 17%–81%). The influenza antiviral Baloxavir (Xofluza), which received approval for adults and children over 12 years of age by the Food and Drug Administration (FDA) in 2018, blocks virus replication more rapidly and completely than oseltamivir.
reduction in viral load may reduce the risks of onward transmission while accelerating patient recovery. A counterfactual analysis suggests that treating even 10% of infected patients with baloxavir shortly after the onset of their symptoms would have prevented millions of infections and thousands of deaths in the US during the severe 2017-2018 influenza season 23. A fast-acting SARS-CoV-2 antiviral could similarly be deployed to curtail transmission on a population scale while directly saving lives 24.

Early efforts to develop SARS-CoV-2 antivirals focused on repurposing approved drugs for other pathogens that could be deployed without additional clinical trials. As of March 25, 2022, eight SARS-CoV-2 therapies have been approved for use in the US by the FDA 25. Remdesivir was the first repurposed drug to be fully approved in October of 2020. Originally developed to treat Ebola and Hepatitis C, it directly inhibits the SARS-CoV-2 RNA-dependent RNA polymerase 25,26. By December 2021, over 9 million patients were treated with Remdesivir worldwide, including 6.5 million patients in 127 middle- and low-income countries through Gilead’s voluntary licensing program 27. Sotrovimab was the second treatment to receive FDA emergency use authorization on May 26, 2021 28. This monoclonal antibody therapy targets the spike protein and reduces the risk of hospitalization or death by an estimated 79% 29. On December 23, 2021, a newly developed drug, molnupiravir, received FDA emergency use authorization 30 and is estimated to reduce the risk of hospitalization or death by 30% 31. Paxlovid, which received FDA emergency authorization on December 22, 2021 for individuals over age 12, combines two different antiviral agents. The first component is a new drug, nirmatrelvir, which targets the SARS-CoV-2 3-chymotrypsin–like cysteine protease enzyme and inhibits viral replication. The second component is a repurposed drug, ritonavir, which was originally developed to treat HIV. Ritonavir inhibits CYP3A4 to slow the breakdown of nirmatrelvir in the patient 32. Treatment of symptomatic COVID-19 of patients with Paxlovid reduces hospitalization risks by an estimated 0.59 (95% CI: 0.48, 0.71) for adults aged 18–49 years, 0.40 (95% CI: 0.34, 0.48) for adults aged 50–64 years, and 0.53 (95% CI: 0.48, 0.58) for adults over 64 years 33. Paxlovid has proven effective against the Omicron variant 34. In January of 2022, the US ordered 20
million courses of Paxlovid to be delivered within nine months. The United Nations Children’s Fund (UNICEF) has ordered four million courses for distribution to lower income nations. Paxlovid is also licensed through the Medicines Patent Pool, allowing other manufacturers to produce low-cost generics. As of March 22, 2022, 35 companies in 12 nations across Latin America, the Middle East as well as South and East Asia have signed agreements to produce either the raw ingredients or the finished drug.

To estimate the potential public health and economic benefits of widespread use of Paxlovid, an antiviral that rapidly reduces viral load in treated SARS-CoV-2 patients, we developed a multi-scale model that incorporates both within-host viral dynamics and between-host transmission. We estimate the number of cases, hospitalizations and deaths, as well as healthcare costs, averted under a range of transmission scenarios, in which we vary both the between-individual transmission rate of the virus and the proportion of cases who receive rapid treatment with Paxlovid.

Results

First, we fit a within-host viral replication model to clinical data from 2246 infected patients in 20 countries who were treated with either Paxlovid or a placebo to estimate the cell infection rate, infected cell death rate, virus production rate, and virus death rate for SARS-CoV-2. We then validated the fitted model to ensure its ability to reconstruct the observed viral load trajectories within patients and to simulate viral load in symptomatic patients, treated with a five-day course of Paxlovid, initiated within three days of symptom onset. Second, we assumed that the infectiousness of a case is logarithmically related to viral load and incorporate individual-level viral dynamics into a stochastic individual-based model of COVID-19 transmission that considers age-stratified contact patterns within and between households.

We model the effect of antiviral treatment on the within-host proliferation of SARS-CoV-2 and estimate five within-host parameters. By fitting the within-host model to the mean viral load dynamics reported from a clinical trial, the
cell infection rate (the rate of viral particles infecting susceptible cells, \(\beta \)) is 3.92 (95% CrI: 2.36, 6.5) \(\times 10^6 \) (copies/mL)\(^{-1}\) day\(^{-1}\). The infected cell clearance rate (the rate of infected cells cleared, \(\delta \)) is 0.63 (95% CrI: 0.43, 0.92) day\(^{-1}\). The virus replication rate (the rate of infected cells releasing virus, \(p \)) is 3.28 (95% CrI: 1.76, 5.9) copies/mL day\(^{-1}\)cell\(^{-1}\). The virus clearance rate (the rate of virus particles cleared, \(c \)) is 2.21 (95% CrI: 2.08, 2.35) day\(^{-1}\). For individuals with treatment, the antiviral drugs of Paxlovid would reduce viral replication 99.38% (95% CrI: 98.95%, 99.64%) per day.

We estimate the number of cases, hospitalizations and deaths, as well as healthcare costs, averted under a range of transmission scenarios, in which we vary both the between-individual transmission rate of the virus and the proportion of cases who receive rapid treatment with Paxlovid (Fig. 2 and Fig. 3). For example, consider a low transmission scenario in which the effective reproduction number (\(R_e \)) of the virus is 1.2 and 20% of symptomatic cases receive treatment. Within the first 300 days, we estimate that the mass treatment campaign would avert 9.85 (95% CrI:3.03, 21.12) million cases, 0.26 (95% CrI:0.03, 0.59) million hospitalizations, 30.61 (95% CrI:1.69, 71.15) thousand deaths in the US (Table S4). Assuming a treatment cost of US$530 \(^{40}\) and willingness to pay per year of life lost (YLL) averted of US$100,000, we estimate that the optimal strategy is always the highest treatment rate achievable. A 20% treatment rate would yield a net monetary benefit (NMB) of US$52.16 (95% CrI:2.62, 122.63) billion averted.

To separate the direct (therapeutic) benefits of Paxlovid treatment from its indirect (transmission-reducing) impacts, we conduct two additional analyses, one assuming the drug reduces severity but not infectivity and another assuming the opposite (Table S4). Under \(R_e \) of 1.2 and symptomatic treatment rate of 20%, we estimate that a therapeutic-only drug would not reduce the overall attack rate, while averting an estimated -0.07 (95% CrI:-3.82, 1.91) million cases, 0.10 (95% CrI:-0.13, 0.40) million hospitalizations and 14.39 (95% CrI:-19.47, 48.11) thousand deaths over a 300 day period, resulting in a NMB of US$24.10 (95% CrI:-34.98, 84.22) billion. In contrast, a drug that reduces infectivity but not severity is expected to avert 9.88 (95% CrI:3.03, 21.19) million cases, 0.13 (95% CrI:-0.13, 0.53) million hospitalizations, and 18.68 (95%
CrI:-14.14, 58.52) thousand deaths over a 300 day period, resulting in a NMB of US$26.57 (95% CrI:-32.77, 103.74) billion.

Discussion

The widespread administration of Paxlovid would not only improve outcomes in treated patients but would concomitantly reduce risks of onward transmission. In this population-level assessment of expanding rapid treatment of symptomatic COVID-19 infections with Paxlovid, we find that the direct (therapeutic) effects of treatment would significantly reduce both mortality and socioeconomic costs while the indirect (transmission-blocking) effects would substantially reduce the overall attack rate (Table S4). We would expect mass treatment campaigns to have even greater health and economic impacts in countries that have adopted zero-COVID strategies and thus have lower levels of population-level immunity than the US. Drugs like Paxlovid could profoundly reduce the severity of COVID-19 and facilitate the global transition to manageable coexistence with the virus. However, providing equitable and effective global access to SARS-CoV-2 antivirals will require both ample supplies and broad-reaching test and treat programs. The pharmaceutical industry and global health agencies are racing to produce sufficient quantities of Paxlovid to treat a large fraction of symptomatic cases. Online healthcare services (e.g., telemedicine) and community test-to-treat programs, such as those piloted in Pennsylvania and New Jersey, could be expanded nationally, and even globally, to accelerate and broaden access to antivirals. For example, in 2020, China began an initiative to expand remote internet-based COVID-19 care. They established 1500 internet hospitals (either extending existing hospitals or new institutions) between 2019 to 2021. The new services included follow-up consultations for common ailments and served over 239 million patients between December 2020 and June 2021. In addition, avoiding in-person testing and administration of infected individuals reduces risks of SARS-CoV-2 transmission by patients to healthcare providers.
Paxlovid with direct (therapeutic-only) effect or indirect (transmission reducing) effect can increase the number of cases in a few simulations (Table S4). The potential reasons for the counterintuitive results are hospitalizations averted by Paxlovid and model dynamics. Some symptomatic individuals with Paxlovid did not need to go to hospitalizations and stay in the community longer, leading to more cases being infected. And individuals infected with delay time due to the reduced transmission may result in more cases infected due to the dynamics of daily activities.

We highlight three limitations of our analyses that could be addressed as additional epidemiological and clinical trial data become available. First, our fitted model slightly overestimates viral levels for patients treated with placebo and underestimates those for patients receiving Paxlovid. The discrepancies may stem from limitations in the model structure or from unmodeled variation in viral kinetics and treatment efficacy across age or risk groups. In estimating model parameters, we consider only the mean in viral load of patients from 20 countries (Fig. 1). Incorporating such variability would allow us to analyze age- or risk-prioritized interventions and improve our estimates of the health and economic benefits of mass treatment. Nonetheless, our results indicate that mass expansion of Paxlovid beyond high-risk groups would avert many hospitalizations, deaths, as well as healthcare costs. Second, we do not consider the emergence and spread of Paxlovid-resistant viruses, which could significantly undermine the utility of new drugs and exacerbate epidemics on a population level. Conversely, suppressed viral replication attributable to Paxlovid may limit viral evolution in treated patients. Depending on the immunological conditions of the individual and population, reducing opportunities for viral growth and mutations may hinder the emergence of new variants. Third, we do not incorporate social and business factors for companies to expand Paxlovid treatment. Like any other commercial enterprises, pharmaceutical companies would also focus on making a profit to recover the costs quickly, especially before other antivirals sharing similar therapeutic functions appear. We also do not consider personal factors for the public understanding and acceptance to seek the available Paxlovid treatment, perhaps due to misinformation, lack of healthcare access, and
pandemic fatigue. For example, in the 2009 H1N1 pandemic, only 40% of cases sought medical care within 3 days post symptom onset.

In conclusion, fast-acting antiviral drugs like Paxlovid can serve as invaluable tools to mitigate the COVID-19 pandemic. By increasing supplies and the infrastructure needed for rapid and equitable distribution, such drugs could substantially mitigate the health and societal burdens of COVID-19.

Methods

We simulated virus kinetics in an infected individual and the effect of Paxlovid COVID-19 treatment using a standard target cell limited virus kinetic model. Susceptible cells are infected by active viruses and become infected cells. The antiviral drug would inhibit the replication of infected cells at rate \(\epsilon \) (i.e., antiviral efficacy). We estimate parameters in the virus kinetics model by fitting to clinical data using a nonlinear mixed-effect model. To link the impact of antiviral therapy in the study virus kinetic model to the infectivity of an infected individual, we assume the logarithmic relationship between the viral load and infectiousness of an infected individual.

To evaluate the public health and economic impact of Paxlovid COVID-19 treatment on the population, we developed an individual-based dynamic model and simulated SARS-CoV-2 transmission dynamics on a contact network in various transmission and treatment scenarios (SI Appendix, section S1). A susceptible/vaccinated individual is infected, progresses to exposure and then to either presymptomatic or asymptomatic. A proportion of presymptomatic individuals will become symptomatic with or without Paxlovid treatment, respectively, who will recover or be hospitalized, and even die. The infectiousness of a case depends on both the timing post infection and the type of contact. And the contact network is built for 5000 households using the sociodemographic characteristics in the 2017 National Household Travel Survey (SI Appendix, section S2).
Finally, given each transmission and treatment scenario, we simulated 100 random realizations to estimate the years of life lost (YLL) averted and monetary costs. We estimate the median and 95% credible intervals of stochastic simulations for each reproduction number and treatment rate. To separate the direct therapeutic benefits of Paxlovid treatment from the indirect transmission-blocking impacts of treatment, we analyzed an alternative model by assuming the antiviral only improves patient outcomes but not the infectivity. And vice versa for indirect effects of Paxlovid by assuming the antiviral only improves infectivity but not the patient outcomes.

Modeling the effect of antiviral treatment on the within-host proliferation of SARS-CoV-2

Given an individual i, let U_i be the number of susceptible cells at risk, I_i the number of infected cells, and V_i the number of active viruses, respectively. We model the replication dynamics of SARS-CoV-2 viruses within each infected individual i using a deterministic model \(^60\) (Fig. S1) described by the following ordinary differential equations:

$$\frac{dU_i}{dt} = -\beta U_i V_i$$

$$\frac{dI_i}{dt} = \beta U_i V_i - \delta I_i$$

$$\frac{dV_i}{dt} = (1 - \epsilon)pI_i - cV_i$$

where the interaction between susceptible cells and active viruses leads to the infection of susceptible cells at rate β, the infected cells die at rate δ, the infected cells replicate at rate p, the antiviral drug inhibits the replication of infected cells at rate ϵ (i.e., antiviral efficacy), the active viruses die at rate c, respectively. We fix the initial number of viruses (V_0) as $1/30$ copies/mL \(^61\) and the initial number of target cells (U_0) as 10^7 \(^60\).

Treatment time: The average timing of symptom onset following infection with the SARS-CoV-2 Delta variant has been estimated to be 5 days \(^62\). The clinical trial reported an average of 3 days between COVID-19 symptom onset and the initiation of treatment.
Thus, we assume that treatment is initiated 8 days after infection.

Estimating parameters by fitting model to clinical data: We performed the model fitting using a nonlinear mixed-effect model with each parameter accounting for fixed effects and random effects. Fixed effects are population parameters, which are assumed to be the same for all individuals included, while random effects take into consideration multiple measurements from the same individual. Informed by the clinical data that involve the administration of Paxlovid or not to individuals and the subsequent observation of viral load dynamics for each individual, the objective is to make a general inference on population-wide parameters, together with individual variations. This statistical approach improves the accuracy of estimates by explicitly incorporating the between-subject variability in the model. Using this parameterization, we fitted the within-host model to the mean viral load data using the Metropolis–Hastings algorithm in software MONOLIX 2021R1.

Modeling the relationship between viral load and infectiousness

To evaluate the impact of antiviral therapy on the transmission dynamics of SARS-CoV-2, we model the relationship between the viral load and infectiousness of an individual. Prior studies of within-host viral dynamics have considered three types of viral load-infectiousness coupling functions: logarithmic, sigmoid and linear, we assume a logarithmic relationship between infectiousness and viral titer, which requires fewer parameters than a sigmoidal function. Specifically, for an individual infected at T, their infectivity β at time t can be estimated as:

$$\beta(t) = \phi \log(V(t - T))$$

where ϕ is the baseline transmission rate, which can be estimated from epidemiological data and $V(t)$ is the viral load of a patient after infection. We set the viral load to zero when the value drops below the detection threshold of 100.

Between-host model of SARS-CoV-2 transmission and treatment with Paxlovid-like drug
The structure of our stochastic individual-based model is diagrammed in **Fig. S1**. At every time point, each individual is in one of 10 states: susceptible (S) and vaccinated (C) individuals progress to exposed (E) and then to either presymptomatic (P), symptomatic infectious with (Yₜ) or without (Yₜᵤ) Paxlovid treatment, asymptomatic infectious (A), recovered (R), hospitalized (H) or deceased (D).

When a susceptible individual (S) is infected or a vaccinated individual (C) is infected by infected individuals (e.g., P, Yₜ, Yₜᵤ) except those hospitalized and deceased, s/he progresses to exposure (E) and then to either presymptomatic (P) or asymptomatic infectious (A). A proportion ρ and 1 – ρ of presymptomatic individuals will become symptomatic infectious with (Yₜ) or without (Yₜᵤ) Paxlovid treatment, respectively, following rate ϵ, who will recover (R) or be hospitalized (H), and may even die (D). The individual in Yₜ will be treated within 3 days post symptom onset on average following rate γₜ. All asymptomatic cases eventually progress to a recovered class where they have waning protection from future infection (R). We assume asymptomatic (A) and pre-symptomatic (P) cases are less infectious than symptomatic cases (Yₜ and Yₜᵤ), by factors of \(\omega \) and \(\omega \), respectively. The hospitalization risk of treated individuals is reduced by a factor of (1 – \(\phi \)). Vaccinated individuals initially have vaccine-derived immunity against infection \(\psi_{B} \), symptomatic disease \(\psi_{B'} \), and death \(\theta_{B} \), which wanes gradually post vaccination. Similarly, recovered individuals initially have infection-derived immunity against reinfection \(\psi_{N} \), symptomatic disease \(\psi_{N'} \), and death \(\theta_{N} \), which wanes more slowly than the vaccine-derived immunity. Individuals that are both vaccinated and recovered have the higher level of immunity of the two. Parameter definitions and values are provided in **Tables S1 and S2**.

In the start of the simulation, we assume proportions of population vaccinated or recovered according to estimates from US Centers for Disease Control and Prevention (Table S1), and 1% population in exposed state. To estimate the number of previously vaccinated individuals and the rate of their most recent dose, we simulate vaccination rates based on reported uptake in the US from 2020 to 2022. For each previously
vaccinated individual, we randomly select the date of their first dose \((t_1) \) based on the reported age-specific vaccine administration rates, starting on October 29, 2021 \(^{67}\) for children between 5 and 11 years old, May 10, 2021 for children between 12 and 15 years old \(^{68}\), and December 13, 2020 for all others. We then randomly determine whether and when an individual receives their second primary dose and first booster based on CDC-recommended waiting periods and reported rates of uptake. Specifically, we assume second doses are administered beginning three weeks after the first dose and the window for boosters depends on the timing of the booster dose, with a minimum gap of eight months for individuals receiving their booster dose before September 23, 2021 \(^{69}\), six months between September 24, 2021 and January 3, 2022 \(^{70}\), and five months after January 4, 2022 \(^{71}\). We initialize immunity in our simulations using the dates of the last dose received for each vaccinated individual (Table S1) \(^{72}\).

For the previously infected individuals, we estimate their times of recovery. Specifically, we collected the daily population proportion of confirmed cases in the USA from 2021 to 2022 from Our World In Data \(^{66}\). For each individual infected previously at the start of the simulation, we estimate the date of the previous infection \((t_{\text{infect}}) \) by taking draws from the distribution of the daily population proportion of cases between January 29, 2021 to January 29, 2022. We consider the time of recovery as \((t_{\text{infect}} + 9) \), where 9 days is the average time lag between infection and recovery \(^{73}\).

At the start of each simulation, we assume that portions of the population have been previously vaccinated or infected, according to estimates from US Centers for Disease Control and Prevention (Table S1). We initially move one percent of the fully susceptible/vaccinated population (i.e., not previously infected) into the newly infected (exposed) compartment, which corresponds to approximately 0.6% of the total population. In each simulation, the effective reproduction number \((R_e) \) corresponds to the average number of secondary infections at the outset of the epidemic. When calibrating the transmission rate to achieve a specified \(R_e \), we track the number of secondary infections caused by a randomly selected 1% of infected and untreated individuals during the first 100 days of the simulation (SI Appendix, section S1). We assume age-stratified
estimates for Paxlovid’s efficacy at preventing hospitalizations33 (Table S1) and incorporate uncertainty by sampling efficacies for each simulation from triangular distributions with mean, lower bound, and upper bound equal to the estimated mean, 95% CI lower bound, and 95% CI upper bound, respectively. To estimate therapeutic benefits of the drug via pairs of simulations, we enforce the same sequence of random numbers in each simulation.

Estimating the Years of Life Lost (YLL) Averted and Monetary Costs

Given each transmission and treatment scenario, we simulated 100 random realizations for each of the three candidate treatment strategies (including the status quo). For each round, we determined the years of life loss (YLL) averted for each strategy τ, as follows:

1. Calculate the difference in incidence by age group as $\Delta_{a,\tau} = D_{a,0} - D_{a,\tau}$, where $D_{a,0}$ and $D_{a,\tau}$ are the numbers of total death in age group a produced by the status quo and strategy τ simulations, respectively.

2. Estimate the YLL prevented by the treatment strategy τ as $B_\tau = \sum a (\lambda_a - a) \Delta_{a,\tau}$ where λ_a denotes the future-discounted life expectancy for individuals of age a.

Similarly, we determine the incremental monetary costs for each strategy τ as given by

$$C_\tau = (T_\tau - T_0) c_T + \sum a c_{H,a} \left(H_{\tau,a} - H_{0,a} \right)$$

where T_τ and T_0 are the total number of treatment courses administered in the strategy (τ) and status quo simulations, respectively, c_T is the price of administering one course of antivirals, $H_{\tau,a}$ and $H_{0,a}$ are the total number of hospitalizations in age group a in each simulation, and $c_{H,a}$ is the median COVID-19 hospitalization cost for age group a. The cost parameter values are given in Table S3.
Estimating the net monetary benefit: The willingness to pay per YLL averted is the maximum price a society is willing to pay to prevent the loss of one year of life. Health economists have inferred from healthcare expenditure that the US is willing to pay US$100,000 per quality-adjusted life-year, of which YLL is one component. For a given willingness to pay for a YLL averted (θ), we calculated the net monetary benefit (NMB) of a strategy as

$$NMB = \theta \cdot B - C.$$

We determined the optimal strategy across a range of scenarios, each defined by the effective reproduction number (R_e), willingness to pay, and cost of a vaccine. For each transmission scenario coupled with each candidate treatment strategy (including the status quo), we simulate 100 random realizations of our stochastic model.

Sensitivity analyses

We assessed the robustness of the results with respect to two features of the model. First, we investigated three other assumptions (e.g., sigmoid, log-proportional, and step) of the functions relating viral load to infectiousness. Second, we modified the immunity following infection by assuming a total reduction in susceptibility to infection within 90 days since recovery (Table S5).

Data availability

The data that support the findings of this study are available from open source (doi:10.1056/NEJMo2118542) with free access.

Code availability
Matlab R2021b is used to do the simulations in this study. The computer code and simulated data will be made available to anyone for any purpose on request to the corresponding author after publication.

Acknowledgments

Financial support was provided by the AIR@InnoHK Programme from Innovation and Technology Commission of the Government of the Hong Kong Special Administrative Region, the US National Institutes of Health (grant no. R01 AI151176), the Centers for Disease Control and Prevention COVID Supplement (grant no. U01IP001136), and Health and Medical Research Fund, Food and Health Bureau, Government of the Hong Kong Special Administrative Region (grant no. 21200632).

Author contributions

Competing interests

B.J.C. consults for AstraZeneca, GSK, Moderna, Roche, Sanofi Pasteur, and Pfizer. The remaining authors declare no competing interests.
References

18. Antiretroviral therapy has saved millions of lives from AIDS and could save more. https://ourworldindata.org/art-lives-saved.

34. Pfizer Shares In Vitro Efficacy of Novel COVID-19 Oral Treatment Against Omicron Variant.

36. 35 generic manufacturers sign agreements with MPP to produce low-cost, generic versions of Pfizer’s oral COVID-19 treatment nirmatrelvir in combination with ritonavir for supply in 95 low- and middle-income countries. MPP

43. HHS. Find COVID-19 guidance for your community. *COVID.gov*
 https://www.covid.gov/.

52. The effects of virus variants on COVID-19 vaccines.

69. Newsroom, C. D. C. Joint statement from HHS public health and medical experts on COVID-19 booster shots. *Centers for Disease Control and Prevention*

70. CDC statement on ACIP booster recommendations. *Centers for Disease Control and Prevention*

71. CDC recommends Pfizer booster at 5 months, additional primary dose for certain immunocompromised children. *Centers for Disease Control and Prevention*

72. Centers for Disease Control and Prevention. COVIDVaxView.

 https://www.census.gov/data/tables/time-series/demo/popest/2010s-national-detail.html
Figures and Tables

Fig. 1. Estimated and observed viral load following treatment with (A) placebo or (B) Paxlovid. The estimated means and 95\% confidence interval (CI) of the virus titer from the fitted within-host model (black line and blue shading) are consistent with the observed data (black circles and bars). Viral load data are from a clinical trial in which 1126 patients received a placebo and 1120 patients received Paxlovid between July 16 and December 9, 2021. The within-host model was fit to mean measurements across patients over time (black circles). Day one corresponds to the initiation of treatment.

Fig. 2. Projected health and economic impacts of a large-scale SARS-CoV-2 antiviral campaign over 300 days in the US, across a range of transmission and treatment scenarios. (A) Estimated incidence (%) of symptomatic SARS-CoV-2 infections across five treating scenarios: 0\%, 20\%, 50\%, 80\% or 100\% of symptomatic cases receive a five-day Paxlovid regimen started within three days of symptom onset. Dashed and solid curves correspond to effective reproduction numbers of 1.2 and 1.7, respectively. Colored lines indicate different treatment rates as denoted in the graph. The four heat maps provide estimates across five different effective reproduction numbers (rows) and four different treatment rates (columns), of the following quantities: (B) number of cases averted (millions), (C) number of deaths averted (thousands), (D) net monetary benefit (NMB) in billions of USD assuming a treatment course cost of US$530 and WTP per YLL averted of US$100,000, and (E) number of courses of Paxlovid administered (millions). Cell color and value indicates the median estimate across 100 pairs of stochastic simulations (treatment vs no treatment simulations). The results are all scaled assuming a US population of 328·2 million people.

Fig. 3. Projected health and economic impacts of a large-scale SARS-CoV-2 antiviral campaign over 300 days in the US, across a range of transmission and treatment scenarios. For five different effective reproduction numbers (1.2, 1.5, 1.7, 2, 3) and four
different treatment scenarios (0%, 20%, 50%, 80%, or 100% of symptomatic cases start a five-day course of Paxlovid within three days of symptom onset), we estimate the median and 95% credible intervals in (A) number of cases infected (millions), (B) number of deaths (thousands), (C) net monetary benefit (NMB) in billions of USD assuming a treatment course cost of US$530 and willingness to pay (WTP) per year of life lost (YLL) averted of US$100,000, and (D) number of courses of Paxlovid administered (millions). Distributions are based on 100 stochastic simulations for each scenario. The results are all scaled assuming a US population of 328.2 million people.

Table 1. Within-host parameter estimates. We fit the within-host model to the mean viral load dynamics reported from a clinical trial involving 2246 infected adults treated with either Paxlovid or a placebo using nonlinear mixed-effects model method, a method that allows between-subject variability to improve the precision and accuracy of estimates. Values are means and 95% confidence intervals (CI) of parameter values across individuals.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimated Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell infection rate in 10^{-6} ml/Copies in days$^{-1}$ (β)</td>
<td>3.92 (95% CrI: 2.36, 6.5)</td>
</tr>
<tr>
<td>Infected cell death rate in days$^{-1}$ (δ)</td>
<td>0.63 (95% CrI: 0.43, 0.92)</td>
</tr>
<tr>
<td>Virus production rate in Copies/ ml in days$^{-1}$ (p)</td>
<td>3.28 (95% CrI: 1.76, 5.9)</td>
</tr>
<tr>
<td>Virus death rate in days$^{-1}$ (c)</td>
<td>2.21 (95% CrI: 2.08, 2.35)</td>
</tr>
<tr>
<td>Antiviral efficacy (ϵ)</td>
<td>0.9938 (95% CrI: 0.9895, 0.9964)</td>
</tr>
</tbody>
</table>