Mudan Granules for Diabetic Peripheral Neuropathy: A Systematic Review of Preclinical and Clinical Evidence

Jianlong Zhou¹, Lv Zhu²& Yadi Li¹*

¹Department of Traditional Chinese Medicine, People’s Hospital of Deyang City, Deyang, China

²Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu, China

* Corresponding author:

E-mail: dido_lee0308@163.com (Yadi Li)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

Mudan granules has been used in China to treat diabetic peripheral neuropathy (DPN), but there is a lack of systematic review of reports in this area. The aim of this systematic review was to evaluate the efficacy and safety of Mudan granules in the treatment of diabetic peripheral neuropathy.

Methods

Initial studies were searched from PubMed, Embase, Cochrane, China National Knowledge Infrastructure (CNKI), VIP database, Wanfang electronic databases. The Cochrane Risk of Bias tool was used to evaluate the risk of bias. The meta-analysis was performed by Stata 16.0 software. For dichotomous and continuous outcomes, the relative risk (RR) and standardized mean difference (SMD) with 95% confidence interval (CI) were conducted, respectively.

Results

51 randomized controlled trials (RCTs) involving 5,416 patients were included. In the meta-analysis, compared with routine treatment (RT) alone, Mudan granules plus RT reduced Toronto clinical scoring system (TCSS) score (SMD, -0.52; 95% CI, -0.66 to -0.38; \(P < 0.01 \)), total symptoms score (TSS) (SMD, -1.44; 95% CI, -2.88 to -0.00; \(P = 0.05 \)), serum homocysteine (Hcy) levels (SMD, -3.84; 95% CI, -5.99 to -1.70; \(P < 0.01 \)), serum high sensitive C-reactive protein (hs-CRP) levels (SMD, -1.68; 95% CI, -3.29 to -0.08; \(P = 0.04 \)), and improved total clinical efficacy (RR, 1.23; 95% CI, 1.19 to 1.27; \(P < 0.01 \)) and serum superoxide dismutase (SOD) levels (SMD, 1.54; 95% CI, 1.13 to 1.95; \(P < 0.01 \)). Besides, Mudan granules presented an adjuvant efficacy on median motor nerve conduction velocity (SMD, 1.61; 95% CI, 1.16 to 2.07), median sensory nerve conduction velocity (SMD, 1.73; 95% CI, 1.26 to 2.20), common peroneal motor nerve conduction velocity (SMD, 1.48; 95% CI, 1.10 to 1.86), common peroneal sensory nerve conduction velocity (SMD, 1.57; 95% CI,
1.23 to 1.92), tibial motor nerve conduction velocity (SMD, 1.34; 95% CI, 0.82 to 1.87), and tibial sensory nerve conduction velocity (SMD, 1.03; 95% CI, 0.86 to 1.20). In terms of adverse events, there was no statistically significant difference between the trial group and the control group ($P = 0.87$). Five preclinical studies were also retrieved for the study. Animal studies have shown that Mudan granules have anti-oxidative stress effects and could reduce the inflammatory response. It may improve peripheral nerve injury in diabetic rats by modulating the TLR4/MyD88/NF-κB pathway, TLR4/p38 MAPK pathway and PI3K/AKT pathway.

Conclusions

Mudan granules presented an adjuvant efficacy on patients with DPN and could improve the oxidative stress and inflammatory levels in preclinical models. However, high-quality original studies are needed to further prove the evidence.

1. **Introduction**

Diabetic peripheral neuropathy is one of the most common chronic complications of diabetes, occurring in approximately 50% of people with diabetes(1). It is also an important cause of lower limb amputation and disabling neuropathic pain. It causes great suffering to patients in their daily lives and places a heavy economic burden on the healthcare system and society as a whole(2). Previous studies have reported prevalence rates of DPN ranging from 6% to 51%, with this variation being related to the population studied(3). 50% of people with DPN are usually asymptomatic in the early stages(4). There are also no simple markers for the early detection of DPN in routine clinical practice. DPN is defined internationally as “diabetic patients accompanied by signs and/or symptoms associated with peripheral nerve dysfunction after other causes have been excluded”(4). This definition suggests that the diagnosis of DPN is comprehensive and exclusive. A diagnosis of DPN requires 3 elements to be met. Firstly, it is necessary to have definite diabetes. Secondly, there must
be clinical evidence of the presence of peripheral neuropathy (signs or symptoms), and/or evidence of
electrophysiological examination. Finally, other causes of peripheral neuropathy need to be ruled out
by relevant laboratory tests. The Toronto Consensus recommends the use of abnormal nerve
conduction studies (NCS) with signs or symptoms to diagnose DPN. The NCS is considered to be the
most important basis for the diagnosis of large fiber neuropathy. Screening for DPN involves a foot
examination and history taking for neurological symptoms, as well as screening tests such as the 128
Hz tuning fork vibration sensing test and the 10 g (Semmes-Weinstein) monofilament test(2).
However, these tests are unable to detect lesions in small nerve fibers. Skin biopsy is considered the
reference for identifying small fiber neuropathy. Nevertheless, mass screening and repeat biopsies are
not feasible(5). Therefore, the diagnosis of DPN, the determination of global prevalence and
incidence remains a challenging task.

Patients with DPN usually present with symmetrical pain in the extremities, especially in the distal
extremities. The most typical manifestation is abnormal sensation in the “glove-and-stocking”
distribution(6). Current clinical management focuses on glycemic control, foot care and pain
management(3). Strict glycemic control may stop the progression of diabetic neuropathy, but there is
no evidence that glycemic control relieves pain in DPN. For the management of pain in DPN, major
international clinical guidelines recommend several symptomatic treatment protocols(7). First-line
treatment options include tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors and
anticonvulsants that act on calcium channels. Pregabalin, gabapentin and duloxetine are the usual
first-line drugs. However, tricyclic antidepressants could cause dry mouth, orthostatic hypotension,
constipation, and urinary retention. Topical medications such as capsaicin and isosorbide nitrate may
be considered in the second- or third-line treatment. Opioids may not be recommended as a first- or
second-line treatment acute exacerbations since it is addictive(3, 8). Numerous treatments are
palliative in nature and do not target the underlying mechanism causing the pain. Specifically, alpha-
lipoic acid and epalrestat appear to modify disease state well by modulating pathogenesis but are not recommend to by guidelines(8). Therefore, there is an urgent need to discover new therapeutic agents that can target the mechanisms.

Traditional Chinese medicine (TCM) has a unique theoretical system. It has accumulated rich clinical experience in the treatment of T2DM and related complications(9). The concept of DPN is not clearly described in TCM. Based on the characteristics of "numbness, pain, coldness and limb weakness", DPN belongs to the categories of “Xiaoke (emaciation and thirst)”, "Xiaoke pulse Bi", "Bi syndrome" and "Wei syndrome" in the concept of TCM(6, 10). Mudan granules is a Chinese patent medicine consisting of Astragalus membranaceus (Huangqi), Corydalis rhizoma with vinegar (Yanhusuo), Panax notoginseng (Sanqi), Radix Paeoniae rubra (Chishao), Salvia miltiorrhiza (Danshen), Ligusticum chuanxiong, safflower (Honghua), Logwood (Sumu), and Caulis Spatholobi (Jixueteng)(11). It has the effects of invigorating Qi and promoting blood circulation, unblocking the meridians, and relieving pain. In China it is approved for the treatment of DPN(6). A randomised controlled trial including 148 patients with DPN showed that Mudan granules improved the conduction velocity of the common peroneal and median nerves and were effective in relieving clinical symptoms(12). Another study showed that Mudan granules combined with pancreatic kininogenase increased serum SOD level, decreased serum hypersensitive C-reactive protein (hs-CRP) level and TCSS score, and improved sensory nerve function in DPN patients(13). Therefore, in this systematic review, we evaluated clinical randomized controlled trials (RCTs) and pre-clinical studies of Mudan granules combined with RT for DPN, in order to more objectively evaluate the efficacy and safety of Mudan granules and to explore the potential mechanisms.

2. Methods

2.1. Search strategy
The meta-analysis followed the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA)(14) (see S1 File for the PRISMA checklist). The study was registered on the PROSPERO platform (CRD42022373113). The literature search was not restricted by language. The literature search was conducted using combinations of the following words: “diabetic peripheral neuropathy or diabetic or neuralgia” and “Mudan or Mu Dan”. Electronic databases, including PubMed, Embase, Cochrane, China National Knowledge Infrastructure (CNKI), VIP database, Wanfang database were searched. The detailed search strategies were provided in the additional file (see S2 File). In addition, we manually searched the reference lists of included clinical trials. The retrieval time range was from the establishment of the database to October 2022. Two authors (Jianlong Zhou and Lv Zhu) independently conducted the literature search based on the search strategy. Disputed sections were resolved by the third author (Yadi Li).

2.2. Eligible criteria

The inclusion criteria were as follows: (I) the study participants were clinically diagnosed with DPN; (II) the control group was treated as follows: routine treatment (e.g., diet modification, regular exercise, blood glucose control, etc.) combined or not with western medicine for the treatment of DPN; (III) Patients in the trial group were treated with Mudan granules on the basis of treatment in the control group; (IV) the study design is RCTs or preclinical studies; (V) there is no restriction on the duration of disease or treatment; (VI) outcome measures included at least one of effectiveness and safety measure; effectiveness measures included total clinical efficacy (TCE), nerve conduction velocity (NCV) including at least one of the median, common peroneal and tibial nerves, TCSS score, TSS, serum homocysteine (Hcy) level, serum hs-CRP level, serum SOD level; safety measure included adverse event rate.
The exclusion criteria were as follows: (I) duplicate literature; (II) review; (III) case report; (IV) clinical experience; (V) data analysis; (VI) review; (VII) non-diabetic peripheral neuropathy; (VIII) unrelated intervention; (IX) protocol or guideline; (X) non-randomised controlled trial; (XI) lack of data.

2.3. Study screening and Data extraction

We used reference management software (EndNote 20) to screen the literature. First, duplicates were identified and removed. Then, the literature was screened based on title and abstract. Finally, the full text was reviewed for eligibility based on inclusion and exclusion criteria. Two researchers (JLZ and LZ) independently assessed all retrieved literature and analysed the data according to inclusion/exclusion criteria. Disagreements were resolved by the third researcher (YDL). The relevant information was extracted and recorded using Microsoft excel software. The following information was extracted: (1) basic information of the included studies, including year of publication, name of first author, country or region, number of cases per group, baseline characteristics of subjects (age); (2) intervention and course of treatment in the trial and control groups; (3) outcome measures, including: total clinical efficacy (TCE), nerve conduction velocity (NCV) including at least one of the median, common peroneal and tibial nerves, TCSS score, TSS, serum homocysteine (Hcy) level, serum hs-CRP level, serum SOD level, adverse event. Data will be cross-checked by the third researcher to ensure quality.

2.4. Quality assessment

The study quality was also evaluated independently by two researchers (ZJL and ZL) according to the risk of bias assessment tool recommended by the Cochrane Systematic Review Manual (5.1.0). The evaluation included the following 7 items: random sequence generation; allocation concealment;
blinding of participants and personnel; blinding of outcome assessment; incomplete outcome data; selective reporting; other sources of bias. Three levels of risk of bias were followed to assess: low risk, unclear risk, and high risk. Risk of bias plots for the evaluation results were drawn using the R package.

2.5. Data analysis

Stata 16.0 software (Stata Corporation, College Station, Texas, USA) was used for the meta-analysis of all data. For dichotomous data, we calculated risk ratio (RR) and 95% confidence interval (CI). Standardized mean difference (SMD) and 95% CI were calculated for continuous data. The statistical significance of differences between groups was evaluated with the Z-test, and \(P \leq 0.05 \) indicated that the differences were statistically significant. The random-effect model of meta-analysis was used in the study, assuming significant heterogeneity in all the included studies. Cochran's Q test and Higgins' \(I^2 \) test were used to analyze the heterogeneity between studies. When \(P > 0.05 \) or \(I^2 < 50\% \), there is no significant heterogeneity between studies. Otherwise, it means there exists significant heterogeneity among studies. In addition, Funnel plots were used to assess the publication bias. L'Abbe plot were also used to test for heterogeneity.

2.6. Patient and public involvement

Patients and public were not involved in this study.

3. Results

3.1. Literature search
A total of 179 articles were retrieved according to the search strategy. After removing duplicates, 152 articles potentially relevant to this study were retained. Among these, 52 articles were excluded after initial screening of titles and abstracts. After reading the full text of the remaining 100 studies, 56 studies were included. All studies were conducted in China, with 51 clinical studies and 5 preclinical studies. Ultimately, 51 clinical studies were included in the meta-analysis(12, 13, 15-63). The flowchart of the retrieval is shown in Fig 1.

3.2. Characteristics

A total of 51 studies were included in this study for quantitative analysis, involving 5416 patients, including 2752 in the trial group and 2664 in the control group. The control group was treated as follows: RT (e.g., diet modification, regular exercise, blood glucose control, etc.) combined or not with RT for DPN. Patients in the trial group were treated with Mudan granules based on treatment in the control group. The basic information of the included literature is shown in S1 Table.

3.3. Methodological quality

The quality of the 51 included studies was assessed using the RCT risk of bias assessment tool recommended by the Cochrane Collaboration. The results of the risk of bias assessment are shown in Figs 2 and 3. Three studies grouped patients according to drug regimens(37, 45, 60) and two studies grouped patients according to order of admission(49, 50), all of whom were rated as high risk. 25 studies explicitly stated that patients were grouped according to rolling dice or random number table methods, all of which were rated as low risk. Studies that did not specify the method of randomization were rated as unclear risk. All randomized controlled trials without allocation
concealment and blinding were rated as unclear risk. All included studies showed a low risk of bias in terms of selective reporting and incomplete outcome data. Three studies were rated as high risk in term of other sources of bias because the mean age of patients enrolled was not reported (22, 25, 55).

Fig 2. Risk of bias assessment of the included literature.

Fig 3. Bar chart of risk of bias assessment for the included literature.

3.4. Meta-analysis

3.4.1. Total clinical efficacy (TCE)

A total of 41 articles reported TCE, and there was no significant heterogeneity between studies ($I^2 = 20\%, P = 0.26$). The results of the meta-analysis indicated that the TCE of combining Mudan granules plus RT were 1.23 times (RR 1.23, 95% CI: 1.19 to 1.27, $P < 0.01$) more effective than the RT for DPN, as shown in Fig 4. We also performed a heterogeneity test for TCE using the L'Abbe plot. The L'Abbe plot showed that all studies were above the null line and that the studies showed a more concentrated distribution. This also indicated that the efficacy of Mudan granules for DPN was superior to that of the control group, as shown in Fig 5.

Fig 4. Forest plot of total clinical efficacy.

Fig 5. L'Abbe plot of heterogeneity test for total clinical efficacy.

3.4.2. Median nerve conduction velocity

A total of 29 articles reported changes in median motor nerve conduction velocity before and after treatment. SMD (i.e., Cohen's d) was estimated using a random effect model. As shown in Table 1, the difference in median motor nerve conduction velocity before and after treatment with Mudan
granules based on the treatment of the control group for DPN was statistically significant (SMD 1.61, 95% CI: 1.16 to 2.07, $P<0.01$). There was a high heterogeneity between studies ($I^2=96.07\%$, $P<0.01$). A total of 27 articles reported changes in median sensory nerve conduction velocity before and after treatment. As shown in Table 1, the difference in median sensory nerve conduction velocity before and after treatment with Mudan granules was statistically significant compared with the control group (SMD 1.73, 95% CI: 1.26 to 2.20, $P<0.01$), and there was significant heterogeneity between studies ($I^2=96.19\%$, $P<0.01$). The above results suggested that Mudan granules were effective in increasing median nerve conduction velocity of patients with DPN. The detailed results were shown in S1 Fig.

Table 1. Meta-analysis results of other outcome measures.

<table>
<thead>
<tr>
<th>Outcome measures</th>
<th>Pooled studies</th>
<th>Analysis mode</th>
<th>I^2</th>
<th>Effect size</th>
<th>Pooling value with 95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median nerve MNCV</td>
<td>29</td>
<td>Random effect model</td>
<td>96.07%</td>
<td>SMD</td>
<td>1.61[1.16, 2.07]</td>
<td><0.01</td>
</tr>
<tr>
<td>Median nerve SNCV</td>
<td>27</td>
<td>Random effect model</td>
<td>96.19%</td>
<td>SMD</td>
<td>1.73[1.26, 2.20]</td>
<td><0.01</td>
</tr>
<tr>
<td>Common peroneal nerve MNCV</td>
<td>38</td>
<td>Random effect model</td>
<td>96.34%</td>
<td>SMD</td>
<td>1.48[1.10, 1.86]</td>
<td><0.01</td>
</tr>
<tr>
<td>Common peroneal nerve SNCV</td>
<td>35</td>
<td>Random effect model</td>
<td>95.15%</td>
<td>SMD</td>
<td>1.57[1.23, 1.92]</td>
<td><0.01</td>
</tr>
<tr>
<td>Tibial never MNCV</td>
<td>8</td>
<td>Random effect model</td>
<td>92.73%</td>
<td>SMD</td>
<td>1.34[0.82, 1.87]</td>
<td><0.01</td>
</tr>
<tr>
<td>Tibial never SNCV</td>
<td>5</td>
<td>Random effect model</td>
<td>0%</td>
<td>SMD</td>
<td>1.03[0.86, 1.20]</td>
<td><0.01</td>
</tr>
<tr>
<td>TCSS score</td>
<td>9</td>
<td>Random effect model</td>
<td>0%</td>
<td>SMD</td>
<td>-0.52[-0.66, -0.38]</td>
<td><0.01</td>
</tr>
<tr>
<td>TSS</td>
<td>5</td>
<td>Random effect model</td>
<td>97.44%</td>
<td>SMD</td>
<td>-1.44[-2.88, -0.00]</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Serum Hcy level

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Random effect model</td>
<td></td>
<td>SMD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>98.42%</td>
<td>SMD</td>
<td>-3.84[-5.99, -1.70]</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Serum hs-CRP level

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Random effect model</td>
<td></td>
<td>SMD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.39%</td>
<td>SMD</td>
<td>-1.68[-3.29, -0.08]</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Serum SOD level

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Random effect model</td>
<td></td>
<td>SMD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>92.44%</td>
<td>SMD</td>
<td>1.54[1.13, 1.95]</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Adverse event

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Random effect model</td>
<td></td>
<td>RR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0%</td>
<td>RR</td>
<td>0.96[0.63, 1.48]</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Note. MNCV, Motor nerve conduction velocity; SNCV, Sensory nerve conduction velocity; TCSS, Toronto clinical scoring system; TSS, Total symptom score; hs-CRP, Hypersensitive C-reactive protein; SOD, Superoxide dismutase; Hcy, Homocysteine.

3.4.3. Common peroneal nerve conduction velocity

A total of 38 articles reported changes in common peroneal motor nerve conduction velocity before and after treatment. As shown in Table 1, the difference in common peroneal motor nerve conduction velocity before and after treatment with Mudan granules based on the treatment of the control group for DPN was statistically significant (SMD 1.48, 95% CI: 1.10 to 1.86, P <0.01).

There was significant heterogeneity between studies (I^2 =96.34%, P <0.01). A total of 35 articles reported changes in common peroneal sensory nerve conduction velocity before and after treatment. Compared with the control group, there was a statistically significant difference in the conduction velocity of the common peroneal sensory nerve before and after treatment with Mudan granules (SMD 1.57, 95% CI: 1.23 to 1.92, P <0.01), and there was significant heterogeneity between studies (I^2 =95.15%, P <0.01). The above results suggested that Mudan granules were effective in increasing the common peroneal nerve conduction velocity in DPN patients. The detailed results were shown in S2 Fig.
3.4.4. Tibial nerve conduction velocity

A total of 8 studies reported changes in tibial nerve motor nerve conduction velocity before and after treatment. As shown in Table 1, the difference in tibial nerve motor nerve conduction velocity before and after treatment with Mudan granules was statistically significant based on the treatment of DPN in the control group (SMD 1.34, 95% CI: 0.82 to 1.87, \(P < 0.01 \)). There was significant heterogeneity between studies (\(I^2 = 92.73\%, \ P < 0.01 \)). A total of 5 articles reported changes in tibial nerve sensory nerve conduction velocity before and after treatment. The difference in tibial nerve sensory nerve conduction velocity before and after treatment with Mudan granules was statistically significant compared with the control group (SMD 1.03, 95% CI: 0.86 to 1.20, \(P < 0.01 \)), and there was no heterogeneity between studies (\(I^2 = 0\%, \ P = 0.39 \)). These results suggested that Mudan granules could effectively improve tibial nerve conduction velocity in DPN patients. The detailed results were shown in S3 Fig.

3.4.5. Toronto Clinical Scoring System (TCSS) score

A total of 9 studies reported changes in the TCSS score before and after treatment. The results of the meta-analysis showed that there was a statistically significant difference in TCSS score before and after treatment with Mudan granules compared with the control group (SMD -0.52, 95% CI: -0.66 to -0.38, \(P < 0.01 \)). There was a low heterogeneity between studies (\(I^2 = 0\%, \ P = 0.76 \)), as shown in Table 1 and S4 Fig. This suggested that Mudan granules may effectively reduce the TCSS score of DPN patients.

3.4.6. Total Symptom Score (TSS)

A total of 5 articles reported changes in TSS before and after treatment. There was a high heterogeneity between studies (\(I^2 = 97.44\%, \ P < 0.01 \)). The difference in TSS before and after
treatment with Mudan granules was statistically significant compared to the control group (SMD -1.44, 95% CI: -2.88 to -0.00, \(P = 0.05 \)). This indicated that Mudan granules could effectively reduce TSS in DPN patients. As shown in Table 1 and S5 Fig.

3.4.7. Serum Hcy level

A total of 5 articles reported changes in serum Hcy level before and after treatment. Compared with RT, serum Hcy level was significantly lower in Mudan granules plus RT treatment (SMD -3.84, 95% CI: -5.99 to -1.70, \(P < 0.01 \)), and there was significant heterogeneity between studies (\(I^2 = 98.42\%, \ P < 0.01 \)). As shown in Table 1 and S6 Fig.

3.4.8. Serum hs-CRP level

A total of 11 studies reported the changes in serum hs-CRP level before and after treatment. Compared with RT, serum hs-CRP level was significantly lower in Mudan granules plus RT treatment (SMD -1.68, 95% CI: -3.29 to -0.08, \(P = 0.04 \)), and there was significant heterogeneity between studies (\(I^2 = 99.39\%, \ P < 0.01 \)). As shown in Table 1 and S7 Fig.

3.4.9. Serum SOD level

A total of 15 studies reported changes in serum SOD level before and after treatment. Compared with RT alone, serum SOD level was significantly higher in Mudan granules plus RT treatment (SMD 1.54, 95% CI: 1.13 to 1.95, \(P < 0.01 \)), and there was a high heterogeneity between studies (\(I^2 = 92.44\%, \ P < 0.01 \)). As shown in Table 1 and S8 Fig.

3.4.10. Adverse event

A total of 20 studies reported the adverse events, with a low heterogeneity between studies (\(I^2 = 0\%, \ P = 0.89 \)). The difference in the rate of adverse event after Mudan granules treatment was not
statistically significant compared with the control group (RR 0.96, 95% CI: 0.63 to 1.48, \(P = 0.87 \)), as shown in Table 1 and S9 Fig. Both had low rates of adverse events, and no serious adverse events were reported.

3.4.11. Sensitivity analysis

For outcome measures without significant statistical heterogeneity, the results of the random effect model were compared with those of the fixed effect model, and the results showed that the analysis was stable and reliable.

3.4.12. Publication bias analysis

We performed a funnel plot analysis of total clinical efficacy. The funnel plot showed an uneven distribution of studies, which implies a possible publication bias, as shown in Fig 6. The following problems existed in the literature analysis: the large number of studies with low sample size, poor methodological design of the studies, etc. All the above factors may have caused the funnel plot to show an uneven distribution.

3.4.13. Analysis of the results of preclinical studies

We included 5 preclinical studies. After analyzing these articles, we summarized the possible mechanisms of Mudan granules for DPN, as shown in Fig 7. Animal experiments have shown that Mudan granules could improve sciatic nerve conduction velocity(64) and reduce inflammatory response by decreasing serum Hcy and TGF-\(\beta \)1 levels(65). Mudan granules are also able to increase serum glutathione (GSH) and SOD levels and reduce serum malondialdehyde (MDA) levels(66), which indicated its ability to resist oxidative stress. Several studies have also found that Mudan
granules could improve peripheral nerve injury by modulating the TLR4/MyD88/NF-κB pathway and the TLR4/p38 MAPK pathway(67). It may also alleviate neuropathic pain in diabetic rats by modulating the PI3K/AKT signaling pathway(68).

Fig 7. Mechanistic plot of Mudan granules in the treatment of DPN.

4. Discussion

In the study, we evaluated the efficacy and safety of Mudan granules in patients with DPN and explored the relevant mechanisms. Previous study included 11 RCTs and found that Mudan granules had a significant advantage over RT alone for DPN in terms of overall efficiency and improvement in the conduction velocity of the common peroneal, median, and tibial nerves. Its conclusion was that Mudan granules was effective and safe in the treatment of DPN(69). Our study also showed that Mudan granules was effective and safe in the treatment of DPN, with results consistent with previous meta-analysis. However, the main problems with these early studies were the limited sample size and the small number of outcome measures. Our study included studies from 2017 onwards and added outcome indicators such as TCSS score, TSS, Hcy, hs-CRP, and SOD. This study showed that compared with the control group, Mudan granules was able to reduce TCSS score and TSS, lower serum Hcy and hs-CRP levels, and increase SOD level.

Except for the low heterogeneity of outcome measures such as total clinical efficacy, TCSS score, tibial sensory nerve conduction velocity, and adverse event, the heterogeneity of Meta-analysis was greater for other measures, which may be related to the following two reasons. First, the Western medicine treatment measures were inconsistent between studies. For example, in some studies, the control group was treated with mecobalamin in addition to routine treatment, while in others it was combined with lipoic acid, and in still others, the control group was treated with epalrestat or other
drugs. Second, the duration of therapy varied between studies. Some studies had a treatment duration of 2 weeks, while some studies had a treatment duration of 4 weeks, and others had a treatment duration of 12 weeks.

There are several limitations to this meta-analysis that need to be addressed. First, despite the inclusion of RCTs, the main studies included had large biases in the methodological design, for example, all studies did not specify allocation concealment and blinding. Only 25 studies provided sufficient information about the randomization process. Second, for most of the studies, the treatment duration was not long enough to properly assess the efficacy of Mudan granule treatment. This is because DPN is a chronic disease that requires long-term treatment. The long-term efficacy and safety studies are essential to determine the therapeutic utility of the drug. However, the duration of treatment in the included studies ranged from 1 to 12 weeks, and long-term follow-up studies may yield different results. Therefore, we were unable to assess the long-term safety and efficacy of Mudan granules for the treatment of DPN. Third, study sample sizes were generally small, and most studies did not involve formal prior sample size calculations. Hence, the use of large samples in RCTs is needed to further validate the findings and avoid overestimation of intervention benefits due to insufficient sample size. Finally, although we retrieved studies published in English or Chinese databases, the language of the final included studies was Chinese, and studies published from other languages were missing. Our findings may not be well disseminated.

The pathogenesis of DPN is still not fully elucidated. It is commonly believed that DPN is associated with hyperglycemia, hyperlipidemia, insulin resistance and protein metabolism(5). Some studies have found that serum Hcy level was closely related to the development of DPN(70). High Hcy levels can influence the function of insulin sensitivity, oxidative stress, nitric oxide, and the pathways of vascular and neurological damage(71). Studies have shown that serum CRP levels were found to be an independent predictor of the presence of DPN(72). Elevated serum TNF-α and IL-10 and CRP
is a phenomenon associated with a pro-inflammatory response to diabetes, which was also associated with diabetic neuropathy(73). Oxidative stress caused by hyperglycemia was considered to be the initiating factor in the pathogenesis of DPN(74). Some other studies have shown that SOD is an important antioxidant enzyme. In DPN rats, serum SOD was decreased, while serum MDA was significantly increased(74). Our study found that Mudan granules were able to reduce serum Hcy, hs-CRP and MDA levels and increase serum SOD levels, which showed its anti-inflammatory and anti-oxidative stress abilities. Some studies have found that insulin deficiency or insulin resistance caused insulin receptors to promote apoptosis via the P13K/AKT pathway(6). Defective endoneurial microvasculature may lead to hypoxia and ischemia, generation of oxidative stress, and activation of the redox-sensitive transcription factor NFκB(5). Our study found that Mudan granules may improve peripheral nerve injury by modulating the TLR4/MyD88/NF-κB pathway and TLR4/p38 MAPK pathway and alleviate neuropathic pain in diabetic rats by modulating the P13K/AKT signaling pathway. Other studies have found that the potential mechanisms of Mudan granules for DPN may include improving insulin resistance, reducing islet cell apoptosis, neuroprotection, and other effects(11, 75). Increasing evidence has suggested(76-78) that hyperlipidemia contributes to the progression of diabetic neuropathy. Total cholesterol, triglycerides, and low-density lipoprotein (LDL) cholesterol have been proved to be associated with DPN. A study on Mudan granules for diabetic dorsalis pedis atherosclerosis showed that Mudan granules could reduce serum total cholesterol, triglycerides, and LDL cholesterol levels(79). This predicted that Mudan granules may treat DPN by regulating lipid metabolism, and further studies on the lipid metabolism-related pathways of Mudan granules for DPN could follow. These studies above showed that Mudan granules may improve the development of DNP through a multi-target and multi-pathway approach.

5. Conclusions
Our systematic and meta-analytic study provides supportive evidence that Mudan granules are effective in the treatment of DPN patients based on RT, and no serious adverse events were observed. High-quality studies are essential to be conducted and further prove the preliminary evidence from the preclinical studies and clinical studies. Additionally, prolonged observation and follow-up are also needed to demonstrate the long-term efficacy and safety of Mudan granules.

Acknowledgments

None.

Authors’ Contributions

Jianlong Zhou: Conceived and designed the study, drew up the manuscript and analysed the data, prepared figures and/or tables. Lv Zhu: collected the data and performed the analysis. Yadi Li: supervised and revised the manuscript. All authors read and approved the manuscript.

Reference

Supporting information

S1 File. PRISMA checklist.

S2 File. The search strategies of English databases.

S1 Table. The basic information of the included literature.
S1 Fig. (A) Forest plot of the improvement of median motor nerve conduction velocity by Mudan granules. (B) Forest plot of the improvement of median sensory nerve conduction velocity by Mudan granules.

S2 Fig. (A) Forest plot of Mudan granules improving the common peroneal motor nerve conduction velocity. (B) Forest plot of Mudan granules improving the common peroneal sensory nerve conduction velocity.

S3 Fig. (A) Forest plot of Mudan granules improving the tibial motor nerve conduction velocity. (B) Forest plot of Mudan granules improving the tibial sensory nerve conduction velocity.

S4 Fig. Forest plot of Mudan granules for reducing TCSS score.

S5 Fig. Forest plot of TSS reduction by Mudan granules.

S6 Fig. Forest plot of Mudan granules reducing serum Hcy level.

S7 Fig. Forest plot of Mudan granule reducing serum hs-CRP level.

S8 Fig. Forest plot of elevated serum SOD level by Mudan granules.

S9 Fig. Forest plot comparing the rate of adverse events in the two groups.
Records identified through database searching (n=179) (CNKI: 30; VIP: 131; Wan fang: 2; PubMed: 3; Embase: 8; Cochrane: 5)

Records after duplicates removed (n=152)

Records screened (n=152)

Records excluded with reasons (n=52)
- comments (n=8)
- case report (n=1)
- clinical experience (n=2)
- data analysis (n=3)
- review (n=13)
- not DPN (n=6)
- unrelated intervention (n=17)
- protocol or guideline (n=2)

Full texts assessed for eligibility (n=100)

Studies included in quantitative synthesis (n=56)

Full texts excluded with reasons (n=46)
- not RCT (n=5)
- lack of data (n=39)
<table>
<thead>
<tr>
<th>Study</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zheng 2016</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Shen 2018</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Wang 2016</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Xia 2020</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Zheng 2021</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Mi 2013</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Li 2019</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Bai 2013</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Dong 2015</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Zheng 2016</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Tian 2011</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Liu 2014</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Tian 2019</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Sun 2022</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Zhao 2022</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Liu 2015</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Lai 2014</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Xie 2012</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Chen 2021</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Cui 2021</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Zu 2019</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Dong 2020</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Yu 2022</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Gao 2019</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Qi 2016</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Qi 2019</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Wu 2018</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Cheng 2017</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Xu 2017</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Zou 2013</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Qu 2016</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Xie 2019</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Wu 2015</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Yang 2020</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Xie 2018</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Wang 2015</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Chen 2020</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Wu 2021</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Wang 2019</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Feng 2015</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Ruo 2019</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Mei 2017</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Lu 2021</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Zhu 2017</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Yan 2018</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
<tr>
<td>Xiao 2016</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
<td>🟢</td>
</tr>
</tbody>
</table>

D1: Random sequence generation
D2: Allocation concealment
D3: Blinding of participants and personnel
D4: Blinding of outcome assessment
D5: Incomplete outcome data
D6: Selective reporting
D7: Other sources of bias

Judgement
🟢 Low
🟡 Unclear
🔴 High
🚨 Critical
Figure
Reducing serum Hcy and TGF-β₁ levels

Improving sciatic nerve conduction velocity

Improving peripheral nerve injury by TLR4/MyD88/NF-κB and TLR4/p38 MAPK pathways

Reducing the inflammatory response

Increasing GSH and SOD levels and reducing MDA levels

Alleviating neuropathic pain by PI3K/AKT pathway

Mudan Granules

Diabetes Model

Figure