Does maternal immunization blunt the effectiveness of pertussis vaccines in infants? Too early to tell

Michael Brigaa, Elizabeth Goulta, Tobias S Brettb,c, Pejman Rohanib,c, Matthieu Domenech de Cell\`esa

aInfectious Disease Epidemiology Group, Max Planck Institute for Infection Biology, Berlin, Germany
bOdum School of Ecology, University of Georgia, Athens, GA 30602
cCenter of Ecology of Infectious Diseases, Athens, GA 30602

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Pertussis, a highly contagious respiratory infection primarily caused by the bacterium *Bordetella pertussis*, remains a public health priority largely because of the persistently high disease burden in infants too young to be vaccinated. To protect this vulnerable demographic, maternal immunization during pregnancy has been adopted in an increasing number of countries over the last decade. Although this strategy is effective at protecting unvaccinated newborns, it has been demonstrated to cause immunological blunting, whereby maternal antibodies reduce the infant’s immune response to pertussis vaccines. However, the clinical and epidemiological consequences of immunological blunting remain unclear. To illuminate these consequences, we first reviewed the epidemiological evidence for the blunting of vaccine effectiveness after primary immunization of infants. Of the four studies identified, all had short-time monitoring (range: 2–6 years), and their results were heterogeneous, with some estimates consistent with blunting. Next, to better interpret this epidemiological evidence, we extended a previously validated model of pertussis transmission by incorporating maternal immunization with varying degrees of blunting, assumed to reduce the vaccine effectiveness in infants born to vaccinated mothers. Our simulations show three results. First, we find evidence for a transient phase lasting at least a decade after the start of maternal immunization, during which the long-term epidemiological impact of blunting is masked. Hence, ignoring these transient dynamics results in an overestimation of the effectiveness of maternal immunization. Second, because of this transient effect, we show that current empirical estimates may be consistent with a modest level of blunting, amounting to a 10–20% reduction in vaccine effectiveness. However, the large between-study heterogeneity and within-study statistical uncertainty preclude a definitive conclusion, urging for more research to infer the degree of blunting, if any. Ultimately, we predict that, regardless of the degree of blunting, maternal immunization remains effective at reducing pertussis in unvaccinated newborns, supporting the continued use of this strategy to protect this vulnerable population. More generally, our results suggest that maternal immunization can result in an infection-control trade-off between age groups, of practical relevance to many other vaccine-preventable diseases.
Introduction

Pertussis is a highly transmissible respiratory infection that is primarily caused by the bacterium *Bordetella pertussis* [1,2]. Pertussis was a leading cause of childhood mortality until intense immunization programs starting from the 1940s onwards, reduced pertussis notifications by over 90% in many countries [3]. However, in the last couple of decades, pertussis has re-emerged in many populations with high long-term immunization coverage, for reasons which remain highly debated [4].

Newborns are the demographic most vulnerable to pertussis. In high-income countries, pertussis-related hospitalization rates in infants under 6 months are between 100 and 100,000 per year [5], and data from the US [6] and Australia [7] show that over 60% of pertussis-associated hospitalizations are under one year old. To reduce the burden of pertussis in vulnerable newborns, many countries have recently introduced maternal immunization—*i.e.*, vaccinating pregnant individuals, usually during the second or third trimester of pregnancy, with a low-dose tetanus toxoid, diphtheria toxoid, and acellular pertussis (Tdap) vaccine. In 2015, the World Health Organization (WHO) issued an official recommendation for maternal immunization against pertussis [8], and by 2020 maternal immunization against pertussis was recommended in 55 countries [9].

Maternal immunization is highly effective at protecting newborns, with estimates of reductions in pertussis incidence ranging from 70 to 95% [10–14]. However, the downstream consequences of maternal immunization, when infants receive their routine pertussis vaccines, are not well understood. Specifically, there has been long-standing concern regarding potential immunological blunting, *i.e.*, the interference of maternally-transferred antibodies with the infant immune response [15,16]. Indeed, several studies and meta-analyses have shown that, after infants received their primary immunization, the antibody concentrations against several pertussis antigens were reduced by 25%–50% in infants from vaccinated mothers relative to infants from unvaccinated mothers [17–19]. Similarly, the avidity of pertussis antibodies is reduced in infants from vaccinated mothers [20]. Interestingly, the blunting response following maternal pertussis immunization appears to be heterologous, also causing decreased antibody concentration after infants received a polio vaccine [21] and the blunting response also
applies to other vaccines that contain (modified) diphtheria or tetanus toxins as carrier proteins, such as pneumococcus conjugate vaccines and Haemophilus influenzae type b vaccine [21].

While immunological blunting is well documented, because maternal immunization was implemented only recently, the consequences of blunting on vaccine effectiveness and the ensuing epidemiology of pertussis remain poorly evaluated. Especially, the recent rollout of maternal immunization and associated short-term epidemiological data make it difficult to detect long-term transmission impacts. Here, we assess the epidemiological evidence for blunting, which we interpret in two steps. First, we review the epidemiological literature for estimates of the impact of maternal immunization on the risk of contracting pertussis after the infant’s primary pertussis immunization, which usually consists of two or three vaccine doses given between the ages of two or three months until six months (Table S1, [22]). Second, we extend a previously validated model of pertussis immunization [3,23] to simulate the long-term epidemiological impact of maternal immunization with various levels of blunted protection and maternal immunization coverages on the age-specific time series of pertussis incidence. Our study shows that following the implementation of maternal immunization, there is a transient “honeymoon” phase lasting at least a decade [24]. Ignoring these transient dynamics, as is the current practice in empirical studies, results in an overestimation of the effectiveness of maternal immunization. Comparing our model predictions with the results of epidemiological studies, we find that the available empirical estimates, though largely heterogeneous, may be consistent with a modest (10–20%) blunting of vaccine effectiveness in infants born to vaccinated mothers. Even so, we predict that maternal immunization remains effective at reducing pertussis in unvaccinated newborns. Hence, our results support the continued use of maternal immunization to protect this vulnerable population but highlight a potential infection-control trade-off associated with this strategy.

Methods

Literature search for empirical studies on the relative risk of contracting after maternal immunization
To search the literature, we started with the first two studies that estimated maternal immunization effectiveness on pertussis incidence among children who received at least one dose of primary immunization [11, 12] and went through all peer-reviewed studies citing these articles using Google Scholar on August 26, 2022 (Fig. 1). To be included in our overview, studies had to provide an estimate of the effectiveness of maternal immunization or of the relative risk (RR) of contracting pertussis in infants having received their primary series of pertussis vaccines from vaccinated vs. unvaccinated mothers.

Simulation: Model schematic

We implemented an age-structured model of pertussis transmission, extending a previous model empirically validated on data from Massachusetts, USA [3]. In brief, the model is based on the Susceptible-Exposed-Infected-Recovery (SEIR, Fig. S1) model in which pertussis vaccines can fail by (i) failure in “take” (primary vaccine failure) and (ii) failure in duration (waning of vaccine protection) [25]. Based on immunological evidence showing an immediate reduction in the antibody response to primary vaccination [17–19], we assumed that blunting from maternal immunization increased the probability of primary vaccine failure. Previous results in [3] found no evidence for failure in degree (or leakiness), and hence we ignored this possibility.

The model is designed such that we follow individuals according to their immunization history (Fig. S1), starting from their mother’s immunization status during pregnancy, followed by an infant immunization schedule that resembles that of the empirical studies in Table S1: the infant’s primary immunization occurs at the age of three months and an infant booster at the age of 1.5 years. Newborns can be born in three possible compartments: from vaccinated mothers whose immunization succeeded, mothers whose immunization failed, or unvaccinated mothers. Each of these compartments is followed by a compartment for successful primary infant immunization (Fig. S1) and a compartment for failed primary infant immunization, thereby becoming susceptible (Fig. S1). Following the first booster, these susceptibles become immunized again at an
effectiveness of 96%, with a subsequent waning rate of vaccine protection of 0.011 yr\(^{-1}\)
(Table S3).

Model parametrization

Our model is based on [3], which was fitted to pertussis incidence data from Massachusetts to identify the model parameters that best characterized the data. Hence, for the parameters consistent between both models, we used the estimates from ([3], Table S3).

By adding maternal immunization to this model, we also added three new parameters. The first parameter is maternal immunization coverage, for which empirical studies showed a range between 50% and 90% (Table S1). The second parameter is the duration of maternally derived immunity, for which, to the best of our knowledge, there are no empirical estimates. One proxy is the half-life of maternal antibodies, which ranges between 29 and 36 days [26,27], suggesting that the duration of maternally-derived immunity is short. However, because of the absence of definite correlates of protection [28–30], the correspondence between the waning rate of maternal antibodies and that of maternal immunity is unknown. For example, if both waning rates are assumed equal, according to our model the effectiveness of maternal immunization in the first two months after birth would be close to 50% (Fig. S1). This is in contrast with the estimated effectiveness of maternal immunization in that age class, which ranged from 78% (95% CI: 48–90; [13]) to 93% (95% CI: 81–97, [10]). Thus, in our model, we calibrated the average duration of maternal protection to reach these empirical estimates of vaccine effectiveness. Here we show results with an average duration of 8.7 months (Table S3, Fig. S2), with variation in the average durations ranging from 4 months to 12 months (Fig. S7, Fig S8). The third parameter is the blunting of infant immune protection, defined as the relative reduction in the effectiveness of the primary series in infants born to vaccinated mothers (compared to infants born to unvaccinated mothers). In simulations, we considered blunting levels ranging from 0% (no blunting) to 20%.

Estimation of relative risk of infection following maternal immunization
To connect the model outputs with the empirical estimates of relative risk (RR) [11,12,14,31], we calculated the risk of contracting pertussis in infants born to vaccinated mothers relative to that of infants born to unvaccinated mothers using the same approach as in [11,31]. These studies used the screening method following [32], in which the RR is estimated as:

$$RR = \frac{PCV}{(1 - PCV)} \cdot \frac{(1 - PPV)}{PPV}$$

where PCV is the proportion of cases in infants vaccinated born to vaccinated mothers (among all cases in infants vaccinated) and PPV the proportion of mothers vaccinated (maternal immunization coverage). The RR is a number greater than or equal to zero, with (i) 0 indicating no infections in infants of vaccinated mothers and hence a 100% effectiveness of maternal immunization, (ii) a value of 1 reflecting that infants from vaccinated and unvaccinated mothers have an equal risk of contracting pertussis, hence maternal vaccination having no effect on the protection against pertussis in infants, and (iii) a value above 1 indicating that infants from vaccinated mothers have an increased risk of contracting pertussis relative to infants from unvaccinated mothers. We validated the RR estimates of the simulations by setting the half-life of maternally derived protection to infinity, which resulted in 5% RR in newborns (Fig. S2), matching the initial 95% effectiveness of maternal immunization against pertussis in unvaccinated newborns fixed in the simulations (Table S3). Hence, while the screening method may have several limitations in real-world settings [33], it provided reliable estimates of vaccine effectiveness in the context of our model.

Numerical implementation

We represented the process model as a continuous-time Markov process, approximated via the tau-leap algorithm [34] with a fixed time step of 1 day. To compare the model outputs to empirical estimates, we also added an observation model for the RR. This was done by sampling the number of vaccinated cases born to vaccinated mothers from a Binomial distribution with probability PCV and size equal to the sample size of each empirical study. The model was implemented and simulated using the ‘pomp’ package v. 4.4.3.0 [35], operating in R v. 4.2.0 [36].
Results

Empirical estimates

We identified 276 articles and, after removing 44 duplicate records, screened 232 abstracts (Fig. 1). Our search resulted in five estimates from four studies, with two studies carried out in the UK, one in Australia, and one in California, US (Fig. 2, Table S1). In all studies, maternal immunization coverage was low right after the implementation of maternal immunization but increased to reach >80% (mean: 83%; range: 80%–87%) within two to six years (Table S1). These studies showed that the protective effect of maternal immunization decreased with increasing doses during the infants' primary immunization (Table S1). After the first dose, the RR was low at an average of 0.3, ranging from 0.2 (range of 95% CI lower bounds: 0.1–0.4) to 0.7 (range of 95% CI upper bounds: 0.3–1.8; Fig. 2). After the second or third dose of infant primary immunization, the average RR was 1, with estimates ranging from 0.3 (95% CI: 0.1–0.95) to 1.2 (95% CI: 0.3–2.9; Fig. 2).

The model recapitulates the historical trends of pertussis, with a resurgence caused by a honeymoon effect

To assess the historical impact of routine immunization in infants, we first examined the trends in overall incidence and age-specific susceptibility. Infant immunization induced a strong decrease in pertussis incidence but was followed by a rebound with a gradual buildup of susceptible individuals in adult age groups until a new equilibrium—with lower incidence than in the pre-vaccine era—was reached several decades later (Fig. 3 A & B). As we previously demonstrated in the US, this resurgence was explained as an “end-of-honeymoon” effect, a predictable consequence of incomplete immunization with imperfect but highly effective vaccines. Hence, our model recapitulated the historical dynamics of pertussis in the US, characterized by a resurgence and shift of infections to adolescent and adult age groups [3].

Transient dynamics after the start of maternal immunization
Second, we examined the impact of maternal immunization, which we introduced 100 years after the rollout of infant immunization, to disentangle the consequences of the two immunization programs. Maternal immunization had the intended effect of decreasing susceptibility to infection in unvaccinated newborns aged 0–2 mo (Fig. 3B). However, after the start of maternal immunization, the model predicted a transient phase with lower pertussis incidence, lasting at least 5 years and followed by a rebound (Fig. 4A). In newborns, the predicted incidence of pertussis was higher in a scenario with blunting relative to without blunting, but it always remained lower than before the start of maternal immunization (Fig. 4A). Thus, maternal immunization was predicted to be effective at protecting unvaccinated newborns, with benefits by far outweighing any possible blunting-mediated increases in incidence.

By contrast, in the second age class of infants aged 3–18 mo, (i.e., after receipt of the primary pertussis immunization), maternal immunization was followed by a decrease of pertussis incidence, but only when blunting was low (<10%, Fig. 4B). At higher levels of blunting, pertussis incidence was predicted to increase relative to before the start of maternal immunization (Fig. 4B). However, the second age class also showed a clear transient phase, lasting at least 5 years. During this transient phase, pertussis incidence was first predominantly driven by infants from unvaccinated mothers (Fig. 4C), followed later on by incidence in infants from vaccinated mothers, who dominated once incidence had reached equilibrium (Fig. 4D). These dynamics persisted in children up to 5 years of age, but dissipated by age 10 years, after which pertussis incidence remained low and the effects of both maternal immunization and blunting on pertussis incidence were negligible (Fig. S3).

Comparison with empirical estimates suggests that blunting cannot be ruled out

Lastly, we estimated the impact of blunting on the RR of pertussis in vaccinated infants born to mothers vaccinated during pregnancy. In newborns, our simulations show that estimates of the effectiveness of maternal immunization (i.e., based on incidence) have a transient phase in a direction consistent with those deduced from the transient incidence dynamics: the effectiveness was high at first but decreased with time, and equilibrium values were reached only after a transient phase that lasted at least a decade (Fig. 5A).
Hence, ignoring the transient dynamics results in an overestimation of the effectiveness of maternal immunization, an effect most pronounced during the first decade after implementation.

As expected, in the second age class of infants aged 3–18 mo, \(i.e.,\) after receipt of the primary pertussis immunization, blunting resulted in RR equilibrium values above 1 \(i.e.,\) a higher risk of pertussis in infants born to vaccinated mothers, which increased with the input blunting strength. However, these risks were reached only after a transient phase that lasted more than a decade (Fig. 5B). During this transient phase, even in scenarios with blunting, the RR was initially far below 1 and gradually increased after the start of maternal immunization. Hence, ignoring these transient dynamics and assuming that a RR of 1 indicates no blunting may result in overestimating the effectiveness of maternal immunization in both unvaccinated newborns and vaccinated infants (Fig. 5B).

It is noteworthy that the transient phase for the estimation of RR or vaccine effectiveness (Fig. 5 A & B) is longer than for the incidence (Fig. 4 A & B). This is because RR and VE are cumulative estimates instead of instantaneous estimates such as incidence (Fig. S4). Interestingly, depending on the contact matrix, the incidence during the transient phase showed oscillating dynamics, which increases the variability between estimates that are done after 3, 6, or even 10 years (Figs. S12, S13), but these oscillations disappeared in the RR estimates (Figs. S14, S15), likely thanks to their cumulative nature. Interestingly, after the transient phase, a scenario without blunting resulted in RRs below one, due to residual protection from maternal antibodies in infants who were vaccinated but in whom the vaccine did not take. This result suggests that the usual assumption that a RR of 1 indicates no blunting may be too optimistic.

Comparing our model predictions with the results of epidemiological studies, all current empirical RR estimates fell well within the transient phase of our simulations (Fig. 5C). Demographic stochasticity accounted for some of the variability in the predicted RR (Fig. 5B), but observation noise due to small sample sizes was by far the largest source of uncertainty (Fig. 5C). Inspecting the overlap between confidence intervals, all the empirical estimates were consistent with blunting, even though two estimates (in the UK and California) were also consistent with no blunting. Hence, according to our simulations, current empirical studies cannot yet detect the eventual epidemiological
consequences of blunting (Fig. 5B), and the model-data comparison suggests that a modest level of blunting cannot be ruled out (Fig. 5C).

Sensitivity analysis

We checked the sensitivity of our results to variations in five parameters: (i) maternal immunization coverage, ranging from 50% to 90% (Fig. S5, S6); (ii) average duration of maternal protection, ranging from 4 months to 1 year (Fig. S7, S8); (iii) beginning primary immunization at 2, 4 and 9 months (Fig. S9, S10); (iv) different social contact matrices from 8 European countries, as described in the surveys by [37,38] (Fig. S11-S16); and (v) with the maternal immunization program starting 60 years after the infant immunization program, as was the case in many countries (Fig. S17, S18). In our simulations, variation in these parameters had a substantial impact on pertussis incidence but did not affect the temporal dynamics in RR following maternal immunization (Fig. S5-S18). Another noteworthy result was that a considerable reduction of the blunting effect was predicted when delaying the age at the start of the infant’s primary immunization by a few months (Fig. S9, S10). Hence, our main results were, on the whole, robust to assumptions about fixed model parameters.

Discussion

In this study, we aimed to review the epidemiological evidence about the impact of maternal immunization on the effectiveness of pertussis vaccines in infants and to interpret this evidence using a new mechanistic mathematical model that represented the effect of blunting on pertussis transmission dynamics. Our review identified four observational epidemiological studies, all of which had short monitoring times and often combined with small sample sizes. Most studies suggested a reduced risk of pertussis after receipt of the first vaccine dose in infants born to mothers immunized during pregnancy. After receipt of the second or third vaccine dose, however, the estimates were more heterogeneous and, due to high estimate uncertainty, consistent with a range of assumptions about the impact of maternal immunization. To interpret these empirical estimates, we performed a simulation study using an age-structured model of pertussis transmission. This model predicted that the introduction of maternal immunization was
followed by a transient phase lasting at least a decade, during which the blunting effect of maternal antibodies could be underestimated. The model-data comparison suggested that a modest level of blunting could not be ruled out, even though the large uncertainty in empirical estimates prevented a definitive conclusion. Even in the presence of such blunting, however, our model predicted that maternal immunization remained effective at reducing pertussis in unvaccinated newborns. Hence, our results confirm that maternal immunization is an effective strategy to protect this age group, but suggest it may eventually result in an infection-control trade-off with older age groups.

Unvaccinated newborns are the demographic most vulnerable to pertussis, both in terms of infection and hospitalization risks [5],[6],[7]. Our study suggests that, although maternal blunting may erode the benefits of immunization in infants, it is highly effective at protecting unvaccinated newborns. Hence, our results support the decision of many public health authorities to introduce maternal immunization against pertussis, provided that the main control objective is to protect newborns [8,9]. More generally, given the vulnerability of newborns to many pathogens, maternal immunization against other infectious diseases is considered by public health authorities and the pharmaceutical industry. For example, a new maternal vaccine against RSV recently underwent a successful phase 2b trial [39]. Aside from pertussis, blunting of infant antibody concentration following maternal immunization has been demonstrated for many infections, including diphtheria, tetanus, pneumococcus, meningococcus, tuberculosis, polio, measles, mumps, and rotavirus [15,17,40,41]. Maternal immunization, therefore, also appears as a promising strategy to protect newborns against these infections, but our results suggest the need to monitor its impact on subsequent vaccination of infants carefully.

One of the main takeaways from our review was the large heterogeneity and uncertainty of available empirical estimates, emphasizing the urgent need for more research on maternal blunting. However, if such blunting is confirmed by future evidence, there are ways to mitigate its impact. Immunity in newborns conferred by maternal antibodies against pertussis likely wanes quickly, on a timescale of months according to our model. Given these fast waning rates, delaying infant primary immunization by a few months might greatly reduce the maternal blunting of infant immunization [17].
immunization schedules vary greatly between countries, with the age at first
immunization of infants typically ranging between two and four months [22], and the
current variation in pertussis immunization schedule can significantly impact the
effectiveness of pertussis immunization in infants [42]. If maternal blunting occurs, our
results suggest that the optimal age at first immunization is governed by a trade-off
between vaccinating too early (with the effect of reducing the susceptibility age window
in newborns but amplifying the impact of blunting in vaccinated infants) and too late
(with the opposite effect). As the costs of infection in unvaccinated newborns likely
exceed those in older age groups, the introduction of maternal immunization may thus
increase the optimal age at first immunization, in all infants or only in those born to
vaccinated mothers. Interestingly, the Dutch public health authorities take a distinct
approach: children from unvaccinated mothers get their first pertussis immunization at
the age of two months, while children from vaccinated mothers get their first dose at
three months [43]. Identifying the optimal pertussis immunization schedule for infants
would be helpful for public health authorities, especially given the vast between-country
variation in pertussis immunization schedules [22,42,44]. Our new model could thus help
future research on optimal vaccine schedules.

After the roll-out of maternal immunization, our model predicted a transient phase
lasting approximately a decade, during which the incidence of pertussis—in both
unvaccinated newborns and vaccinated infants—initially dropped, but then bounced
back and re-increased to reach a new equilibrium. The duration of this transient phase is
consistent with that found in a previous modeling study [45] and may be explained by
the time required for the first cohorts of blunted-vaccinated infants (i.e., born to
vaccinated mothers) to reach primary school age and its associated high contacts. Hence,
reduced transmission from unvaccinated newborns may explain the initial decrease in
incidence across age groups, but this benefit gradually wears off as blunted-vaccinated,
and therefore less well-protected, children age.

From a practical perspective, this transient phase has at least two important implications.
First, the current epidemiological studies had ≤6 years of monitoring, a time frame we
predict is insufficient to capture the long-term consequences of maternal immunization.
Second, a RR of 1 is considered the baseline value indicating that maternal immunization
does not blunt vaccine effectiveness in infants. In the transient phase, however, our model predicts that the baseline value under a no-blunting scenario starts off close to 0 and gradually increases to an equilibrium just below 1. This equilibrium value results from the residual protection from maternal antibodies, which partially compensates for failures of primary immunization in infants born to vaccinated mothers. These results suggest that the early empirical estimates of vaccine effectiveness may overestimate the benefits of maternal immunization, both for newborns and for infants. A testable prediction of our model, therefore, is that the benefits of maternal immunization estimated in subsequent studies will be lower than those currently reported, both in newborns and after the primary series. Note though that the COVID-19 pandemic and its associated lockdown will have changed the temporal dynamics of RR following maternal immunization. More broadly, as reflected in some official guidelines for vaccine impact evaluation [46] and demonstrated for other vaccines such as influenza and streptococcus, biased estimation of vaccine effectiveness because of transient dynamics early after vaccine roll-out is likely a more general occurrence.

In addition to the monitoring time, other components of the design of current epidemiological studies may affect their interpretation. First, as the mothers’ decision to receive Tdap during pregnancy is voluntary and likely related to other socioeconomic status factors that will affect—and presumably reduce—their infants’ risk of pertussis, the baseline comparability between groups is far from obvious in these observational studies. Hence, estimates of the effectiveness of maternal immunization may have been confounded by healthy user bias; interestingly, the only study that controlled for most characteristics of the mothers [14] had large statistical uncertainty and could not rule out blunting. In addition to this confounding problem, maternal immunization may prevent mothers from transmitting pertussis to their infants, an indirect effect that could lead to underestimating the risk of pertussis and masking the effect of blunting in the group of infants vaccinated and born to vaccinated mothers (as recognized by some investigators [11]). Because of these potential biases, current RR estimates may have been underestimated, and our model predictions regarding the level of blunting may be conservative.
Our study has several limitations. First, our model was parameterized based on previous estimates in Massachusetts, USA, and may only correctly represent pertussis epidemiology in comparable high-income countries. Second, in the absence of serological correlates of protection for pertussis [28–30], the duration of maternally-derived protection—and in particular how it connects to maternal antibody titers in the infant—is unknown. In our model, this parameter was calibrated to reach empirical estimates of maternal immunization effectiveness in newborns, with an average duration of maternally derived protection at 8.7 months resulting in vaccine effectiveness for newborns close to 80%. Even though sensitivity analyses demonstrated that our main results were robust to variations in this parameter, more accurate estimation will be important to inform future models and predict optimal vaccination schedules. Third, for simplicity, we did not model the direct, protective effect of maternal immunization on mothers—only the indirect effect on their newborns. This direct effect is an additional benefit of maternal immunization, but because in high-income countries the proportion of women giving birth is small relative to the total adult population, it is expected to have a minor epidemiological impact. Fourth, in our simulations, maternal immunization coverage was fixed at 70%, while in real-world settings it is often initially low and gradually increases. However, such temporal variations in immunization coverage are expected to increase the duration of the transient phase and would thus reinforce our conclusions about the unreliability of early empirical estimates.

To conclude, our study shows that maternal immunization is effective at protecting newborns, even when blunting erodes some of its benefits. The degree of blunting, and the extent to which it entails an epidemiological cost in older age groups, can not be known yet, as we predict that the implementation of maternal immunization is followed by a transient phase during which the epidemiological impact of blunting is masked. Hence, current epidemiological studies may be insufficient to rule out blunting or grasp the long-term epidemiological consequences of maternal immunization. Our results, therefore, identify the need for more research to precisely estimate the degree of blunting after primary immunization, if any. More generally, our study supports the use of maternal immunization to reduce pertussis in newborns, but suggests this strategy may be associated with an infection-control trade-off between different age groups.
References

46. World Health Organization. Measuring impact of streptococcus pneumoniae and haemophilus influenzae type b conjugate vaccination. 2012. Available at: https://apps.who.int/iris/handle/10665/75835
Acknowledgements

We thank the useful discussions and feedback from Andrew Tredennick (University of Georgia, USA), Christian Gunning (University of Georgia, USA), Denis Macina (Sanofi Pasteur, France), Laurent Coudeville (Sanofi Pasteur, France), and Edward Thommes (Sanofi Pasteur, Canada).

Data Reproducibility

All R scripts are currently available at:

https://drive.google.com/drive/folders/1-tT3XaPYwPbviXe1OB7_hvN8SSYe9HYJ, and will be made freely available upon publication via Edmond, the Open Data Repository of the Max Planck Society.

Potential conflict of interests

Prof. Pejman Rohani received funding from Sanofi France for another separate project.
Fig. 1 Prisma flow chart of the literature search for empirical estimates of the relative risk (RR) of contracting pertussis following maternal immunization in children who had received at least one dose of infant primary immunization.
Fig. 2 Overview of the results from empirical epidemiologic studies of the relative risk of contracting pertussis in infants from vaccinated mothers relative to those of unvaccinated mothers during infant primary immunization. A value of 0 implies complete protection following maternal immunization, and a value of 1 indicates an equal risk of contracting pertussis between infants from vaccinated versus unvaccinated mothers. The literature search protocol is shown in Fig. 1, and the data are available in Table S1. The two lines for the UK 3 years study represent two estimates of maternal immunization coverage. References: Australia 2yrs [14], California 3yrs [12], UK 3yrs [11], and UK 6yrs [31].
Fig. 3 Illustration of honeymoon effects and transient susceptible dynamics following the start of infant immunization (vertical dashed line at time = 0 years) and maternal immunization without blunting (vertical dashed line at time = 100 years) showing (A) pertussis incidence and (B) the fraction susceptible for each age class from one stochastic simulation.
Fig. 4 Model predictions of the consequences of maternal immunization and blunting for pertussis incidence in (A) unvaccinated newborns (aged 0–2 mo) and (B) vaccinated infants (aged 3–18 mo, after receipt of primary immunization). For this age class, during the transient phase after maternal immunization, pertussis incidence is at first mostly driven by (C) infants from unvaccinated mothers until (D) pertussis incidence is most abundant in infants from vaccinated mothers. Panel (D) is consistent with the PCV-term in the RR equation (see methods, [32]). Solid lines show the median incidence of 100 simulations and shaded areas represent the 95% CI. In this figure, all immunization coverages were set at 70%, which is close to the mean observed values in empirical studies (e.g., Table S1). Note the different y-axis between panels.
0–2 months

3–18 months

Study
- Australia
- California
- UK

Simulated blunting
- 0%
- 10%
- 20%

Time since start of maternal immunization program (years)

Relative risk of pertussis

Simulated blunting

n=20
n=65
n=820

Time since start of maternal immunization program (years)
Fig. 5 Temporal dynamics of the risk of contracting pertussis in (A) unvaccinated newborns and (B, C) vaccinated infants from vaccinated mothers relative to those of unvaccinated mothers. A value of 0 shows 100% protection due to maternal immunization, a value of 1 illustrates an equal risk of contracting pertussis in infants from vaccinated mothers relative to unvaccinated mothers, and any value above 1 shows an increased risk, with for example a value of 2 indicating a two-fold increased risk. (A, B) Solid lines show the median RR of 100 simulations and shaded areas show 95% CI resulting from demographic stochasticity across simulations. (C) Comparison between the results from model simulations (gradient red diamonds) and the empirical studies (colored dots). In simulations, vertical lines show 95% CI due to demographic stochasticity and observation uncertainty, resulting from the partial sampling of the population with sample sizes matching those from empirical studies in Fig. 2 (Table S1).