Ethical considerations related to drone use for environment and health research: a scoping review protocol

Remy Hoek Spaans¹,²*(remy.hoekspaans@bsc.es), Bruna Drumond³¶
(bruna.drumond@icict.fiocruz.br), Kim van Daalen¹ (kim.vandaalen@bsc.es), Alison Derbyshire²
(Alison.Derbyshire@lstmed.ac.uk), Adriano Da Silva³ (adriano.silva@fiocruz.br), Raquel Martins
Lana¹ (raquel.lana@bsc.es), Mauricio Santos Vega⁴ (om.santos@uniandes.edu.co), Gabriel Carrasco-
Escobar⁵-⁶ (gabriel.carrasco@upch.pe), Claudia Codeço¹ (claudia.codeco@fiocruz.br), Rachel Lowe¹,⁷-
⁸(rachel.lowe@bsc.es)

1. Barcelona Supercomputing Center (BSC), Barcelona, Spain
2. Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
3. Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
4. Facultad de Medicina, Universidad de los Andes, Colombia
5. Grupo en Biología Matemática y Computacional, Universidad de los Andes, Colombia
6. Health Innovation Laboratory, Institute of Tropical Medicine “Alexander von Humboldt”,
 Universidad Peruana Cayetano Heredia, Lima, Peru
7. Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
8. Centre on Climate Change & Planetary Health and Centre for Mathematical Modelling of
 Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom

¶These authors contributed equally to this work.
* Corresponding author
E-mail: remy.hoekspaans@bsc.es

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Introduction: The use of drones in environment and health research is a relatively new phenomenon.

A principal research activity drones are used for is environmental monitoring, which can raise concerns in local communities. Existing ethical guidance for researchers is often not specific to drone technology and practices vary between research settings. Therefore, this scoping review aims to gather the evidence available on how the use of drones is perceived by local communities, as well as current research practices, and ethical guidance related to drone deployment.

Methods and analysis: This scoping review will follow the PRISMA-ScR and the Joana Briggs Institute guidelines. The literature search will be conducted using academic databases and grey literature sources. After pilot testing the inclusion criteria and data extraction tool, two researchers will double-screen and then chart available evidence independently. A content analysis will be carried out to identify patterns of categories or terms used to describe ethical considerations related to drone usage for environmental monitoring in the literature using the R Package RQDA. Discrepancies in any phase of the project are solved through consensus.

Ethics and dissemination: Ethical approval is not required; only secondary data will be used. This protocol is registered on the Open Science Framework (osf.io/a78et). The results will be disseminated through publication in a scientific journal and will be used to inform drone field campaigns in the Wellcome Trust funded HARMONIZE project. HARMONIZE aims to develop cost-effective and reproducible digital infrastructure for stakeholders in climate change hotspots in Latin America & the Caribbean and will use drone technology to collect data on fine scale landscape changes.
Drones (definition in S1 File), also referred to as unmanned aerial vehicles (UAVs) or remotely piloted aerial systems (RPAS), have been taken up by civil society at an exponential rate over the past decade due to their high mobility, low costs, and high endurance for multiple tasks. Whilst initially developed for military use, drones have since been adopted for agriculture, commerce, humanitarian aid and disaster response, and more recently public health research. Within research applications, drone use can be roughly divided into two main categories: transportation/delivery and environmental monitoring (definition in S1 File). An example of transport/delivery is a study examining the feasibility of transporting medicine or blood products to remote health facilities [1]. Another example is using drones to deliver interventions for vector control (e.g., the release of Wolbachia-carrying mosquitoes or sterile insects, adulticide spraying, and larvicide delivery) [2,3]. These activities are characterised by linear flights between points and moving objects into or out of a location. Contrastingly, environmental monitoring does not involve any physical interaction with the environment but remotely records information about a phenomenon, area, or research subject. This includes activities such as recording multispectral imagery, taking air samples, and recording meteorological variables [4,5]. Flights are recorded over a study area by manually controlling the drone or programming pre-planned flights. Depending on the research aim, the same area may be covered repeatedly. This can raise concerns among local communities residing in the area.

Emerging technologies are often accompanied by a vacuum of policy and ethical regulations [6]. In the case of drone use, several ethical themes have already been identified within humanitarian settings [7]. However, drone use for scientific research comes with its own set of challenges. In research settings, there is more time to assess ethical aspects and to engage with local communities before drone deployment than in humanitarian settings. Furthermore, the balance of ethical benefits and harms is likely different for research compared to humanitarian settings. While in humanitarian
settings rapid response time to protect people from physical harm may take precedence over perceived psychological safety or privacy of individuals, such trade-offs do not need to be made in a research setting.

Fig 1 illustrates the process through which ethical guidance within the research community is created and updated. In the context of drone use for remote sampling, this entails 1) creating a theoretical understanding of drone technology within research and corresponding ethical considerations, 2) the creation of ethical guidelines by institutions, which are then 3) applied by researchers when designing a new study, followed by 4) an assessment of the study by an ethical committee for approval, after which 5) the study is implemented in line with appropriate ethical practice which could involve mention of specific community engagement activities. When new ethical questions, information, or best practices are identified during the study, they will then contribute to further understanding of 1) theoretical ethical considerations.

Fig 1. Five stages of the iterative research process during which ethical considerations are relevant.

Each of these stages represent a moment during the research process where the researcher could reflect on how to incorporate ethics in their study. Knowledge and experience gained during each of the stages will inform the next stage, ultimately leading to improved ethical decision-making.

Ethical considerations can differ according to the perspectives of the stakeholders involved in the research process. We identify three main types of stakeholders: local communities, researchers, and institutions responsible for upholding ethical standards (universities, funders, non-governmental organisations [NGOs]). In this scoping review, we consider these perspectives to synthesise evidence on the ethical considerations in drone use for environment and health research. A definition of ethical considerations for the purpose of this scoping review can be found in the S1 File.
What the research community defines as ethical considerations within environmental and health research are rooted in the four bioethical principles of 1) respect for autonomy, 2) nonmaleficence, 3) beneficence, and 4) justice proposed and continuously developed by Beauchamp and Childress [8]. Since then, other frameworks to analyse aspects related to ethics have been produced to accommodate new scientific discoveries and ways of thinking. The development of the ethical, legal and social aspects (ELSA) or issues (ELSI) framework as part of the Human Genome Project, was adapted to include considerations specific to emerging technologies and identifies eleven domains (S1 File) [9]. The Responsible Research and Innovation (RRI) is broader than the more evaluative approach of ELSI and has a greater focus on the interaction between science and society. RRI can be described as "a transparent, interactive process by which societal actors and innovators become mutually responsive to each other with a view to the (ethical) acceptability, sustainability and societal desirability of the innovation process and its marketable products (to allow a proper embedding of scientific and technological advances in our society)" [9,10]. The RRI is implemented considering 5 key areas: 1) gender equality, 2) open access, 3) citizen engagement, 4) science education, and 5) ethics. Citizen engagement and ethics are of particular interest in the context of drone use.

Although ethical frameworks have been used to analyse evidence gathered on drone use within healthcare and humanitarian settings, the same has not been done for drone use within environmental and health research [7,11]. Cawthorne et al., in their review on the use of drones in a healthcare setting, used the four bioethical principles and added a fifth principle from the field of artificial intelligence; explicability [12]. Wang et al. based the analysis in their scoping review for drone use in humanitarian settings on the ELSI principles (S1 File) which they incorporated in a value-sensitivity framework for the University of Zurich’s ethical guidelines for humanitarian drone use in collaboration with the Red Cross [13]. To our best knowledge, there is no unified set of publicly available guidelines for the use of drones for environment and health research.
While ethical dilemmas may arise during each of the research stages (Fig 1), not all information arising from these processes is documented or made publicly available. In this scoping review, we will therefore focus on the Research Implementation stage, as well as mapping which Ethical Guidelines incorporate drone use and are publicly available. Information emerging from the Research Implementation stage will likely include data from qualitative studies directly giving insight into community perceptions or that have ethical considerations as the research topic. Data from (likely quantitative) studies that do not have research ethics as the direct topic, but that make use of drones for environmental monitoring and describe interactions with the community or ethical considerations are also of interest.

This approach will enable us to compare and reflect on publicly available guidelines in the context of findings from original research reporting on the experiences of communities and researchers involved in drone research. Here, only the application of drones for environmental monitoring will be considered as this evokes different interactions with local communities and consequently different ethical considerations than drone use for transport/delivery. The results of this work can support researchers planning or currently conducting studies using drones for environmental monitoring, ethics committee members, and research institutions or NGOs aiming to provide ethical guidance.

Rationale

There is a need to describe evidence available on current research ethical practices regarding interactions between researchers and local communities, on how drone use is perceived by these communities, as well as existing ethical guidelines to identify best practices and ethical concerns that have remained unaddressed in research using drones for environmental monitoring.
Population: 1) Local communities inhabiting research areas where drones are used for environmental monitoring. 2) Researchers conducting drones for environmental monitoring. 3) Institutions issuing ethical guidance within environmental and health research.

Concept: Ethical practice relating to the interaction between drone research activities and local communities. Specifically, local communities’ perceptions, experiences, and opinions concerning the use of drones in research in their territories.

Context: Using drones for environmental monitoring within environment and health research in populated areas.

Research aim

Research aim: Summarise all evidence available on ethical considerations surrounding drone use within environmental and health research.

This will be addressed by summarising three types of evidence, that correspond to the stakeholders' perspectives, through the following sub-questions:

- What are the perceptions, experiences and views of local communities related to drones used for environmental monitoring? (qualitative studies and questionnaires)
- How do researchers using drones for environmental monitoring currently interact with local communities and how is this documented? (case or implementation studies)
- What ethical guidelines exist to inform the design and implementation of studies using drones for environmental monitoring? (ethical guidelines)

Materials and methods

Search strategy
The academic literature search will be conducted using the following databases: EBSCO Medline Complete, SCOPUS, Web of Science (WoS), Global Health Database, and the Virtual Health Library (VHL) Regional Portal. A primary search is developed for Ebsco Medline Complete in collaboration with an information specialist (AD), based on three core concepts - “drone(s)”, “environmental monitoring” and “ethical considerations” or “community perceptions” - described in Table 1 and S1 File and informed by Wang et al.’s search strategy [7]. A combination of free-text terms and Medical Subject Headings (MeSH) will be used. This strategy will be peer-reviewed by a second information specialist (ADS) and adapted for the other databases. Following the Peer Review of Electronic Search Strategies (PRESS) 2015 guidelines, the search will be peer-reviewed by an information specialist [14]. Reference lists of relevant articles will be checked to identify further literature meeting the inclusion criteria and Google Scholar will be used to carry out forward and backward citation searching. No time restrictions will be applied to the search: all articles from the inception of the searched databases to the date of the literature search will be included. If full-text articles are unavailable, the corresponding authors will be contacted to request access via e-mail or ResearchGate. No initial language restrictions will be imposed. Sources in Spanish, Portuguese, Dutch, and English will be processed by native speakers from the author list. For data extraction from other language sources, translation to English will be attempted via freely available online resources such as Google Translate.

Table 1. Core concepts and search terms for the primary search strategy developed for Ebsco Medline Complete.

<table>
<thead>
<tr>
<th>Core concept</th>
<th>Search terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drone</td>
<td>(drone* OR UAV* OR UAS* OR Unmanned Aerial Devices (MH)) OR</td>
</tr>
<tr>
<td></td>
<td>((unmanned OR uncrewed) AND ("aerial vehicle**" OR "air vehicle**" OR</td>
</tr>
<tr>
<td></td>
<td>"aerial system**" OR “aerial device**” OR aircraft))</td>
</tr>
</tbody>
</table>
Environmental monitoring "remote* sens*" OR data OR image* OR photograph* OR map* OR surveillance OR survey* OR monitor* OR Remote Sensing Technology (MH) OR Environmental Monitoring (MH) OR Environmental Indicators (MH) OR Data Collection (MH) OR Population Surveillance (MH)

Community perceptions or ethical considerations (community OR public) AND (perception* OR aware* OR engag* OR participat* OR accept* OR involve* OR concern OR cooperat* OR support* OR response* OR view* OR consent OR compliance)) OR ethic* OR "social impact*" OR "societal impact" OR privacy OR confidential* OR Ethics (MH) OR Community Participation (MH) OR Cooperative Behaviour (MH) OR Informed Consent (MH) OR Privacy (MH) OR Confidentiality (MH) OR Research Subjects (MH) OR "code of conduct" OR "code of ethics" OR "ethics code"

(MH) = Medical Subject Heading (MeSH), a controlled and hierarchically organized vocabulary produced by the National Library of Medicine.

For each database, the search terms, number of papers retrieved, and date of collection will be reported, as depicted in Table 2.

Table 2. Template for data table to report retrieved search results.

<table>
<thead>
<tr>
<th>Database</th>
<th>Search terms</th>
<th>Number of papers</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The authors will undertake searches of the grey literature using Google Advanced Search and the grey literature databases such as the Bielefeld Academic Search Engine (BASE). Search terms will be
iteratively adapted from Table 1, PDF and Word file types will be targeted and only the first 5 pages of results are included. After the general screening, using a method similar to forward citation searching, a list of websites and organisations that are deemed to do relevant work involving drones in a health or environment research setting will be compiled. This will include non-governmental organizations (NGOs), international organisations, universities, aviation authorities, research funders, and research institutions. Examples include UNICEF, International Committee of the Red Cross, University of Zurich, UK Civil Aviation Authority, and World Health Organisation. Using Google Advanced Search, the web domains of these organisations will be searched. Theses repositories will not be searched, but non-published theses will be included if they show up through the grey literature search and fit the inclusion criteria.

Inclusion and exclusion criteria

Table 3 describes the inclusion and exclusion criteria that will be used for abstract and title and full-text screening.

Table 3. Inclusion and exclusion criteria.

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Drones used for research purposes</td>
<td>Recreational, commercial, military, or humanitarian use</td>
</tr>
<tr>
<td>2. Focus of the study is on drones to collect environmental monitoring data</td>
<td>Drones were used for other purposes such as transport, tracking, etc.</td>
</tr>
<tr>
<td>3. Location of drones deployed involves human populations</td>
<td>Studies implemented in uninhabited areas</td>
</tr>
<tr>
<td></td>
<td>Document mentions interactions between researchers and communities and/or ethical considerations, concerns, or views related to drone use</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Academic literature including: quantitative studies (e.g., cross-sectional, cohort, case-control), qualitative studies (e.g., action research, ethnographic, phenomenological, case), mixed-method studies, perspective papers</td>
</tr>
<tr>
<td></td>
<td>Grey literature issued by research institutions, research funding agencies, regional, local and national governmental bodies, multilateral organisations, and non-governmental organisations, theses</td>
</tr>
<tr>
<td></td>
<td>Most current version of the document</td>
</tr>
<tr>
<td></td>
<td>Primary research articles and originally written grey literature.</td>
</tr>
</tbody>
</table>
articles and originally written pieces.

<table>
<thead>
<tr>
<th></th>
<th>Ethical guidelines collated in such a way that they comprise of a unique perspective by the primary author with original details (even if based on previously constructed principles)</th>
<th>Ethical guidelines that are duplicated from another original source (indicated by reference, or time of publication).</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Records in any language. If the original language is not English, the record will be assigned to a native speaker within the team. If no native speaker is available, online translation services will be used.</td>
<td>If translations are ambiguous or assessed to be of poor quality, the record will be excluded.</td>
</tr>
</tbody>
</table>

Pilot testing of the inclusion and exclusion criteria will be conducted by: 1) double-screening a random sample of 50 records (25 academic and 25 grey literature), and 2) assessing resulting conflicts and clarifying inclusion and exclusion criteria if deemed necessary. This process will be repeated until an inter-rater reliability of 90% is reached.

Evidence selection

After removing duplicates within Zotero, records are imported into Rayyan (https://rayyan.ai/) and double-screened by two independent researchers [15]. One researcher is Brazilian and based at the Oswaldo Cruz Foundation (Fiocruz) with experience in Geography, Environment and Health research, whilst the other is Dutch and based at the Barcelona Supercomputing Center (BSC) in Spain with field experience using drones in Malawi.
The first screening round will be based on titles and abstracts following the inclusion and exclusion criteria. The second screening round will focus on the full-texts. For grey literature, the first round is based on the title and summary (where available) or the first page of the document. After completion of the round, results are compared, and conflicts are discussed until a consensus between the two researchers is reached. If a consensus cannot be reached a third arbitrator will make the decision.

The number of full-text sources excluded and reasons for exclusion are tracked and reported through a flowchart of the review process, in line with the PRISMA guidelines [16].

Data charting

We expect to retrieve studies and reports that include both qualitative and quantitative data, as well as ethical guidelines. Whereas some records will likely have ethical practices and/or considerations as the direct research topic, we also expect to retrieve studies that use drones and only partially describe their ethical considerations and practices. It is also expected that the degree to which drones are the focus will differ between ethical guidelines.

Data will be independently extracted by two researchers from all eligible evidence. An extraction sheet will be jointly developed, and pilot tested by two researchers on 5 records. Iterative improvements are made until both reviewers agree the tool captures the information well.

The following information will be extracted from each included record (where relevant and available):

- Bibliographic information (authors / organisation, year of publication, title, country of origin of the first author and last author)
- Type of literature (journal article, pre-prints, thesis, dissertation, report, guideline, etc.)
- Study design (qualitative studies (e.g., case study, action research, ethnographic, grounded theory), quantitative studies (e.g., cross-sectional, prospective or retrospective cohort, case control), other)
- Dominant perspective of the source (researcher, local community, institution issuing guidance)
- Study aims and objectives
- Characteristics of the study population (e.g., age, sex) in which the drone is deployed
- Geographical location (i.e., territory, country, region) in which the research was conducted
- Land use and cover (agricultural / built up / grassland / savanna / rainforest, etc.)
- Type of data collected by drone
- Drone model
- Flight plan (altitude, coverage, pattern, planned/manual etc.)
- Dates the study was conducted, and follow-up period
- Main outcome(s) (i.e., ethical considerations)
- Main finding(s) (main findings regarding ethical research practices and community engagement strategies; community perceptions)
- If ethical approval was sought (yes/no)
- Type of interaction with the community (interviews, focus groups, other types of participatory methodologies and community engagement strategies)
- Mention theory related to ethics (yes/no)
- If mentioned, which ethics-related theories or frameworks are used
- Ethical considerations mentioned (implicit/explicit/none)

Disagreements will be resolved through consensus between two researchers. If a consensus is not reached, a third arbiter will be involved.
Analysis of the evidence and presentation of the results

Data summaries, maps and graphs will be produced for quantitative results for each main type of evidence i) community perceptions, ii) current ethical research practices with a focus on community engagement, and iii) ethical guidelines, based on the results from the data extraction tool.

A content analysis will be conducted to identify patterns of categories or terms used to describe ethical considerations related to drone use for environmental monitoring in the literature. The content analysis will synthesise themes around i) community perceptions, ii) current ethical research and community engagement practices, and iii) ethical guidelines concerning the use of drones for environmental monitoring in environment and health research. We will also identify the theoretical approaches from the field of ethics used in these studies. Two researchers will independently use inductive analysis to generate and agree on a codebook. The R Package RQDA version 0.2-8 will be used to code the qualitative evidence into categories and format it for further analysis [17]. The results will be presented in a narrative synthesis, supplemented with thematic maps, tables, and graphs with descriptive statistics on included studies and their outcome.

Ethics and dissemination

Ethical approval is not required for this study, no original patient or participant data will be collected. The authors plan on publishing the Zotero repository of the search and screening results via the Open Science Framework (OSF). The results of the study will be published in a peer-reviewed scientific journal.

Changes to the protocol
The heterogeneous nature of the evidence base may cause a need to adapt the methodology as new themes or sources of evidence emerge. All deviations and refinements made to the protocol will be reported in the published scoping review.

Acknowledgements

Conceptualisation: RHS, BD, CC, RL
Methodology: RHS, BD, KvD, AD, ADS, CC, RL
Writing - Original Draft, RHS, BD
Writing - Review & Editing: KvD, RML, MSV, GCE, CC, RL
Visualisation: RHS
Supervision: CC, RL
Funding acquisition: RL, GCE, MSV, CC

References

Supporting information

S1 File. Definitions of the key concepts and ELSI principles used by Wang et al.

S2 File. PRISMA-ScR checklist
Ethical Research Process

Theoretical Knowledge

Research Implementation

Ethical Guidelines

Ethics Approval

Research Design

Figure 1