A cross-sectional study: Insubstantial serological evidence for the association between chronic renal disease and leptospirosis in Badulla and Kandy districts, Sri Lanka

Regina Amanda Fonseka1, Pavani Senarathne1, Devinda Shameera Muthusinghe2, Yomani Dilukshi Sarathkumara3, Nishantha Nanayakkara3, Lishantha Gunaratne4, Kumiko Yoshimatsu2,5, Nobuo Koizumi6, Chandika Damesh Gamage1,*

1 Department of Microbiology, Faculty of Medicine, University of Peradeniya, Sri Lanka
2 Graduate School of Infectious Diseases, Hokkaido University, Japan
3 Nephrology and Transplantation Unit Kandy Teaching Hospital, Sri Lanka
4 Renal Unit, District Hospital, Girandurukotte, Sri Lanka
5 Institute for Genetic Medicine, Hokkaido University, Japan
6 Department of Bacteriology, National Institute of Infectious Diseases, Japan

*Corresponding author

Email: chandika.gamage@med.pdn.ac.lk (CDG)
Abstract

Chronic kidney disease (CKD) and chronic kidney disease of uncertain etiology (CKDu) are chronic renal diseases that pose a significant health burden in Sri Lanka. Leptospirosis is a bacterial zoonosis that primarily damages kidney tissues via colonization of *Leptospira* spp. in the renal tubules and is a suspected etiological agent of CKDu. Since Sri Lanka is a leptospirosis endemic country where outbreaks of the disease have been reported, this study aimed to find the association between leptospirosis and chronic renal disease in two geographically distinct regions of Sri Lanka, Kandy (CKDu non-endemic) and Badulla (CKDu endemic) districts. Forty-nine chronic renal disease patients and 135 controls from Kandy and 89 chronic renal disease patients and 149 controls from Badulla were examined serologically by microscopic agglutination test with a panel of 11 *Leptospira* serogroups. A seroprevalence of 35.3% and 32.5% for leptospirosis was observed in the Girandurukotte CKDu group and Girandurukotte control group respectively, while a seroprevalence of 36.7% and 31.9% were observed in the Kandy CKDu group and Kandy control group respectively. No statistically significant differences in leptospirosis seropositivity were observed between the chronic renal disease and control groups in both districts. However, further longitudinal studies assessing renal colonization among chronic renal patients and healthy individuals are required to conclusively state whether leptospirosis plays an important role in chronic renal disease development and/or progression in Sri Lanka.

1. Introduction

Chronic kidney disease (CKD) is a global public health problem that occurs primarily due to diabetes and hypertension. CKD is defined as any condition that damages kidney tissues leading to a decrease in renal function with a glomerular filtration rate (GFR) of <60 mL/min/1.73 m² for ≥ 3 months (1). CKD arising in the absence of diabetes, hypertension and other known risk factors is referred to as chronic kidney disease of uncertain etiology (CKDu) (2). CKDu has been detected in Central America,
Egypt, India, and Sri Lanka (3–6). While several hypotheses are being explored to uncover the causative agents/factors responsible for CKDu, a hypothesis that has been overlooked in Sri Lanka is an infectious etiology, such as hantavirus infection and leptospirosis (7).

Previous studies have inferred leptospirosis as a possible etiological agent or risk factor for CKDu (7–10). Leptospirosis is one of the most widely prevalent bacterial zoonoses caused by bacteria belonging to the genus *Leptospira* (7). Kidney is the main target organ of *Leptospira* spp., and if left untreated the bacteria could colonize the renal tubules of the kidney tissues (10). Renal colonization by *Leptospira* spp. can result in interstitial tubular nephritis and acute kidney injury (AKI) which carry a risk for CKD (10). Long-term mild subclinical AKI could result in the development of CKD (11). An association between CKD and leptospirosis was suggested for the first time in Taiwan in 2015: participants exposed to *Leptospira* spp. showed a 2.5% decrease of estimated GFR and a higher percentage of CKD compared to those unexposed to the bacteria (12). In the same study, 88 individuals with high anti-leptospiral antibody titers were followed up for two years and individuals with microscopic agglutination test (MAT) titer > 400 showed a positive correlation with kidney injury marker KIM–1/Cr (12).

In 2018, Yang brought forward two hypothetical pathways through which leptospirosis could progress to CKD: acute *Leptospira* infection could progress to chronic leptospirosis if left untreated, resulting in the development into CKD, whereas subclinical *Leptospira* infection could lead to chronic leptospirosis which can develop into CKD (10). Heat stress and dehydration were postulated to have synergistic effect on the pathways (10). Furthermore, there are several similarities between leptospirosis renal disease and CKDu, such as tubulointerstitial nephritis, interstitial fibrosis, non-proteinuria, proximal tubule dysfunction, and hypokalemia as well as both diseases affect middle-aged males living in hot climates (10).

Although leptospirosis is an endemic and notifiable disease in Sri Lanka, it is still largely underdiagnosed and thus most likely untreated, which may lead to a chronic state of infection with no symptoms. The highest burden of CKDu lies in the North Central Province (NCP), where
leptospirosis outbreaks are also common (13,14). Since most of the CKDu-affected population in the NCP comprise of middle-aged men involved in agriculture, it is possible that the renal tissue damages caused by *Leptospira* infection progress to a chronic state due to incomplete recovery from mild AKI, recurring exposure, and infection with *Leptospira* spp., and heat stress and dehydration. Therefore, this study investigated the involvement of leptospirosis as a causative agent or risk factor towards chronic renal disease by comparing leptospirosis seroprevalence between chronic renal patients and healthy controls in a CKDu endemic district, Badulla and a CKDu non-endemic district, Kandy, Sri Lanka.

2. Methods

2.1. Study design and ethical clearance

This is a hospital and community-based cross-sectional study with unmatched cases and controls. The study areas were Mahiyangana Divisional Secretariat, Badulla district, a CKDu endemic region and Yatinuwara Divisional Secretariat, Kandy district, a CKDu non-endemic region, Sri Lanka. Ethical clearance for this study was obtained from the institutional Ethical Review Committee, Faculty of Medicine, University of Peradeniya (2016/EC/64). The collection of blood samples and demographic data was approved by the Regional Director of Health Services, Kandy, and informed consent was obtained from all study participants via a signature or thumbprint (Supplementary Materials S1). The authors did not have access to information that would help identify the recruited participants during or after sample collection.

2.2. Sample collection

Sample collection was carried out between January 2017 to February 2018. The determination of sample size is described in Supplementary Materials S2. Clinically diagnosed chronic renal patients
(age ≥18) residing in Kandy (n=48) and Badulla (n=85) districts who attended the renal clinics at the nephrology and transplantation unit, Teaching Hospital Kandy (Kandy) and the Girandurukotte District Hospital (Badulla) were recruited to the study as cases via a convenience-based sampling strategy. Individuals with a history of alcoholism were excluded from the study. For the control groups, the Medical Office of Health areas were randomly selected within the Kandy and Badulla Districts. Individuals (age ≥18) residing in Kandy (n=135) and Badulla (n=149) districts who were not clinically diagnosed with kidney disease and had normal serum creatinine levels (0.5–1.2 mg/dL), volunteered to take part in this study. Individuals with a history of alcoholism or kidney disease were excluded from the study.

Five milliliters of blood were collected into sterile tubes containing no anticoagulant. The tubes were left undisturbed for 30 min at room temperature, which was centrifuged at 2000×g for serum separation. The serum separation was carried out at the sample collection site and immediately transported to the Department of Microbiology, Faculty of Medicine, University of Peradeniya in insulated cool boxes and the serum samples were stored at -20°C prior to analysis.

At the time of sample collection, demographic information was collected using a structured questionnaire. The questionnaire covered the following information: basic demographic data (age and gender), family and past medical history, occupational information, agricultural activity, and exposure to rodents (Supplementary materials S3). A survey-based interview method was used to administer the questionnaire, to eliminate the issue of missing demographic data during self-reporting. However, this may have introduced some bias as participants may have answered questions incorrectly, especially the questions with regard to sightings of rodents and rodent excreta around their homes.

2.3. Detection of anti-leptospiral antibodies by MAT
The MAT panel antigens used in this study was obtained from the Veterinary Research Institute and contained 12 serovars belonging to 11 serogroups: serogroup Autumnalis (serovar Autumnalis), Bataviae (Bataviae), Canicola (Canicola), Grippotyphosa (Grippotyphosa), Hebdomadis (Hebdomadis), Javanica (Javanica), Panama (Panama), Sejroe (Hardjo and Wolffii), Semaranga (Patoc), Shermani (Shermani), and Tarassovi (Tarassovi). The strains were maintained in a liquid Ellinghausen McCullough Johnson and Harris medium supplemented with Leptospira enrichment (BD Difco, USA) and 5-flurouracil (final concentration of 200 µg/mL). Four to 7-day old cultures that showed a growth equivalent to a 0.5 McFarland (approximately 1-2×10^8 organisms/mL) were used for MAT as previously described (15,16). A MAT titer of ≥1:400 was considered as seropositive for leptospirosis, as the titer of ≥1:320, is considered clinically significant in Sri Lanka (17).

2.4. Statistical analysis

All statistical analyses were conducted using Statistical Package for the Social Sciences version 25 (IBM, USA) and the online tool MedCalc. Using MedCalc, the odds ratio and its accompanying 95% confidence interval (CI) was calculated to compare the proportions of the number of individuals exposed group and unexposed group to Leptospira spp in both chronic renal patients and controls. Using SPSS, univariate descriptive analysis was performed to identify risk factors associated with exposure to Leptospira spp. This was evaluated by 2×2 contingency tables and Yate’s corrected Pearson’s chi-square test. Yate’s correct was added to Fisher’s exact test was used when counts were less than 5. A P value lower than 0.05 (p ≤ 0.05) was considered statistically significant. Only samples with complete data were subject to MAT and statistical analysis.

3. Results

3.1. Seroprevalence for leptospirosis in Kandy and Badulla
Seroprevalences of 2.1% and 18.5% for leptospirosis were observed in the chronic renal disease and control groups in Kandy, respectively (Table 1). The seroprevalence in disease group was significantly lower than that in control group in Kandy (p=0.02). Seroprevalence of 7.1% and 13.4% were observed in the chronic renal disease and control groups in Badulla, respectively (Table 1). There was no statistically significant difference between the disease and control groups in Badulla (p=0.14).

Table 1. Difference in leptospiral seropositivity between the chronic renal disease patients and healthy individuals in Kandy and Badulla.

<table>
<thead>
<tr>
<th>District</th>
<th>Group</th>
<th>No. of MAT positives (%)</th>
<th>Odds Ratio (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kandy</td>
<td>Chronic renal patients (n=49)</td>
<td>1 (2.1)</td>
<td>0.09 (0.01–0.70)</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Controls (n=135)</td>
<td>25 (18.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Badulla</td>
<td>Chronic renal patients (n=85)</td>
<td>6 (7.1)</td>
<td>0.49 (0.19–1.27)</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Controls (n=149)</td>
<td>20 (13.4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2. Comparison of demographic characteristics and seropositivity in Kandy and Badulla

There were no statistically significant differences between demographic characteristics and leptospirosis seropositivity in the chronic renal disease and control groups in Kandy and Badulla (Table 2).

Table 2. Comparison of demographic characteristics and seropositivities in chronic renal patients and controls in Kandy and Badulla

<table>
<thead>
<tr>
<th>Kandy</th>
<th>Chronic renal patients (n=49)</th>
<th>Controls (n=135)</th>
<th>Chronic renal patients (n=85)</th>
<th>Controls (n=149)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Total MAT results</td>
<td>Total MAT results</td>
<td>Total MAT results</td>
<td>Total MAT results</td>
</tr>
<tr>
<td></td>
<td>n (+)ve (-)ve</td>
<td>n (+)ve (-)ve</td>
<td>n (+)ve (-)ve</td>
<td>n (+)ve (-)ve</td>
</tr>
<tr>
<td>≥50 years</td>
<td>26 1 25 0.9 0.3420</td>
<td>53 11 42 0.1 0.756</td>
<td>62 4 58</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>27</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupation</td>
<td>3</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk factors</td>
<td>42</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure</td>
<td>13</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storing</td>
<td>6</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rats</td>
<td>32</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dried rodent</td>
<td>17</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gender

- Male: 27 years old
- Female: 22 years old

Occupation

- Farming: 3
- Non-farming: 46

Risk factors for CKD

Presence
- 42

Absence
- 7

Exposure to agriculture

Yes
- 13

No
- 36

Storing crop at house

Yes
- 6

No
- 43

Rats seen at home or surroundings

Yes
- 32

No
- 17

Dried rodent faeces seen at home or surrounding

Yes
- 17

No
- 32

Table 3. Results of MAT in Kandy and Badulla districts

<table>
<thead>
<tr>
<th>Kandy</th>
<th>Badulla</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3. Infecting Leptospira serogroups in Kandy and Badulla

Serogroup Sejroe was the predominant infecting serogroups both in Kandy and Badulla (Table 3).

Although the MAT titer ≥1:400 was judged as positive for leptospiral antibodies indicating acute infection in this study, individuals with lower antibody titers were also observed (Supplementary Materials S4).

Table 3. Results of MAT in Kandy and Badulla districts
This study suggests that there is no association between chronic renal disease and leptospirosis seroprevalence. This finding was consistent with a recent study carried out in the NCP of Sri Lanka in 2020, where leptospirosis seroprevalence among the CKDu and the control groups was not statistically significant (18). On the other hand, the results are contradictory to the findings of a study carried out in Taiwan which showed an association between *Leptospira* seroprevalence and CKD and lower eGFR (12). The cause of CKDu could vary regionally and be geographically specific. Epidemics of kidney disease with unknown etiologies have previously been reported: Itai-itai disease and Balkan endemic nephropathy (BEN) are nephropathic epidemics whose etiology was identified much later. Itai-itai disease which surfaced in Japan in 1912 was found to be caused by Cadmium poisoning in 1968, while BEN that surfaced in the 1950s was found to be caused by aristocholic acid in 1993 (19). In addition, the present only assessed the seroprevalence of leptospirosis in the study populations (18). It has been shown that renal colonization can occur asymptotically and sometimes in the absence of serological evidence or anti-leptospiral antibodies (12,20,21). To conclusively state that leptospirosis has no association to chronic renal disease in Sri Lanka, renal colonization must be investigated.
This study revealed that the predominant infecting *Leptospira* serogroup was Sejroe, of which serovar Hardjo was the most reactive serovar both in Kandy and Badulla (Table 3 and Supplementary Table 1). It is well-known that Serovar Hardjo is maintained by cattle and the transmission of the strain to humans occurs commonly through contact with cattle (22). The high seroprevalence for serogroup Sejroe (serovar Hardjo) can be explained by the population’s exposure to agricultural activities involving direct/indirect contact with cattle in Badulla (Table 2). However, high seroprevalence for serogroup Sejroe (serovar Hardjo) was also observed among Kandy population despite most of them not being engaged in agriculture (Table 2). Hardjo infections in dogs and cats have been reported previously in Brazil, Croatia, Italy, Scotland, and the USA (23–29). Furthermore, a previous serological study on companion dogs in the Kandy district revealed that serogroup Sejroe was the most common serogroup (16).

There are some limitations in this study: the chronic renal disease cohort in this study consisted of CKD and CKDu patients, whereas it would have been ideal to only recruit CKDu patients. Distinguishing between CKDu and CKD cases is only possible via a renal biopsy, an invasive procedure that’s rarely followed in Sri Lanka. It must also be noted that the antigen panel used for MAT was not locally isolated strains, and this was due to a lack of information on circulating serogroups/serovars in the study regions. This may have resulted in the underestimation of leptospirosis seropositivity in this study.

5. Conclusions

According to the findings of this study, there is no significant differences in leptospirosis seropositivity were observed between the chronic renal disease patients and healthy community people in Badulla and Kandy, Sri Lanka.

Acknowledgments
The authors would like to extend their gratitude to Mr. Athula Kumara and all staff members of the Department of Microbiology, Faculty of Medicine, employed from 2019-2022 for the technical support rendered for the completion of this project. Final acknowledgments go toward Ms. Nishanthi Weerakoon and all staff members of the Microbiology Division of the Veterinary Research Institute employed from 2020-2021 for their technical support to this study.

Funding

This study was partly supported by a research grant from University of Peradeniya (URG/2018/28M) and National Science Foundation of Sri Lanka (RPHS/2016/CKDu/06).

References

