A Cannabidiol/Terpene Formulation That Increases Restorative Sleep in Insomniacs: A Double-Blind, Placebo-controlled, Randomized, Crossover Pilot Study

Michael Wang¹, Marcus Faust¹, Scott Abbott¹, Vikrant Patel¹, Eric Chang¹, John I. Clark², Nephi Stella³, Paul J. Muchowski¹*

¹Defined Research Institute, San Francisco, CA
²Department of Biological Structure, University of Washington, Seattle, WA
³Stella Consulting, Inc., Seattle, WA

*Corresponding Author:
Paul J. Muchowski, Ph.D.
President, Defined Research Institute
1250 Missouri Street Unit #312
San Francisco, CA 94107
Phone: (415) 413-8666
E-mail: paul.muchowski@definedresearch.org

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Study Objective: Cannabidiol (CBD) is increasingly used as a health supplement, though few human studies have shown benefits. The primary objective of this study was to evaluate the effects of an oral CBD-Terpene formulation on sleep physiology in insomniacs.

Methods: In this pilot study, six participants with insomnia completed a placebo-controlled trial of an oral administration of CBD (300 mg) and terpenes (1 mg each of linalool, myrcene, phytol, limonene, α-terpinene, α-terpineol, α-pinene, and β-caryophyllene), administered daily for 28 days using a crossover design. Importantly, the study medication was devoid of Δ^9^-Tetrahydrocannabinol (Δ^9^-THC). The primary outcome measure was the percentage of time spent in slow wave sleep (SWS) and rapid eye movement (REM) sleep stages, as measured by a wrist-worn sleep-tracking device.

Results: This CBD-terpene regimen increased both the percentage of time (11.9 ± 1.9%; 95% CI, 8.0 to 15.8%; P < 0.0001) and the absolute time (51.8 ± 8.9 min/night; 95% CI, 34.3 to 69.3; P < 0.0001) participants spent in SWS and REM sleep. This treatment had no effect on total sleep time (TST) and no adverse events were reported.

Conclusion: These results, if confirmed in larger clinical trials, suggest that select CBD-terpene ratios that increase SWS + REM (restorative) sleep have the potential to provide a safe and efficacious alternative to commonly prescribed sleep medications.
Keywords: Insomnia, Cannabidiol, Terpenes, Slow Wave Sleep, Rapid Eye Movement Sleep,

Restorative sleep

Statement Of Significance: Physicians are increasingly asked by their patients regarding the merits of using CBD for insomnia and other ailments, but lack any rigorous clinical research to support recommending its use. The current pilot study represents the first randomized, placebo-controlled, crossover study to investigate how an oral formulation of cannabidiol (CBD) and terpenes influences sleep physiology in participants who suffer from insomnia. In contrast to many prescription sleep medicines and over-the-counter sleep aids, the CBD-terpene formulation increased SWS and REM sleep, which are critical for the immune system, tissue regeneration, cognition and memory. These results, if confirmed in larger clinical trials, suggests that CBD might offer a promising alternative to other sleep medications and aids.
INTRODUCTION

Insomnia is the most common sleep disorder and an established risk factor for anxiety, depression and other diseases\(^1\). Approximately ~30-40% of the adult population in the U.S. alone (~63-84 million) report symptoms of insomnia, and the prevalence of insomnia increases with age\(^1\). Insomnia is defined clinically as the perception or complaint of inadequate or poor-quality sleep due to a number of factors, such as difficulty initiating or maintaining sleep, waking up too early in the morning, or having nonrestorative sleep\(^1\). It causes significant distress and/or impairment in daytime functioning\(^1\). A clinical diagnosis of insomnia is typically obtained by patient-reported complaints about their sleep\(^2\). Objective testing is not usually recommended unless another disorder is suspected, while researchers often uses objective testing in their studies\(^2\).

CBD is a bioactive active ingredient of cannabis and hemp, and was approved by the Food and Drug Administration (FDA) in 2018 for the treatment of seizures associated with two rare and severe forms of epilepsy, Lennox-Gastaut syndrome (LGS) and Dravet syndrome (DS)\(^3\). Preclinical and early human studies suggest that CBD may modulate sleep physiology. A study in rats showed that CBD increases SWS sleep in a dose-dependent manner\(^4\). In a placebo-controlled clinical trial, participants with insomnia (n = 15) that received 160 mg of CBD reported a subjective increase in their sleeping time relative to those in the placebo control arm in a sleep survey, but this study did not track any...
objective measures of sleep physiology\(^5\). In an open label study in adults with clinically diagnosed anxiety (n = 72), CBD (25-75 mg/day) improved sleep quality in \(~66\%\) of the patients as determined by a subjective sleep quality questionnaire\(^6\). Significantly, somnolence was the most frequent adverse event reported in previous clinical studies in LGS and DS\(^7\).

Terpenes are a class of small molecules produced by all plants, including cannabis and hemp. Preclinical studies have shown that select terpenes are sedating in animals\(^8\)\(^{-12}\), but their effects on sleep physiology in humans have not been studied.

In this pilot study, we report the effects of oral administration of a CBD-terpene formulation on sleep physiology parameters as measured by a wrist-worn sleep-tracking device for a treatment period of 28 days in six participants with insomnia.
METHODS

Study Medication
The study medication was composed of capsules made from vegetable cellulose that contained >99.9% purity hemp-derived CBD (300 mg), and one mg each (>98% purity, food grade) of the terpenes linalool, myrcene, phytol, limonene, α-terpinene, α-terpineol, α-pinene, and β-caryophyllene.

Participants took capsules with a glass of water one hour before going to sleep. Of note, Δ⁹-THC was undetectable in the study medication, as measured by an independent ISO-10725-accredited analytical testing laboratory (Supplementary Data Figure 1). Furthermore, capsules were free from potential contaminants (pesticides, residual solvents or heavy metals) (data not shown). Placebo-control capsules were identical to those that contained the treatment medication, but contained only coconut oil.

Participant Population
This study was approved by an Institutional Review Board (IRB) (Allendale IRB, Lyme, CT), and each participant provided written informed consent. Study participants were recruited from across the United States via social media advertising conducted by a contract research organization (83 Bar, Austin, TX). The presence of chronic insomnia in all participants was determined as a self-reported
difficulty initiating (latency to persistent sleep >30 min) and/or maintaining sleep (>30 mins awake during the middle of the night, or waking >30 mins before desired waking time on three or more nights per week) for at least three months. In addition, all participants scored as having severe insomnia after taking a clinically validated insomnia severity index13.

Study Design

This study involved a crossover design in which participants cycled through two independent treatments (Treatment 1: Placebo; Treatment 2: Defined CBD; or vice-versa), each for four weeks. Study participants were initially randomized with respect to the treatment arm (https://www.randomizer.org), and every participant cycled through both treatment arms. Participants were required to take the treatment on a minimum of four nights/week. We leveraged a double-blind design in which the investigator and study participants were both blinded to the treatments. The study was conducted in a decentralized manner in which all participants took treatments and slept in their in their own homes.

Objective sleep data was gathered throughout the study from a non-invasive sleep-tracking wrist-worn device (https://www.whoop.com), that electronically collects and transmits sleep data from study participants in the comfort of their own beds. The wristband collects hundreds of data points per
second from a three-axis accelerometer, three-axis gyroscope, and heart rate sensor. The wristband can accurately measure TST (min) and the time spent in sleep stages [defined as Light, SWS (Deep), REM, and Awake]. The device also collects data using photoplethysmography (PPG), a technology that quantifies blood flow by measuring superficial changes in blood volume. Heart rate, heart rate variability and respiratory rate are derived from PPG data, and these metrics were processed by Whoop’s sleep detection and staging algorithms. Two recent studies, published independently from Whoop, show that data on sleep stages collected from the Whoop device are highly accurate and correlate well with polysomnography (PSG), the gold-standard of sleep tracking used in clinical studies conducted in sleep clinics. Participants were blinded to the sleep data collected by the Whoop device. Throughout the duration of the study, participants responded to a daily text-based questionnaire to report whether or not they took the study medication, and/or experienced any adverse event(s). Objective sleep data was analyzed only for evenings in which participants responded affirmatively that they took the study medication.

A modified version of a clinically validated questionnaire entitled the Patient Global Impression (PGI) was used to track subjective measures of sleep physiology. The modified PGI is a four-item, subjective, participant self-report that assesses treatment aid to sleep (Item 1), treatment benefit to sleep induction (Item 2), treatment benefit to sleep duration (Item 3), and treatment benefit to
sleep depth (Item 4). This data was collected from study participants in the form of a five-min survey that was completed on their mobile phone at the end of each four-week treatment period. Each item was presented as a survey that consisted of a ten-point categorical scale, with higher scores representing a treatment benefit/advantage. This survey measures the perception of the study participants to the effects of the treatment.

RESULTS

A CBD-Terpene Formulation Increases The Time Insomniacs Spend in SWS and REM Sleep

Six participants with insomnia self-administered (p.o.) capsules that contained CBD (300 mg) and eight individual terpenes (1 mg each), or a placebo control capsule, on a minimum of four nights/week for a treatment period of four weeks. After a one week washout period, participants crossed over and self-administered the second treatment (i.e., capsules with CBD-terpenes or the placebo control), for a second four week treatment period.

The CBD-terpenes treatment significantly increased the relative amount of time spent in SWS (5.4 ± 0.9%; 95% CI, 3.5% to 7.3%; P < 0.0001), REM (6.5 ± 1.3%; 95% CI, 3.8% to 9.1%; P < 0.0001), and SWS + REM sleep (11.9 ± 1.9%; 95% CI, 8.0% to 15.8%; P < 0.0001), when expressed as a percentage of TST (Figure 1A-C). The CBD-terpenes treatment also significantly increased the
absolute time participants spent in SWS (23.9 ± 4.0 min; 95% CI, 16.0 to 31.9 min; \(P < 0.0001 \)), REM (27.7 ± 5.8 min; 95% CI, 16.3 to 39.2 min; \(P < 0.0001 \)), and SWS + REM sleep (51.7 ± 8.8 min; 95% CI, 34.2 to 69.2 min; \(P < 0.0001 \)) (Figure 1D-F). The CBD-terpenes treatment significantly decreased the absolute time (-35.9 ± 12.7 min; 95% CI, -60.9 to -10.9 min; \(P = 0.0050 \)) and the relative percentage of time (-11.9 ± 1.9%; 95% CI, -15.8% to -8.0%; \(P < 0.0001 \)) participants spent in light sleep (Figure 1G,H), but did not significantly change TST (Figure 1I).

Analysis of each participant’s sleep data individually showed that the CBD-terpenes treatment significantly increased the relative amount of time spent in SWS + REM sleep in five of the six participants, when expressed as a percentage of TST (Figure 2 and Table 1). The CBD-terpenes treatment also significantly increased the absolute time each participant spent in SWS and SWS + REM sleep, and significantly increased REM sleep in five of the six participants (Figure 3 and Table 1). Although the CBD-terpenes formulation did not significantly decrease the absolute time participants spent in light sleep (with the exception of one participant), a significant decrease was observed in the relative amount of time spent in light sleep sleep in five of the six participants when expressed as a percentage of TST (data not shown). Of note, the CBD-terpenes treatment had no significant effect on TST in five of the six study participants, while a significant increase in TST was observed in a single study participant (data not shown).
Some Participants With Insomnia Perceived A Subjective Improvement in Sleep Quality After Taking A CBD-Terpene Formulation

Three of the six study participants (DR24, DR128 and DR111) perceived a benefit of the treatment to their sleep relative to the placebo control, as assessed by a clinically validated PGI questionnaire (data not shown). More specifically, these study participants perceived a treatment benefit to aid sleep, benefit sleep induction, sleep duration and sleep depth (data not shown). The remaining participants (DR51, DR32 and DR45) did not perceive a benefit of the treatment relative to the placebo control (data not shown).

Safety And Adverse Events

No adverse events were reported by any participants during this study.

DISCUSSION

Despite the promising therapeutic potential of CBD and terpenes, sparse clinical evidence supports their use for the treatment of patients with insomnia or other sleep disorders. We report that daily (or near-daily) administration of CBD and terpenes significantly increased the absolute time that six participants with severe insomnia spent in SWS + REM sleep as measured by an objective wrist-worn
sleep tracking device. Over a treatment period of 28 days, the average increase in study participants’ SWS + REM sleep was ~52 min/night. The CBD-terpenes treatment regimen also significantly increased the relative percentage of time participants spent in SWS + REM sleep (12%), without impacting TST. Moreover, three of the six study participants could perceive a benefit to their sleep, as measured by a clinically validated sleep quality questionnaire.

The combination of SWS and REM sleep stages is commonly referred to as “restorative” sleep, and is thought to strengthen the immune system, increase cell/tissue regeneration and brain metabolite clearance, and replenish energy stores17,18. SWS and REM sleep are also critical for learning, memory, attention and executive function17,18. SWS is associated with decreased heart rate, blood pressure, sympathetic nervous activity and cerebral glucose utilization, compared with wakefulness17,18. Moreover, during SWS, human growth hormone is released while the stress hormone cortisol is inhibited17,18. Notably, the percentage of time spent in SWS and REM sleep may decrease with aging18,19, and a decreased percentage of REM sleep is associated with a greater risk of all-cause, cardiovascular, and other noncancer-related mortality20. Accordingly, novel therapeutic modalities that increase these sleep stages are urgently needed.

The molecular and systems levels mechanisms that mediate the CBD-terpenes induced increase in SWS and REM sleep will require further exploration. One intriguing possibility is that these effects
may be mediated indirectly as a result of CBD’s effects on the endocannabinoid system (ECS). For example, CBD has been shown to increase levels of the endocannabinoid anandamide in humans21, and previous preclinical studies have shown that anandamide increases SWS and REM sleep22.

Terpenes are currently classified by the FDA as Generally Regarded As Safe (GRAS) for human consumption and are commonly used as flavoring additives in food. Preclinical studies indicate that some terpenes are sedating8-12, but their effects on sleep physiology in humans have not been reported. Numerous studies indicate that terpenes may synergize with cannabinoids to influence physiology by the so-called “entourage effect”23, but further studies will be required to determine their precise roles in influencing sleep physiology.

In summary, the results of this pilot study indicate that combination therapies based on CBD-terpene ratios significantly increase SWS and REM sleep in six participants with severe insomnia. No adverse events were reported during the course of this study, consistent with a recent study documenting a good safety profile for chronic dosing of CBD in humans24. In contrast, many commonly prescribed sleep medications have significant side effects that limit their utility25. Moreover, while many commonly prescribed sleep medications decrease sleep onset latency, there is also evidence that they decrease SWS and REM sleep26. Our pilot study provides a solid foundation to
perform placebo-controlled clinical trials with CBD-terpenes in larger cohorts of patients as a potential treatment for insomnia that increases restorative sleep.

REFERENCES

17. Institute of Medicine (US) Committee on Sleep Medicine and Research; Colten HR, Altevogt BM, editors. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem. Washington (DC): National Academies Press (US); 2006. 2, Sleep Physiology

25. Lancel M. Role of GABAA receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists. Sleep 1999; 22(1):33-42

FUNDING: This study was funded by Defined Research, Inc.
CONFLICT OF INTEREST STATEMENT: Michael Wang, Marcus Faust, Scott Abbott, Vikrant Patel, Eric Chang and Dr. Paul Muchowski hold equity in Defined Research Inc., a for-profit company. Dr. John Clark and Dr. Nephi Stella are unpaid consultants who hold stock options for equity in Defined Research Inc. Funding for this study was provided by Defined Research, Inc.

ACKNOWLEDGEMENTS: The authors thank Brian Keyes for critical feedback on the manuscript.

CLINICAL TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Identifier: NCT05233761
Figure Legends

Figure 1. Treatment with a CBD-terpenes formulation increased the percentage of time participants spent in SWS (1A), REM (1B), and SWS + REM sleep (1C) relative to TST, and the absolute time participants spent in SWS (1D), REM (1E), and SWS + REM sleep (1F). The CBD-terpenes formulation also significantly decreased the absolute (1G) and relative (1H) time participants spent in light sleep, but did not significantly change TST (1I). [**P < 0.01 (t test); ****P < 0.0001; n = 6 study participants, n = 15-28 treatment days per treatment group]. The within-subject difference in outcomes between the two study periods was also calculated for all variables to avoid any confounding of treatment effects and period effects27, and was shown to be statistically significant (data not shown). Furthermore, statistical analysis of data ruled out any carryover effect (data not shown).

Figure 2. Treatment with a CBD-terpenes formulation increased the percentage of time participants DR51, DR24, DR32, DR128, DR45, and DR111 spent in SWS (1A), REM (1B), and SWS + REM sleep (1C) relative to TST [*P < 0.05 (t test); ** P < 0.01 (t test); *** P < 0.001; **** P < 0.0001; n = 15-28 days per treatment group].

Figure 3. Treatment with a CBD-terpenes formulation increased the absolute time participants DR51, DR24, DR32, DR128, DR45, and DR111 spent in SWS (1A), REM (1B), and SWS + REM sleep (restorative sleep) (1C) [*P < 0.05 (t test); ** P < 0.01 (t test); *** P < 0.001; n = 15-28 days per treatment group].
Supplementary Data Figure Legends

Supplementary Figure 1. Certificate of analysis documenting that the CBD in the capsules used in this study contained >99.9% purity CBD that lacked any detectable Δ-9-THC.
Table 1. Mean Difference (MD) in SWS+REM (% TST) and SWS+REM (min) For Individual Study Participants

<table>
<thead>
<tr>
<th></th>
<th>SWS+REM (% TST)</th>
<th>SWS+REM (% TST)</th>
<th>SWS+REM (% TST)</th>
<th>SWS+REM (min)</th>
<th>SWS+REM (min)</th>
<th>SWS+REM (min)</th>
<th>Statistics</th>
<th>95% CI</th>
<th>Statistics</th>
<th>95% CI</th>
<th>Statistics</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR24</td>
<td>9.1 (3.8)</td>
<td></td>
<td></td>
<td>48.3 (20.1)</td>
<td>P = 0.0240</td>
<td></td>
<td></td>
<td>(1.2 to 16.9)</td>
<td>P = 0.0234</td>
<td>(7.0 to 89.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR32</td>
<td>11.4 (5.7)</td>
<td>N.S.</td>
<td></td>
<td>80.1 (24.8)</td>
<td>P = 0.0027</td>
<td></td>
<td></td>
<td>(-0.1 to 23.1)</td>
<td>P = 0.018</td>
<td>(29.6 to 130.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR45</td>
<td>7.6 (2.9)</td>
<td>P = 0.0130</td>
<td></td>
<td>48.5 (18.6)</td>
<td>P = 0.0118</td>
<td></td>
<td></td>
<td>(1.6 to 13.5)</td>
<td>P = 0.008</td>
<td>(11.2 to 85.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR51</td>
<td>12.7 (3.8)</td>
<td>P = 0.0021</td>
<td></td>
<td>51.3 (14.2)</td>
<td>P = 0.0008</td>
<td></td>
<td></td>
<td>(4.9 to 20.5)</td>
<td>P = 0.008</td>
<td>(22.6 to 80.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR111</td>
<td>5.0 (2.3)</td>
<td>P = 0.0369</td>
<td></td>
<td>40.5 (14.3)</td>
<td>P = 0.0073</td>
<td></td>
<td></td>
<td>(0.3 to 9.6)</td>
<td>P = 0.019</td>
<td>(11.5 to 69.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR128</td>
<td>17.3 (3.4)</td>
<td>P < 0.0001</td>
<td></td>
<td>48.4 (19.8)</td>
<td>P = 0.0191</td>
<td></td>
<td></td>
<td>(10.6 to 24.4)</td>
<td>P = 0.019</td>
<td>(8.3 to 88.4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shown is The MD Between Control and Treatment Arms For Individual Study Participants (t test, n = 15-28 days per treatment group).
Figure 1

A) SWS Sleep (% Total)
B) REM Sleep (% Total)
C) SWS + REM Sleep (% Total)
D) SWS Sleep (min)
E) REM Sleep (min)
F) SWS + REM (min)
G) Light Sleep (min)
H) Light Sleep (% Total)
I) TST (min)

Control vs Treatment:
- SWS Sleep
- REM Sleep
- SWS + REM Sleep
- Light Sleep
- TST

Significance:
- ** p < 0.01
- *** p < 0.001
- **** p < 0.0001

Note: No reuse allowed without permission.
Figure 2

A

SWS Sleep (%Total)

Control Treatment Control Treatment Control Treatment Control Treatment

DR51 DR24 DR32 DR128 DR45 DR111

P = 0.21 P = 0.05 P = 0.19

B

REM Sleep (%Total)

Control Treatment Control Treatment Control Treatment Control Treatment

DR51 DR24 DR32 DR128 DR45 DR111

P = 0.26 P = 0.06

C

SWS + REM Sleep (%Total)

Control Treatment Control Treatment Control Treatment Control Treatment

DR51 DR24 DR32 DR128 DR45 DR111

P = 0.05 P = 0.06
Figure 3

A

SWS Sleep (min)

*** *

Control Treatment Control Treatment Control Treatment Control Treatment Control Treatment

DR51 DR24 DR32 DR128 DR45 DR111

B

REM Sleep (min)

** P = 0.12 *

Control Treatment Control Treatment Control Treatment Control Treatment Control Treatment

DR51 DR24 DR32 DR128 DR45 DR111

C

SWS + REM Sleep (min)

*** ** *

Control Treatment Control Treatment Control Treatment Control Treatment Control Treatment

DR51 DR24 DR32 DR128 DR45 DR111

All rights reserved. No reuse allowed without permission.
CERTIFICATE OF ANALYSIS

CBD ISOLATE

Batch ID: 522
Test ID: T000100900
Reported: 8-Oct-2020
Method: TM14
Type: Concentrate
Test: Potency

CANNABINOID PROFILE

- **99.96% Total Cannabinoids**
 - **CBD:** 99.88%
 - **CBDa:** 0.00%
 - **delta 9 THC:** 0.00%
 - **THCa:** 0.00%

<table>
<thead>
<tr>
<th>Compound</th>
<th>LOQ (%)</th>
<th>Result (%)</th>
<th>Result (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta 9-Tetrahydrocannabinolic acid (THCA-A)</td>
<td>0.46</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Delta 9-Tetrahydrocannabinol (Delta 9THC)</td>
<td>0.23</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cannabidiolic acid (CBDa)</td>
<td>0.12</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cannabidiol (CBD)</td>
<td>0.25</td>
<td>99.88</td>
<td>998.8</td>
</tr>
<tr>
<td>Delta 8-Tetrahydrocannabinol (Delta 8THC)</td>
<td>0.25</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cannabinolic Acid (CBNA)</td>
<td>0.64</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cannabinol (CBN)</td>
<td>0.28</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cannabigerolic acid (CBGA)</td>
<td>0.40</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cannabigerol (CBG)</td>
<td>0.22</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Tetrahydrocannabinolic Acid (THCVA)</td>
<td>0.39</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Tetrahydrocannabinin (THCV)</td>
<td>0.20</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cannabidivarinic Acid (CBDA)</td>
<td>0.11</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cannabidivarin (CBDV)</td>
<td>0.06</td>
<td>0.08</td>
<td>0.8</td>
</tr>
<tr>
<td>Cannabichromenic Acid (CBCA)</td>
<td>0.35</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cannabichromene (CBC)</td>
<td>0.41</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Total Cannabinoids
99.96%
999.6mg

Total Potential THC
ND

Total Potential CBD
99.88
998.8mg

NOTES:

N/A

FINAL APPROVAL

Signed by Tyler Wiese
8-Oct-2020 4:12 PM
PREPARED BY / DATE

Signed by Ben Minton
8-Oct-2020 6:02 PM
APPROVED BY / DATE

Testing results are based solely upon the sample submitted to Botanacor Laboratories, LLC, in the condition it was received. Botanacor Laboratories, LLC warrants that all analytical work is conducted professionally in accordance with all applicable standard laboratory practices using validated methods. Data was generated using an unbroken chain of comparison to NIST traceable Reference Standards and Certified Reference Materials. This report may not be reproduced, except in full, without the written approval of Botanacor Laboratories, LLC. ISO/IEC 17025:2005 Accredited A2LA Certificate Number 4329.02