Associations of longitudinal BMI percentile classification patterns in early childhood with neighborhood-level social determinants of health

Mehak Gupta*
Computer & Info. Sciences
University of Delaware
Newark, DE 19716, USA

Thao-Ly T. Phan
Nemours Children’s Health
Wilmington, DE 19803, USA

Félice Lê-Scherban
Epidemiology & Biostatistics, and Urban Health Collaborative
Dornsife School of Public Health, Drexel University
Philadelphia, PA 19104, USA

Daniel Eckrich
Nemours Children’s Health
Wilmington, DE 19803, USA

H. Timothy Bunnell
Nemours Children’s Health
Wilmington, DE 19803, USA

Rahmatollah Beheshti
Computer & Info. Sciences, and Epidemiology
University of Delaware
Newark, DE 19716, USA

Editor:

KEYWORDS

BMI trajectories, social determinants of health, environmental factors, electronic health records, clustering

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Summary

Background:

Understanding social determinants of health (SDOH) that may be risk factors for childhood obesity is important to developing targeted interventions to prevent obesity. Prior studies have examined these risk factors, mostly examining obesity as a static outcome variable.

Objectives:

This study aimed to identify distinct subpopulations based on BMI percentile classification or changes in BMI percentile classifications over time and explore these longitudinal associations with neighborhood-level SDOH factors in children from 0 to 7 years of age.

Methods:

Using Latent Class Growth (Mixture) Modelling (LCGMM) we identify distinct BMI% classification groups in children from 0 to 7 years of age. We used multinomial logistic regression to study associations between SDOH factors with each BMI% classification group.

Results:

From the study cohort of 36,910 children, five distinct BMI% classification groups emerged: always having obesity (n=429; 1.16%), overweight most of the time (n=15,006; 40.65%), increasing BMI% (n=9,060; 24.54%), decreasing BMI% (n=5,058; 13.70%), and always normal weight (n=7,357; 19.89%). Compared to children in the decreasing BMI% and always normal weight groups, children in the other three groups were more likely to live in neighborhoods with higher rates of poverty, unemployment, crowded households, and single-parent households, and lower rates of preschool enrollment.

Conclusions:

Neighborhood-level SDOH factors have significant associations with children’s BMI% classification and changes in classification over time. This highlights the need to develop tailored
obesity interventions for different groups to address the barriers faced by communities that can impact the weight and health of the children living within them.

**Abbreviations**

BMI - Body Mass Index  
BMI% - Body Mass Index percentile  
EHR - Electronic Health Record  
SDOH - Social Determinants of Health

### 1. Introduction

Childhood obesity is a complex multifactorial disease, with biological, psychological, and lifestyle factors all contributing to excessive weight gain (Puder and Munsch, 2010; Campbell, 2016; Iguacel et al., 2021). Consistent with the ecological model of childhood obesity proposed by Davison and Birch (2001), studies point to the important role of not only individual-level SDOH but also neighborhood-level SDOH in the development of childhood obesity. Some of the main neighborhood-level SDOH that have been linked to childhood obesity include single-parent family structures, housing insecurity, lower socioeconomic status, lower parental educational status, employment, and other environmental factors that could potentially impact a child’s opportunity for a healthy life (Dwyer-Lindgren et al., 2013; Myers et al., 2015; von Hippel and Benson, 2014; Hales et al., 2018; Maharana and Nsoesie, 2018; Han et al., 2010; Isong et al., 2018; Williams et al., 2018; Tylavsky et al., 2020; Freedman, 2009). Moreover, the success rate of childhood obesity prevention interventions also depends on the SDOH. Disadvantaged populations affected by the negative SDOH are not only disproportionately burdened by childhood obesity but have also shown a lower success rate of obesity prevention interventions (Kumanyika, 2019). Targeting these community-level risk factors may therefore be helpful in providing children with a healthy environment to prevent obesity.
Interventions designed to prioritize at-risk communities could be especially impactful in early childhood. Indeed, several studies point to the importance of preventing obesity in early childhood as most childhood and adult obesity begins early in life - even as early as the age of 2 years (Baidal et al., 2016). Even beyond the age of 2 years, studies note that other important time points for weight gain (e.g., adiposity rebound) occur before the age of five years and definitely by the age of around seven years (Zhou et al., 2022; Freedman et al., 2022). Even more importantly, disparities in obesity begin to appear in early childhood, again making this a critical time point for intervention. For example, Baidal et al. (2016) found in a systematic review that modifiable risk factors like family socioeconomic status (SES) and childcare attendance were already associated with childhood obesity in the first 2 years of life, and Tester et al. (2018) found that SDOH like poverty and single parent household status were associated with severity of obesity in a nationally representative sample of children 2-5 years of age.

Like the study by Tester et al. (2018), there is a wealth of literature describing the relationship between selected SDOH factors and childhood obesity in the United States using cross-sectional analyses (Miech et al., 2006; Goodman et al., 2003; Powell et al., 2012; Ogden et al., 2018; Gordon-Larsen et al., 2003; Goodman, 1999; Yusuf et al., 2020; Hearst et al., 2013; Hawkins et al., 2016; Larson et al., 2008; Anderson et al., 2022; Fyfe-Johnson et al., 2022; Cleveland III et al., 2023; Peyer et al., 2016; Brochier et al., 2023). However, these cross-sectional studies assume that all children with obesity are a homogeneous group with similar growth patterns, but the growth pattern of the child changes to develop obesity could have different implications for intervention (Wen et al., 2012). For example, children who have obesity from birth may have genetic and epigenetic risk factors and intervention may need to occur in the perinatal period whereas children who are born at a normal weight and then develop obesity during early childhood may benefit from individual and community-level interventions that can impact their environment and lifestyle during the first several years of life. Therefore, to better understand the impact of SDOH on a child’s risk of obesity at different time periods, it would be important to identify how SDOH are
associated with different groups of children based on their weight status over the course of early childhood (Baidal and Taveras, 2012; Wen et al., 2012).

While there are many existing longitudinal studies that evaluate BMI, BMI-z, or BMI percentile trajectories among groups of children (Mattsson et al., 2019; Mottalib et al., 2023), with many also describing how these trajectories are associated with a range of individual sociodemographic, socioeconomic, and environmental factors (Kwon et al., 2017; Montazeri et al., 2018; Rzehak et al., 2017; Garden et al., 2012; Chen et al., 2016; Balistreri and Van Hook, 2011; Nau et al., 2015; Nummi et al., 2014; Pèneau et al., 2017; Slining et al., 2013), there have been no studies to date that have applied these trajectories to establish distinct homogenous groups for clinically-relevant comparison and few studies that have examined associations with neighborhood-level SDOH variables. Therefore, in this work, we aim to study the association between clinically-relevant weight status over the course of early childhood and a series of major neighborhood-level SDOH and individual-level socio-demographics using an electronic health record dataset extracted from a large, multi-state pediatric health system in the U.S. which is linked to census-level SDOH data.

2. Data

We obtained patient-level data from Nemours Children’s Health, which is a large pediatric healthcare system in the U.S., serving patients from the states of Delaware, Florida, New Jersey, Maryland, and Pennsylvania. Our study was approved by the Nemours Institutional Review Board. This dataset was part of a larger pediatric multi-institution dataset called PEDSnet (Forrest et al., 2014). The initial dataset was extracted from the electronic health records (EHRs) of children 0-21 years of age with patient records from 2002 to 2019 for all inpatient and outpatient visits. Inclusion criteria for the patients in the cohort used in this study included having: (i) no evidence of type 1 diabetes, and (ii) no evidence of cancer, and sickle cell disease. We provide the full list of diseases excluded under cancer and sickle cell disease in supplementary S4. The data consisted of clinical information and
BMI percentile longitudinal patterns and SDOH

demographic information such as race (categorized for the purpose of analysis as White, Black, Asian, and Other) and ethnicity (categorized for the purpose of analysis as Hispanic and Non-Hispanic), and insurance type (categorized for the purpose of analysis as private and public).

Due to regular pediatric visits in early childhood, we had a higher number of weight and height measurements among younger children, with fewer measurements documented with increasing age and the largest drop in measurements after 7 years of age. Because of this and because of our focus on early childhood, with most experts and studies highlighting the importance of identification of obesity by the age of 5 and definitely by the age of 7 (the second potential point of adiposity rebound), we decided to include only children ages 0-7 years (N = 67,242) in our dataset. We then excluded patients with no weight or height measurements or demographic data, and without a minimum of 5 years of recorded weight and height measurements. Since weight and height measurements for children were recorded over irregular intervals, we segmented the time-series data into non-overlapping 3-month windows to obtain smooth time-series with equal intervals. For every window, we took the median of weight and height measurements and if weight and height measurements are missing in a certain 3-month window we mark it as missing. We excluded 7,286 children with more than 80% missing rate for recorded weight and height measurements.

To classify patients based on weight status, we chose to classify patients, based on well-established and clinically-relevant CDC categories that use BMI percentiles, as having a normal weight (BMI < 85th percentile), overweight (BMI = 85-94th percentile), or obesity (BMI >= 95th percentile). This included classifying patients based on whether they stayed within these weight categories or how they moved between them using methods described further below. Weight and height were used to calculate BMI and reference BMI percentile provided by the World health organization (WHO) (WHO, 2006) and Centers for Disease Control and Prevention (CDC) (Centers for Disease Control and Prevention, 2021) for children between 0 to 2 years and older than 2 years, respectively. Even though the American
Academy of Pediatrics recommends weight-for-length (WFL) for children younger than 2 years, many recent studies show that BMI has a higher predictive value for childhood obesity and other obesity-related comorbidities than WFL (Mattsson et al., 2021; Roy et al., 2016; Aris et al., 2018). Moreover, both BMI percentile and weight for length percentiles use anthropometric measurements of height and weight and demographic variables of age and sex. To remain consistent with the measurements used for the cohort across all time periods (0-7 years of age), we, therefore, chose to use BMI percentile across all ages, consistent with many other group-based trajectory studies that have used BMI from birth to ages above 2 years to find the growth trajectories (Mattsson et al., 2021; Khalsa et al., 2022; Giles et al., 2015; Ziyab et al., 2014). Finally, to keep the focus of our study on studying SDOH associations between children with normal BMI% and children with overweight and obesity BMI%, we also excluded patients who were underweight (BMI% <= 5) and never crossed the overweight thresholds of BMI% >= 85 (more details in Section S1 and Table S1). This resulted in a cohort of 36,910 patients. All cohort selection steps are summarized in Figure 1 and Table 1 shows the general characteristics of our final cohort.

![Figure 1: Cohort selection and processing steps](image)

### 2.1 Linking patient data to neighborhood-level SDOH Data

For linking the above cohort to SDOH data, we initially compiled a repository of socio-economic data from the 2005 to 2018 U.S. Census Bureau American Community Survey (ACS) 5-year estimates (U.S. Census Bureau, 2019) and from the 2010 U.S. Department of Agriculture Rural-Urban Commuting Area (RUCA) codes (U.S. Department of Agriculture, 2019). The 2005 to 2009 ACS survey data was mapped to 2000 census tract boundaries with 66,332 geographic IDs and 868 socio-economic and demographic fields for each census tract. The 2010 to 2018 ACS survey data and 2010 RUCA codes were mapped to 2010 census tract areas.
BMI percentiles longitudinal patterns and SDOH

boundaries with 74,001 geographic IDs with 951 socio-economic and demographic fields for each census tract.

Current and previous patient addresses for each child's visit to the healthcare system through the duration of this study were extracted from the EHR and mapped to latitude, longitude, and census tract codes using the Census Geocoder (U.S. Census Bureau, 2018). The Census Geocoder address look-up tool allowed us to map 3,012,495 of 3,488,128 patient visits (86.36%) to 4,237 unique census tract geocodes. The 13.64% of missing codes were the result of data entry errors, or no longer existing addresses. On average, each patient was mapped to 1.27 different census tracts from the first visit to the last visit of this study. To preserve patient confidentiality and prevent exposure of patient-protected health information (PHI), census tracts were mapped to randomly generated codes that allowed the linking of patients to socio-economic data by a designated honest broker.

To obtain a subset of prominent neighborhood-level SDOH variables in ACS data that may influence child development we used three standardized indexes, i.e., Child Opportunity Index (COI) (Data for a diverse and equitable future, 2021), Social Vulnerability Index (SVI) (Agency for Toxic Substances and Disease Registry, 2021), and Social Deprivation Index (SDI) (Robert Graham Center, 2021). We identified the unique variables from the ACS that are used in these indices and grouped them into five categories: 1) socioeconomic status, 2) neighborhood household composition, 3) housing and transportation, 4) education and occupation, and 5) RUCA code. The socioeconomic status category included the following variables: poverty - % of persons below the poverty level, unemployed - % of unemployed persons over age 18 in the neighborhood, public assistance or food stamps/SNAP - % households receiving public assistance, any health insurance - % persons with any health insurance, and median household income. The neighborhood household composition category included single householder - % single caregiver household, % minority (race or ethnicity other than Non-Hispanic White), % foreign-born, and age under 18 - % age less than 18. The housing and transportation category included vacant housing units - % va-
cant housing units, crowded buildings - % crowded buildings (buildings with >= 10 units), crowded households - % crowded households (occupied housing units with >1 person per room), no vehicle - % of housing units with no vehicle available, and owner-occupied housing - % housing units owner-occupied, among the occupied housing units. The education and occupation category included preschool enrollment - % children age 3-6 in nursery school or preschool, high-school dropout - % of persons 16-19 years of age not enrolled in or graduated from high school, minimum bachelors education - % of persons age 25 to 34 years of age with a bachelor's degree), high skill occupation - % of persons above 25 years of age with a high skill occupation (management, business, science, and arts). Finally, the RUCA category includes RUCA codes, which describe the degree of urbanization of a neighborhood based on characteristics like population density and distance between households on a scale of 1 to 10 with neighborhoods having a RUCA code of >= 4 being more rural.

Table 1: Characteristics of the full cohort and the five BMI% trajectory clusters.

<table>
<thead>
<tr>
<th></th>
<th>Full cohort</th>
<th>Always having obesity</th>
<th>Overweight most of the time</th>
<th>Increasing BMI%</th>
<th>Decreasing BMI%</th>
<th>Always normal weight</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Population (N (%))</strong></td>
<td>36,910</td>
<td>429 (1.16%)</td>
<td>15,066 (40.65%)</td>
<td>9,060 (24.54%)</td>
<td>5,058 (13.70%)</td>
<td>7,357 (19.89%)</td>
</tr>
<tr>
<td><strong>Male/Female</strong></td>
<td>19,920/16,990</td>
<td>263/166</td>
<td>8,291/6,715</td>
<td>4,649/4,411</td>
<td>2,953/2,105</td>
<td>3,764/3,593</td>
</tr>
<tr>
<td><strong>Mean BMI% (±STD)</strong></td>
<td>64 (±7.18)</td>
<td>99.10 (±1.06)</td>
<td>93.26 (±21.37)</td>
<td>65.14 (±26.54)</td>
<td>58.45 (±24.52)</td>
<td>41.18 (±20.40)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethnicity:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic</td>
<td>5,076</td>
<td>106</td>
<td>2,470</td>
<td>1,142</td>
<td>620</td>
<td>738</td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td>31,635</td>
<td>321</td>
<td>12,536</td>
<td>7,792</td>
<td>4,412</td>
<td>6,574</td>
</tr>
<tr>
<td><strong>Race:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>638</td>
<td>3</td>
<td>190</td>
<td>181</td>
<td>121</td>
<td>143</td>
</tr>
<tr>
<td>Black</td>
<td>15,195</td>
<td>164</td>
<td>6,128</td>
<td>3,397</td>
<td>2,013</td>
<td>2,893</td>
</tr>
<tr>
<td>White</td>
<td>16,816</td>
<td>178</td>
<td>6,680</td>
<td>3,861</td>
<td>2,395</td>
<td>3,702</td>
</tr>
<tr>
<td>Other Race</td>
<td>4,602</td>
<td>90</td>
<td>2,008</td>
<td>1,207</td>
<td>584</td>
<td>713</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insurance:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Public</td>
<td>21,431</td>
<td>276</td>
<td>9,567</td>
<td>5,407</td>
<td>2,777</td>
<td>3,820</td>
</tr>
<tr>
<td>Private</td>
<td>15,415</td>
<td>153</td>
<td>4,991</td>
<td>4,061</td>
<td>2,270</td>
<td>3,524</td>
</tr>
</tbody>
</table>

3. Method

We used longitudinal BMI% for age and sex values, as defined by the U.S. Centers for Disease Control and Prevention, for each child (Centers for Disease Control and Prevention, 2021). We used a data-driven clustering approach to group patients based on BMI% classification patterns. We used a two-step process to identify BMI% trajectory groups. We first used a data-driven approach where we used BMI% data points in each patient’s history to find
any homogeneous groups who remained in the same BMI% category over time. We found two such groups: 1) BMI% always in normal weight range ($5 \leq BMI\% < 85$), 2) BMI% always in the obesity range ($BMI\% \geq 95$). The remaining group thus represented a group with significant heterogeneity, with individuals in that group having a BMI% recorded from at least two of the normal, overweight, or obesity categories ($BMI\% \geq 5$). For the third group, we used latent class growth mixture modeling (LCGMM) to identify the prominent clusters (classes) in this group.

LCGMM is a longitudinal technique that can be used to capture the heterogeneity in BMI% trajectories over time (Jung and Wickrama, 2008; Nagin and Tremblay, 2001; Nagin, 1999; Muthén and Muthén, 2000). We compared linear and quadratic LCGMM techniques to choose a final model. To determine the optimal number of classes, we compare models by starting from one class and adding more classes one at a time. We use Bayesian Information Criterion (BIC), Bootstrapped Likelihood Ratio Test (BLRT), and posterior probabilities to compare the fit of different models (Koning et al., 2016; Nylund et al., 2007). The BIC (Neath and Cavanaugh, 2012) considers both likelihood of the model as well as the number of parameters in the model. The BLRT (McLachlan et al., 2019; Connell and Frye, 2006) provides a p-value, comparing a model with $k-1$ classes with a model with $k$ classes. The posterior probability is used to assign children to their most-likely class. A higher difference between the probability of an assigned class and the probability of a class not assigned makes the classes more distinguishable. Table S2 shows the results from the experiments we ran to determine the number of classes.

We also verified our results from the LCGMM approach using an alternative, algorithmic approach to identify groups in the heterogeneous group with BMI% recorded from at least two of the normal, overweight, or obesity categories. We used a partitional clustering approach with dynamic time warping (DTW) distance to identify 3 similar distinct groups. Details of our approach are shared in supplemental S2.
Figure 2: Five groups were identified in our study based on BMI% trajectories of children between 0 to 7 years. We used geom_smooth package in R with a smoothing function for more than 1,000 observations to represent each cluster by a smooth solid line with 95% CI. Solid lines show the smooth fitted line to represent the BMI% trajectories for each group with 95% CI.

After categorizing the five groups based on BMI% trajectory patterns (the 2 homogeneous groups from the data-driven step and the 3 groups generated from the LCGMM step), we used proportions to describe the differences in BMI% trajectory patterns between patients based on individual race, ethnicity, and insurance status and compared the mean value (with p-value) for each neighborhood-level SDOH variable in each BMI% trajectory group with the mean of that variable in the complete study cohort. Multinomial regression was then used to predict the odds of belonging to each of the four (with “always normal weight” as baseline) BMI% trajectories groups as an outcome variable and as compared to the referent group of “always normal weight”, based on each individual demographic and neighborhood-level SDOH variable as predictor variables. Heat mapping was applied to demonstrate the relative values.
4. Results

Number of BMI% Trajectory Groups: Using a data-driven clustering approach we found two homogeneous groups of “always having obesity” and “always having normal weight”. We used LCGMM on the third heterogeneous group (BMI% recorded from at least two of the normal, overweight, or obesity categories). Based on the BIC the best-fitting model was the three class linear model. Also based on the posterior probabilities, the results for the three class model showed strong discriminatory power. Table S2 shows the results from the experiments we ran to determine the number of clusters. The three distinct groups identified, represented patients whose BMI% trajectory was mostly in the overweight range, was increasing from normal to overweight, or was decreasing from overweight to normal.

Table 1 shows the characteristics of the full cohort and for the total five BMI% trajectory groups. From our cohort of 36,910 children, 429 (1.16%) fell into the “always having obesity” group, 15,006 (40.65%) fell into the “overweight most of the time” group, 9,060 (24.54%) fell into the “increasing BMI%” group, 5,058 (13.70%) fell into the “decreasing BMI%” group, and 7,357 (19.89%) fell into the “always normal weight” group.

Association between Race, Ethnicity, Insurance, and BMI% Trajectory: Figure 3 demonstrates the proportion of children in each BMI% trajectory group, based on the child’s race, ethnicity, and insurance status. Among the five BMI% trajectory groups, “always having obesity”, “overweight most of the time”, and “Increasing BMI%” had a higher prevalence of Black (35% to 45%) and Hispanic (10% to 20%) children compared to other groups with less than 35% Black and less than 10% Hispanic. “Increasing BMI%” group had an especially high prevalence of Black children (>40%). Whereas the “always normal weight” group had a greater than 40% proportion of white children. Groups indicating higher concerns for obesity (“always having obesity”, “overweight most of the time”, and “Increasing BMI%”) also had a greater proportion with public insurance (>50%).
BMI percentile longitudinal patterns and SDOH

Figure 3: The proportion of children of different races, ethnicity, and insurance types in each BMI% Trajectory Group, with bars arranged on the x-axis from highest risk BMI% groups to lowest. The y-axis shows the proportion of the population in each BMI% trajectory group belonging to a particular race or ethnicity or insurance type.

Association between Census-Derived SDOH and BMI% Trajectory: Figure 4 compares the mean values (with p-value) of the neighborhood-level SDOH variables for each BMI% trajectory group to the full cohort mean values in a heatmap format. Children from the BMI% trajectory groups indicating higher concerns for obesity (“Always having obesity”, “Overweight most of the time”, and “Increasing BMI%”) were from neighborhoods with more crowded households (p<0.001) and individuals of lower socioeconomic status (p<0.001), higher minority population (p<0.05), single-parent households (p<0.001), lower educational status with high high-school dropout (p<0.05) and low preschool enrollment (p<0.05), and greater rurality (p<0.001). However, children from the BMI% trajectory groups indicating lower concerns for obesity (“Always normal weight”, and “Decreasing BMI%”) have higher socioeconomic status with lower poverty (p<0.001) and unemployment (p<0.001), higher owner-occupied housing (p<0.001), and higher education with higher preschool enrollment (p<0.05), and bachelor’s educated (p<0.001).

Odds of BMI% trajectory group based on the SDOH variables: Figure 5 shows the results of the multinomial regression for BMI% trajectory group membership with “always normal weight” as the reference group. Notably, children from the higher SDOH risk
Figure 4: Comparison of mean values for each of the neighborhood-level SDOH values by BMI% trajectory group. Negative and positive SDOH are shown separately for easy interpretation. Each column in the table corresponds to a BMI% trajectory group as labeled in the key. Each row corresponds to an SDOH variable and shows p-value for that variable. Each cell shows how the mean value (with 95% CI) for the SDOH variable compares to the mean for the full cohort, using the color key.

Factors had greater odds of being in “always having obesity” group compared to the baseline group “always normal weight”, but the odds are especially higher for neighborhoods with more households with incomes below the poverty level (OR 2.3), more unemployment (OR 5.7), more single-parent households (OR 7.1), more vacant housing units (OR 3.6), crowded buildings (OR 1.3), and rurality (OR 1.04). The odds of being in the “overweight most of
the time” group are greater for neighborhoods with higher high-school dropouts (OR 1.13), with more persons from racial and ethnic minority backgrounds (OR 1.3), particularly Hispanic ethnicity (OR 1.6), and having public insurance (1.5). Finally, the odds of being in the “Increasing BMI%” group are higher for neighborhoods with crowded households (OR 2.5) and more population from minority (OR 1.41) and foreign born (OR 1.29) that rely on public assistance (OR 1.14). However, the odds are lower for “always having obesity”, and “overweight most of the time” groups with increasing preschool enrollment (OR 0.006, 0.1675), bachelor’s education (OR 0.79, 0.95), and high-skill occupation (OR 0.61, 0.48), respectively. In contrast, we observe lower odds of being in the “decreasing BMI%” group compared to the baseline group “always normal weight” with increasing poverty (OR 0.46), public assistance (OR 0.62), single householders (OR 0.83), crowded buildings (OR 0.58), and high school dropout (OR 0.83) and odds increase with increasing preschool enrollment (OR 1.26), and bachelor’s education (OR 1.18).

5. Discussion

Using robust electronic health record data, we were able to identify five distinct groups of BMI% classification trajectories among 36,910 children from birth to 7 years of age. Two groups demonstrated stable BMI percent classifications over time, one with a BMI% always above 95% (always having obesity) and another with a BMI% always less than 85% (always normal weight). Using advanced modeling, we also found three additional groups of children. Those in the “overweight most of the time” and “increasing BMI%” groups generally started with a BMI% <85 but later moved to the overweight or obesity category. Both groups showed an increasing BMI% trajectory, with one group (overweight most of the time) showing a smaller and the other (increasing BMI%) showing a larger increase in BMI% over time. A third group (decreasing BMI%) started from a higher BMI% near 85% (overweight threshold) but then demonstrated a downward trajectory into a normal BMI% range (<85). These five groups are consistent with the groups found in other longitudinal
### BMI percentile longitudinal patterns and SDOH

<table>
<thead>
<tr>
<th>Socioeconomic Status</th>
<th>Always having obesity</th>
<th>Overweight most of the time</th>
<th>Increasing BMI%</th>
<th>Decreasing BMI%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty</td>
<td>2.849</td>
<td>1.313</td>
<td>1.333</td>
<td>1.333</td>
</tr>
<tr>
<td>Unemployed</td>
<td>1.679</td>
<td>1.564</td>
<td>1.537</td>
<td>1.515</td>
</tr>
<tr>
<td>Public assistance or Food stamps/SNAP</td>
<td>0.278</td>
<td>0.776</td>
<td>1.153</td>
<td>1.161</td>
</tr>
<tr>
<td>Any health insurance</td>
<td>0.9999</td>
<td>0.99983</td>
<td>0.99999</td>
<td>0.99987</td>
</tr>
<tr>
<td>Median household income</td>
<td>0.99995</td>
<td>1.0</td>
<td>0.99997</td>
<td>1.000002</td>
</tr>
<tr>
<td>Neighborhood Housing and Transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single householder</td>
<td>7.1075</td>
<td>1.8076</td>
<td>1.8235</td>
<td>0.8308</td>
</tr>
<tr>
<td>Minority</td>
<td>1.1178</td>
<td>1.3507</td>
<td>1.425</td>
<td>0.4138</td>
</tr>
<tr>
<td>Foreign born</td>
<td>1.2534</td>
<td>0.9137</td>
<td>1.2951</td>
<td>0.7901</td>
</tr>
<tr>
<td>Age under 18</td>
<td>0.9545</td>
<td>1.171</td>
<td>0.977</td>
<td>0.5701</td>
</tr>
<tr>
<td>Vacant housing units</td>
<td>3.6576</td>
<td>0.7483</td>
<td>0.9119</td>
<td>0.6758</td>
</tr>
<tr>
<td>Crowded Building</td>
<td>1.3465</td>
<td>0.889</td>
<td>0.9581</td>
<td>0.581</td>
</tr>
<tr>
<td>Crowded household</td>
<td>1.7435</td>
<td>2.4737</td>
<td>2.5364</td>
<td>1.4242</td>
</tr>
<tr>
<td>No vehicle</td>
<td>0.1537</td>
<td>0.8762</td>
<td>1.6517</td>
<td>1.2429</td>
</tr>
<tr>
<td>Owner occupied housing</td>
<td>0.6175</td>
<td>0.8175</td>
<td>1.0824</td>
<td>0.5935</td>
</tr>
<tr>
<td>Education and Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preschool enrolment</td>
<td>0.066</td>
<td>0.1878</td>
<td>0.0533</td>
<td>1.2598</td>
</tr>
<tr>
<td>High-school dropout</td>
<td>0.4457</td>
<td>1.1724</td>
<td>1.0975</td>
<td>0.8223</td>
</tr>
<tr>
<td>Minimum bachelor's education</td>
<td>0.7973</td>
<td>0.8931</td>
<td>1.0530</td>
<td>1.3026</td>
</tr>
<tr>
<td>High skill occupation</td>
<td>0.6327</td>
<td>0.6823</td>
<td>0.9004</td>
<td>0.5006</td>
</tr>
<tr>
<td>Rural-Urban Community Area</td>
<td>1.0822</td>
<td>1.0284</td>
<td>1.0298</td>
<td>0.9938</td>
</tr>
<tr>
<td>Race and Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td>0.7023</td>
<td>1.1566</td>
<td>1.1234</td>
<td>0.9192</td>
</tr>
<tr>
<td>Asian</td>
<td>0.6569</td>
<td>0.9817</td>
<td>1.096</td>
<td>1.2529</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1.609</td>
<td>1.6602</td>
<td>1.1055</td>
<td>1.3274</td>
</tr>
<tr>
<td>White</td>
<td>1.0102</td>
<td>1.1616</td>
<td>0.8698</td>
<td>1.0011</td>
</tr>
<tr>
<td>Black</td>
<td>1.3213</td>
<td>1.2672</td>
<td>1.0932</td>
<td>1.0781</td>
</tr>
<tr>
<td>Some Other Race</td>
<td>1.3653</td>
<td>1.3364</td>
<td>1.016</td>
<td>1.1019</td>
</tr>
<tr>
<td>Insurance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>0.9583</td>
<td>1.269</td>
<td>0.9315</td>
<td>1.1862</td>
</tr>
<tr>
<td>Public</td>
<td>1.2521</td>
<td>1.525</td>
<td>1.0488</td>
<td>1.1731</td>
</tr>
</tbody>
</table>

Figure 5: Odds ratios using multinomial regression using “always normal weight” as the reference group. Each column represents one of the other four groups of BMI% trajectories. Each row represents one of the SDOH variables. The darker the color, the higher the odds ratio of being in the corresponding group compared to being in the “always normal weight” group. See Section 2.1 for an extended description of the SDOH variables. All confidence intervals were very small ($10^{-12}$ to $10^{-9}$) and did not cross 1.

Studies that use group-based methods to find different BMI trajectories in children (Kwon et al., 2017; Liu et al., 2017; Stout et al., 2015; Mattsson et al. 2019; Koning et al., 2016; Jansen et al., 2013). However, the majority of these studies look at trajectories, without a relationship to widely-established BMI percentile classifications. Our identification of a similar five groups, but in relationship to BMI percentile classification or changes in BMI percentile classification over the course of early childhood, allows us to better interpret the findings and apply them clinically, as well as study how clinically-relevant subpopulations might be distinctly different in their potential risk factors, like SDOH.
BMI percentile longitudinal patterns and SDOH

While some of these trajectory studies have demonstrated associations between increasing BMI% trajectories and individual-level social and environmental factors like food and housing insecurity and maternal social risk factors like depression and substance use (Liu et al., 2019; Daniels et al., 2021a,b; Jansen et al., 2013). However, these studies have not comprehensively evaluated the impact of important neighborhood-level SDOH variables on BMI trajectories. Our study includes the analysis of the association between 22 different social and neighborhood-level SDOH risk factors and five distinct BMI% trajectories. Other studies have examined the association between neighborhood-level SDOH and risk for overweight and obesity (Singh et al., 2010; Miranda et al., 2012; Evans et al., 2012; Gundersen et al., 2011), but only using cross-sectional data (Tylavsky et al., 2020; Dixon et al., 2012; Kumanyika, 2008; Li et al., 2007; Balistreri and Van Hook, 2011; Pryor et al., 2011). Our study is distinctly different in that it looks at subgroups based on changes in clinically-relevant BMI percentile classifications over the course of early childhood and evaluates which neighborhood-level SDOH are associated with these different subgroups to inform tailored interventions for communities.

In our study, among the high risk groups (always having obesity, overweight most of the time, and increasing BMI%) those in the group “always having obesity” made up a very small percentage of the cohort (1.16%), whereas children in the “overweight most of the time” (40.65%) and “Increasing BMI%” (24.54%) groups made up a much larger percentage. Consistent with the literature demonstrating that Black and Hispanic children are more likely to be at risk for overweight and obesity, all three groups had a higher prevalence of Black and Hispanic children compared to children of other racial and ethnic groups, but the “increasing BMI%” group had an especially high prevalence of Black children (Taveras et al., 2010; Singh et al., 2010). All three high-risk groups were also more likely to be from neighborhoods with higher rates of poverty and unemployment compared to the low-risk groups. As numerous other studies have also shown, factors like socioeconomic status and household structures can contribute significantly to obesogenic lifestyles such as more fast food and frozen food consumption and screen time, fewer opportunities for physical activity,
BMI percentile longitudinal patterns and SDOH

poor sleep quality, and increased household stress (Eagle et al., 2012; Huffman et al., 2010; Chen and Escarce, 2010; Rossen, 2014; Grow et al., 2010; Mohammed et al., 2019; Gable and Lutz, 2000).

However, there were differences among our high risk groups, which is an important finding of our study. Those in the “always having obesity” and “overweight most of the time” groups – children who demonstrated very early onset overweight or obesity from infancy – were more likely to be from neighborhoods with more crowded buildings and households, with a higher percentage of the population from Hispanic and immigrant backgrounds, whereas the “increasing BMI%” group who developed obesity over time were more likely to be from neighborhoods with a higher population of Black children with higher rates of unemployment, high-school dropouts, and dependence on public assistance. It, therefore, seems that providing targeted intervention to Hispanic and immigrant communities in disadvantaged neighborhoods with poor living conditions, especially providing support in the perinatal period, supporting pregnant women and their newborns, and addressing both maternal lifestyle and infant feeding practices, may be important to preventing overweight and obesity in infancy. Also providing targeted interventions to Black communities in socioeconomically disadvantaged neighborhoods to reduce inequities in resources such as employment, and education would be critical to preventing rapid weight gain that might occur in early childhood. For all of these high risk groups, it would be critically important to engage the community in developing effective interventions that address neighborhood barriers to child health. Indeed, numerous experts recommend the use of culturally-grounded programming and multi-sector collaborations for reducing obesity-related disparities driven by SDOH, as well as partnering with communities and leveraging community health workers to increase access to programs and resources to improve family and child health (Schroeder et al., 2018; Soltero et al., 2021) and help families overcome barriers to care, such as food insecurity, poverty, lack of transportation, and mental health support (Kumanyika, 2019; Schroeder et al., 2018, Skelton et al., 2020, Soltero et al., 2021).
Interestingly, our study also found a group whose BMI% decreased over time. In direct contrast to how BMI% trajectories increased among children from disadvantaged neighborhoods, we found that children with decreasing BMI% trajectories were more likely to be from neighborhoods with higher rates of preschool enrollment and bachelor’s education, and lower rates of poverty, reliance on public assistance, single parent households, and crowded households. This is consistent with other studies that demonstrate the importance of education and SES to weight loss (Cadzow et al., 2015; Carroll-Scott et al., 2015; Vazquez et al., 2022). It may be that these children have the resources (e.g., access to healthcare, childcare, physical activity opportunities, and healthy foods, as well as increased health literacy) that can help both with early identification of risk of obesity and management of weight once the risk is identified that are less accessible to other groups. While we did not intend to look at children who are able to successfully lose weight with this study, our ability to distinguish this subgroup with clustering and our finding that there were SDOH associations in the opposite direction as our subgroups with obesity are very telling about the important role of SDOH not only to the development of obesity but how successful families might be if provided with more social and environmental resources.

6. Strengths and Limitations

The aim of this paper was to evaluate whether weight status in early childhood is associated with neighborhood-level socioeconomic variables, leveraging the linkage of our electronic health record to geocoded data. Instead of describing this association using static measures of weight status (e.g., comparing socioeconomic status among children with a normal weight vs. those with obesity at age 5 years), we investigate whether socioeconomic variables associate with longitudinal “changes” in weight classification over time across early childhood. Our clustering depicts whether children remained at a normal weight throughout early childhood, whether children had obesity throughout early childhood, or whether their weight classification changed during early childhood. We believe this is an important area
of study as it can help clinicians and policymakers determine areas for early intervention for targeted populations based on when they develop obesity. For example, in neighborhoods with characteristics where children have obesity from birth, more attention might be paid to addressing perinatal exposures. Whereas, in neighborhoods with characteristics where children move from normal weight to obesity categories during early childhood more attention might be paid to addressing the built environment and providing resources to prevent obesity in early childhood.

Our study is limited in several ways. For linking children’s addresses to census data, we have used their last available address during the 0–7 year age period. While relocations were not frequent, a more advanced linkage by tracking all the locations over time could enhance this process. While our study cohort is very large and spans several US states, additional experiments would be needed to confirm our results in other parts of the US and the rest of the world. Our dataset includes data collected across all settings within the healthcare system, including inpatient and outpatient settings and across all departments and specialties. Therefore, this data is highly representative of all populations seen within our healthcare system. However, there may be some limitations to not excluding certain populations like those on certain medications that impact weight, those with monogenic obesity, or those seeking weight management treatment, and including a stratified analysis based on these factors which could be derived from more detailed EHR analysis could provide more significant insights into the study. Finally, this analysis did not consider the potential interactions between the different SDOH variables studied. Future studies should employ approaches like multilevel analysis of individual heterogeneity and discriminatory accuracy to better understand these intersectionalities.

7. Conclusion

Our findings, leveraging a large electronic health record dataset linked to individual and neighborhood-level socio-demographic and socioeconomic variables and advanced modeling,
found five distinct subgroups that differed in how their BMI% classification changed over the course of early childhood. Three subgroups demonstrated overweight and obesity – some as early as infancy and some later in early childhood – and were more likely to be from socioeconomically disadvantaged neighborhoods with more SDOH risk factors. Importantly, these three subgroups were not only different from one another in terms of the timing of the development of overweight and obesity but also individual and neighborhood-level demographic and SDOH variables. This finding supports the need to develop both perinatal and early childhood obesity prevention interventions and policies prioritizing and partnering with at-risk communities and tailoring these interventions and policies to address barriers faced by these communities (Kumanyika, 2019; Schroeder et al., 2018; Skelton et al., 2020; Soltero et al., 2021).

8. Conflicts of Interest Statement

The authors had no conflict of interest to report.

9. Acknowledgements

MG conceived and carried out experiments. TP and RB conceived the experiments and helped in the study design. MG, FL, DE, and HB worked on preprocessing steps including data extraction, cleaning, and linkage. All authors were involved in writing the paper and had final approval of the submitted and published versions. Our study was supported by NIH awards, P20GM103446, and P20GM113125.

References


BMI percentile longitudinal patterns and SDOH


Kimberly Daniels, Félice Lé-Scherban, Amy H Auchincloss, Kari Moore, Steven Melly, Hanieh Razzaghi, Christopher B Forrest, and Ana V Diez Roux. Longitudinal associations


Christopher B Forrest, Peter A Margolis, L Charles Bailey, Keith Marsolo, Mark A Del Beccaro, Jonathan A Finkelstein, David E Milov, Veronica J Vieland, Bryan A


Elizabeth Goodman, Gail B Slap, and Bin Huang. The public health impact of socioecon-
nomic status on adolescent depression and obesity. *American journal of public health*, 93

Penny Gordon-Larsen, Linda S Adair, and Barry M Popkin. The relationship of ethnicity,
socioeconomic factors, and overweight in us adolescents. *Obesity research*, 11(1):121–129,
2003.

H Mollie Greves Grow, Andrea J Cook, David E Arterburn, Brian E Saelens, Adam
Drewnowski, and Paula Lozano. Child obesity associated with social disadvantage of

Craig Gundersen, D Mahatmya, Steven Garasky, and B Lohman. Linking psychosocial

Craig M Hales, Cheryl D Fryar, Margaret D Carroll, David S Freedman, Yutaka Aoki,
and Cynthia L Ogden. Differences in obesity prevalence by demographic characteristics

Joan C Han, Debbie A Lawlor, and Sue YS Kimm. Childhood obesity. *The lancet*, 375

Summer Sherburne Hawkins, Matthew W Gillman, Sheryl L Rifas-Shiman, Ken P Klein-
man, Megan Mariotti, and Elsie M Taveras. The linked century study: linking three
decades of clinical and public health data to examine disparities in childhood obesity.

Mary O Hearst, Lauren Martin, Brooke H Rafdal, Ronel Robinson, and Scott R McConnell.
Early childhood development and obesity risk-factors in a multi-ethnic, low-income com-
munity: Feasibility of the ‘five hundred under five’social determinants of health pilot


BMI percentile longitudinal patterns and SDOH


BMI percentile longitudinal patterns and SDOH


BMI percentile longitudinal patterns and SDOH


List of Figures

1. Cohort selection and processing steps..............................7

2. Five groups were identified in our study based on BMI% trajectories of children between 0 to 7 years. We used geom_smooth package in R with a smoothing function for more than 1,000 observations to represent each cluster by a smooth solid line with 95% CI. Solid lines show the smooth fitted line to represent the BMI% trajectories for each group with 95% CI. ..............11

3. The proportion of children of different races, ethnicity, and insurance types in each BMI% Trajectory Group, with bars arranged on the x-axis from highest risk BMI% groups to lowest. The y-axis shows the proportion of the population in each BMI% trajectory group belonging to a particular race or ethnicity or insurance type. ..................................................13

4. Comparison of mean values for each of the neighborhood-level SDOH values by BMI% trajectory group. Negative and positive SDOH are shown separately for easy interpretation. Each column in the table corresponds to a BMI% trajectory group as labeled in the key. Each row corresponds to an SDOH variable and shows p-value for that variable. Each cell shows how the mean value (with 95% CI) for the SDOH variable compares to the mean for the full cohort, using the color key. ..............................................14

5. Odds ratios using multinomial regression using “always normal weight” as the reference group. Each column represents one of the other four groups of BMI% trajectories. Each row represents one of the SDOH variables. The darker the color, the higher the odds ratio of being in the corresponding group compared to being in the “always normal weight” group. See Section 2.1 for an extended description of the SDOH variables. All confidence intervals were very small ($10^{-12}$ to $10^{-9}$) and did not cross 1. .........................16
BMI percentile longitudinal patterns and SDOH

List of Tables

1 Characteristics of the full cohort and the five BMI% trajectory clusters. . . 9