Quantifying the Risk of Conflict on Recent Ebola Outbreaks in Guinea and the Democratic Republic of Congo

Gina E C Charnley1,2,3*, Ilan Kelman3,4,5, Espoir B Malembaka1,6, Katy A M Gaythorpe2,7

1. Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
2. School of Public Health, Imperial College London, London, United Kingdom
3. Institute for Global Health, University College London, London, United Kingdom
4. Institute for Disaster Risk Reduction, University College London, London, United Kingdom
5. University of Agder, Kristiansand, Norway
6. Centre for Tropical Diseases and Global Health (CTDGH), Université Catholique de Bukavu, Kukavu, Democratic Republic of Congo
7. MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom

* Corresponding author

Abstract

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Background

Reducing Ebola virus transmission relies on the ability to limit contact with infected bodily fluids through biosecurity, safe sex practices, safe burial and vaccination. However, armed conflicts can complicate outbreak interventions due to the widespread disruption they cause to the government and the population. Guinea and the Democratic Republic of Congo have historically reported the largest and the most recent Ebola virus outbreaks, and understanding if conflict has played a role in these outbreaks may help in identifying key risk factors which can be used to improve disease control.

Methods

We used data from a range of publicly available data sources for both Ebola virus cases and conflict events for 2018 to 2021 in Guinea and the DRC. We fitted these data to conditional logistic regression models using the Self-Controlled Case Series methodology, to quantify the magnitude in which conflict increased the risk of reported Ebola virus cases in terms of incidence rate ratio. We re-ran our analysis sub-nationally, by conflict sub-event type and tested the effect of lag.

Results

Conflict was significantly associated with an increased risk of reported EVD cases in both the DRC and Guinea in recent outbreaks. The effect was of a similar magnitude at 1.88 and 1.98 for the DRC and Guinea, respectively. The greatest effects (often higher than the national values) were found in the most conflict prone areas and during protest/riot-related conflict events. Conflict was influential in terms of Ebola virus risk from 1 week following the event and remained important and, in some cases, more so by 10 weeks.

Conclusion

Extra vigilance is needed following protests and riot-related conflict events in terms of Ebola virus transmission. These events are highly disruptive in nature, in terms of access to transportation and healthcare and are often in dense urban areas, with high population densities. Additional public health messaging around these types of conflict events, relating to the risks and clinical symptoms may be helpful in reducing transmission. Future work should aim to further understand and quantify conflict severity and intensity, to evaluate a dose-response relationships in terms of disease risk.
Keywords

Ebola virus, Conflict, Outbreaks, Guinea, the Democratic Republic of Congo

Background

Ebola is a virus belonging to the *Filoviridae* family and was first identified in 1976 in the Democratic Republic of Congo (DRC) and South Sudan [1,2]. Ebola virus disease (EVD) causes acute haemorrhagic fever, leading to mortality rates of ~50%. The virus is spread through human-to-human transmission via contact with infected body fluids and fomites, with an average incubation period of 8 to 10 days [3,4].

Since its discovery, there have been several EVD outbreaks (with sporadic cases in Europe and North America) [5]. The worst recorded outbreaks, in terms of total cases and deaths have been the 2014-2016 West Africa outbreak, particularly in Sierra Leone, Liberia and Guinea and 2018-2020 outbreak in the DRC. The most recent EVD outbreaks, have been reported in Uganda, Guinea and the DRC, all of which occurred in 2021 and 2022 [6].

The control of EVD is through interventions which reduce the risk of contact with infected body fluid, via biosecurity in EVD treatment centres, safe burial practices, contact tracing, reducing sexual transmission [7] and more recently with vaccination [8]. However, conflict can impact these control measures, reducing the capacity to identify and respond to outbreaks [9]. Furthermore, conflict can cause disruption to a range of basic services including transport, healthcare and water, sanitation and hygiene (WASH) [10].

Targeted attacks on healthcare centres and workers are not limited to specific diseases or geographic regions [11] and there have been several reported attacks on Ebola treatment centres, creating fear and avoidance in accessing them [12]. Additionally, fear and mistrust can lead to further attacks on both healthcare facilities and workers. Furthermore, distrust and dissatisfaction in the government, the military and international involvement via non-governmental organisations...
NGOs] has also reduced the willingness to follow public health guidance and increased vaccine hesitancy and misinformation [7,13].

In previous EVD outbreaks in the DRC and Guinea, conflict has been an ongoing issue to greater or lesser extents [14,15]. The DRC is currently experiencing armed conflict in the eastern region, namely the Kivu provinces, which has been ongoing since the Rwandan genocide in 1994 with 120 armed groups currently active along with governments’ involvement [16,17]. Guinea has experienced conflict, albeit to a lesser extent than in the DRC, mainly due to politically driven violence and demonstrations during post-election periods and excessive force by security forces [18].

Due to Guinea and the DRC having both the largest recorded outbreaks and the most recent EVD outbreaks [6], along with reported conflict, it is very important to further understand the mechanisms and quantify the conflict-related risks for EVD transmission in these countries. Additionally, to understand when conflict-related risk for EVD is highest, we must first understand how long after a conflict the risk is increased and if the effect of conflict lags the subsequent impact on EVD. This is particularly important due to previous research suggesting that conflicts impede surveillance and delay or interrupt EVD response activities [9,14].

Methods

Study Aims

Despite evidence showing possible links and effects of conflict on EVD, research to date has not attempted to understand the mechanisms through which conflict is impacting the disease, particularly qualitatively. Here, we use a methodology that has proved robust in quantifying the relationship between disease and conflict in previous studies [19] to address the following research aims:

1. Understand if conflict has been influential in terms of increasing the risk of reported EVD cases during 2018 to 2021 in Guinea and the DRC.

2. Quantify the effect of conflict on EVD in sub-national regions of these countries.
3. Evaluate if certain conflict types were more important than others in impacting EVD cases.

4. Suggest mechanisms for any changes in risk relating to conflict type and EVD.

5. Further examine how long after a conflict the risk of EVD is heightened and if this effect lags in time.

Datasets

EVD data were taken from multiple sources. For the DRC, data were collated from the DRC Ministry of Health (MoH) mailing lists [20,21] and from the Humanitarian Emergency Response Africa (HEMA) dataset [22]. The data were daily case and death counts to administrative level 2 (territory) for the DRC MoH data and to administrative level 1 (province) for the HEMA dataset. The datasets ranged from 04/04/2018 to 11/07/2020 for the MoH data and 06/02/2021 to 14/04/2021 for the HEMA data. For Guinea, the data ranged from 14/02/2021 to 19/06/2021 and included new and cumulative daily case counts to administrative level 1 (region), extracted from the Government of Guinea situation reports [23].

For conflict, data were exported from the Armed Conflict Location & Event Data Project’s (ACLED) data export tool [24]. ACLED was chosen over other data sources (e.g., Uppsala Data Conflict Program [25]), as it contained more detailed categorisation of conflict event type, which were fundamental to the aims of this work. For each country, data were available from 1997 to present with each data entry point equating to a reported conflict. Conflicts were reported on a daily temporal scale to longitude and latitude (in degrees), plus administrative level 1, 2, 3, 4 and location names. The data were categorised by conflict event type (riots, protest, battles, explosions/remote violence, strategic developments and violence against civilians) and sub-event type and provide information on number of conflict fatalities (definitions of the event types, according to ACLED, are provided in Additional file 1).

Due to the granularity of the different datasets and for compatibility with the model (a single number was needed to define the time point, see Model Structure and Fitting and Additional file 2), the temporal scale was set to continuous weeks from 01/01/2018 to 30/06/2021 (183 continuous
weeks). Week number was not restarted at the beginning of the calendar year, like epidemiological weeks, to account for outbreaks/conflict which endured over a December to January period.

Administrative level 1 (region) for Guinea and administrative level 2 (territory) for the DRC were chosen for the spatial scale, due to data availability and discrepancies in region names among datasets. Weeks rather than continuous days were chosen, due to the potential for reporting lags in both the EVD and conflict datasets and due to the relatively long incubation period of Ebola virus (>1 week).

Model Structure and Fitting

We used the Self-Controlled Case Series (SCCS) methodology, which is a case-only method that automatically controls for fixed confounders that remain constant over the observation period [26]. The method uses conditional logistic regression (R function clogit(), package “survival” [27]) to estimate the effect of an exposure (conflict event) on an outcome event (EVD case, either suspected or confirmed), compared to all other times (peace) in an observation period (0-183 weeks). Maximum likelihood estimations were used, based on an assumed Poisson probability distribution [28,29].

The outcome event, \(Y = 1 \), was the probability of EVD being reported. The likelihood, \(\pi \), was a function of \(\beta \) which were the associated coefficients values, \(x_i \) was the exposure to a conflict event for \(i \) in interval \(j \) and \(t_i \) was the person-time (administrative level-week) for \(i \) in interval \(j \). The total log likelihood was the sum over all intervals \(j \) and person-times \(i \), offset by the log of the time spent in the interval.

\[
\log(\pi) = \frac{\pi}{1-\pi} = \sum_i \sum_j (\beta_1 x_{ij} + \beta_2 t_{ij} + 1 \log(t_{i,\text{length}})).
\]

Both the exposure and event were transformed to binary outcomes, either being reported in the data in a specific week and administrative unit (1), or not (0), assuming that if a conflict or EVD case occurred, then it would have been reported. For conflict, the definition of a conflict event was...
the same for both countries. As the method is case-only, both a conflict event and EVD case had
to be reported in the same administrative level (region for Guinea and territory for the DRC) to be
included and were given an identification number to be stratified in the model (with fixed potential
confounders).

The event was then assigned a pre-exposure (start of observation period to exposure), exposure
(exposure week) and post-exposure (exposure to end of observation period) period (see Additional
file 2 for fitted data setup). The intervals between the three periods were logarithmically
transformed and used as an offset term in the model. Offsetting the interval accounts for the
possibility that a longer interval would result in a greater opportunity for the event (EVD case) to
occur by chance, not due to its association with conflict (or peace).

The model outcome variable was a log rate ratio, which was then exponentially transformed to
incidence rate ratio (IRR). IRR is the ratio of the incidence rates for individuals in a population
during times of conflict exposure vs times of peace (according to the dataset). The incidence rate is
the rate in which incidence increases or decreases in a specific person-time (administrative level-
week). IRR values of 1 indicates similar incidence rates in the exposure vs the un-exposed,
whereas an IRR > 1 suggests an increased risk and < 1 indicates a decreased risk. Therefore, IRR
quantifies the magnitude of the association in which conflict increased/decreased the risk of EVD
cases. IRR values were considered statistically significant at p < 0.05.

By Sub-National Unit, Event Type and Lag
The model was fit several times to evaluate the different research questions above, either by sub-
setting the data, or altering the way in which the exposure period was defined. The datasets were
subset to sub-national administrative level (regions for Guinea and territories for the DRC) and the
analysis repeated, to understand if certain geographic regions saw a greater magnitude of effect
between Ebola and conflict. Similarly, conflict sub-event type (and conflict event type, results in
Additional file 3) was also subset and the analysis repeated, to evaluate if certain types of conflict
had a greater effect on EVD reported cases. Conflict event sub-type was chosen for the main
analysis, rather than event type, as the event type names are generally more ambiguous and less
descriptive, making the interpretation of the results more challenging.

The impact of lag was explored, based on the assumption that the effect of a conflict event on EVD
cases may not be immediate and may be long-lasting, particularly due to the incubation period (8-
10 days). Different exposure periods were tested to understand this, including 2, 4, 6, 8 and 10
weeks following the exposure, this moves beyond previous work on EVD that tested the effect of
conflict to 4 weeks [14]. A longer exposure period may result in a diluting effect due to a greater
chance of an event (EVD case) being reported in an exposure period (conflict). To account for this,
we tested the effect of a single week, 2, 4, 6, 8 and 10 weeks following the exposure, rather than
extending the exposure period.

Results
Datasets
During the observation period, there were 639 weeks which reported EVD cases across 14
administrative 2 units for the DRC (all in Nord-Kivu, Sud-Kivu, Ituri and Équateur), while for
Guinea, there were 190 weeks in two administrative 1 units (N’Zérékoré and Conakry). These
cases corresponded to 168 (DRC) and 86 (Guinea) weeks of reported conflict exposure in the
dataset for the same corresponding administrative levels and weeks as the reported EVD cases. In
the DRC, most EVD cases were reported in late 2018 to late 2019, while for Guinea, most cases
were reported in 2021 (see Fig. 1).

Fig. 1 Weeks which reported A, Ebola virus disease (EVD) cases and B, conflict exposure for the
Democratic Republic of Congo (DRC) and Guinea (GUI).

In the DRC, EVD cases for the 2018-2020 outbreak were commonly reported in areas of high
reported conflict event frequency, namely the Kivu provinces. Similar results were found for
Guinea, with all EVD cases being reported in the two regions that reported the highest conflict
levels (Conakry 445 conflicts, N’Zérékoré 148 conflicts), but with overall lower levels of reported
conflict. The most frequent conflict sub-event types (event types) in the fitted data varied by country, for the DRC these included armed clashes (battles), attacks (violence against civilians) and peaceful protests (protests). In Guinea, the most reported conflict sub-event types (event types) were violent demonstrations (riots), peaceful protests (protests) and mob violence (riots) (Table 1).

Table 1 Frequency of conflict event types & sub-event types fitted to the model for the Democratic Republic of Congo (DRC) and Guinea.

<table>
<thead>
<tr>
<th>Country</th>
<th>Event Type</th>
<th>Sub-Event Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guinea</td>
<td>Riots</td>
<td>Violent demonstration</td>
<td>108</td>
</tr>
<tr>
<td>DRC</td>
<td>Battles</td>
<td>Armed clash</td>
<td>106</td>
</tr>
<tr>
<td>DRC</td>
<td>Violence against civilians</td>
<td>Attack</td>
<td>74</td>
</tr>
<tr>
<td>Guinea</td>
<td>Protests</td>
<td>Peaceful protest</td>
<td>72</td>
</tr>
<tr>
<td>Guinea</td>
<td>Riots</td>
<td>Mob violence</td>
<td>27</td>
</tr>
<tr>
<td>Guinea</td>
<td>Violence against civilians</td>
<td>Attack</td>
<td>27</td>
</tr>
<tr>
<td>DRC</td>
<td>Protests</td>
<td>Peaceful protest</td>
<td>22</td>
</tr>
<tr>
<td>Guinea</td>
<td>Protests</td>
<td>Protest with intervention</td>
<td>20</td>
</tr>
<tr>
<td>DRC</td>
<td>Violence against civilians</td>
<td>Abduction/forced disappearance</td>
<td>15</td>
</tr>
<tr>
<td>Guinea</td>
<td>Battles</td>
<td>Armed clash</td>
<td>11</td>
</tr>
<tr>
<td>Guinea</td>
<td>Strategic developments</td>
<td>Looting/property destruction</td>
<td>11</td>
</tr>
<tr>
<td>DRC</td>
<td>Strategic developments</td>
<td>Looting/property destruction</td>
<td>8</td>
</tr>
<tr>
<td>Guinea</td>
<td>Strategic developments</td>
<td>Arrests</td>
<td>6</td>
</tr>
<tr>
<td>DRC</td>
<td>Battles</td>
<td>Government regains territory</td>
<td>6</td>
</tr>
<tr>
<td>DRC</td>
<td>Protests</td>
<td>Protest with intervention</td>
<td>6</td>
</tr>
<tr>
<td>DRC</td>
<td>Riots</td>
<td>Mob violence</td>
<td>6</td>
</tr>
<tr>
<td>Guinea</td>
<td>Protests</td>
<td>Excessive force against protesters</td>
<td>5</td>
</tr>
<tr>
<td>DRC</td>
<td>Riots</td>
<td>Violent demonstration</td>
<td>5</td>
</tr>
<tr>
<td>DRC</td>
<td>Strategic developments</td>
<td>Change to group/activity</td>
<td>4</td>
</tr>
<tr>
<td>DRC</td>
<td>Strategic developments</td>
<td>Agreement</td>
<td>3</td>
</tr>
<tr>
<td>DRC</td>
<td>Strategic developments</td>
<td>Arrests</td>
<td>3</td>
</tr>
</tbody>
</table>
Model Output

Conflict was significantly associated with an increased risk of reported EVD cases in both the DRC and Guinea between 2018 and 2021 (Fig. 2). The magnitude of effect was similar for both countries, with conflict increasing the risk of EVD by 1.88 (1.76-2.02 95% Confidence Interval (CI)) times in the DRC, and 1.98 (1.11-3.51 95% CI) times in Guinea. The risk decreased to 1.05 (1.02-1.09 95% CI) times by 10 weeks following the conflict in the DRC and in Guinea the risk decreased to 1.41 (0.99-2.01 95% CI) times 4 weeks following the conflict, increasing again to 1.72 (1.38-2.14, 95% CI) in week 10. However, the uncertainty was far greater in Guinea with slightly less significant results (according to p values), compared to the DRC.

Fig. 2 Incidence rate ratio (IRR) for the effect of conflict event exposure on EVD cases for the Democratic Republic of Congo (DRC) and Guinea (GUI) from the week the conflict was reported to 10 weeks following the exposure.

By Sub-National Unit, Event Type and Lag

<table>
<thead>
<tr>
<th></th>
<th>Event Type</th>
<th>County</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRC</td>
<td>Violence against civilians</td>
<td>Sexual violence</td>
<td>3</td>
</tr>
<tr>
<td>Guinea</td>
<td>Strategic developments</td>
<td>Other</td>
<td>2</td>
</tr>
<tr>
<td>DRC</td>
<td>Battles</td>
<td>Non-state actor overtakes territory</td>
<td>2</td>
</tr>
<tr>
<td>DRC</td>
<td>Strategic developments</td>
<td>Headquarters or base established</td>
<td>2</td>
</tr>
<tr>
<td>Guinea</td>
<td>Strategic developments</td>
<td>Disrupted weapons use</td>
<td>1</td>
</tr>
<tr>
<td>Guinea</td>
<td>Violence against civilians</td>
<td>Abduction/forced disappearance</td>
<td>1</td>
</tr>
<tr>
<td>Guinea</td>
<td>Violence against civilians</td>
<td>Sexual violence</td>
<td>1</td>
</tr>
<tr>
<td>DRC</td>
<td>Explosions/Remote violence</td>
<td>Remote explosive/landmine/IED</td>
<td>1</td>
</tr>
<tr>
<td>DRC</td>
<td>Protests</td>
<td>Excessive force against protesters</td>
<td>1</td>
</tr>
<tr>
<td>DRC</td>
<td>Strategic developments</td>
<td>Disrupted weapons use</td>
<td>1</td>
</tr>
<tr>
<td>DRC</td>
<td>Strategic developments</td>
<td>Non-violent transfer of territory</td>
<td>1</td>
</tr>
<tr>
<td>DRC</td>
<td>Strategic developments</td>
<td>Other</td>
<td>1</td>
</tr>
</tbody>
</table>
The effect of conflict on EVD varied sub-nationally in terms of magnitude and uncertainty (Fig. 3). In the first week of the reported conflict exposure, the administrative units with the highest reported effect were Mbandaka (Équateur, DRC), Mwenga (Sud-Kivu, DRC), Goma (Nord-Kivu, DRC), Butembo (Nord-Kivu, DRC) and N’Zérékoré (Guinea) with IRR values of 4.26 (0.58-31.2 95%CI), 2.49 (1.87-3.31 95%CI), 2.19 (1.69-2.83 95%CI), 2.12 (1.76-2.57 95%CI) and 2.06 (1.13-3.77 95%CI) respectively. However, some areas did not find significant results and often had high uncertainty, including Aru, Bolomba, Ingende, Mbandaka in the DRC and Conakry, Guinea.

Fig. 3 Incidence rate ratio (IRR) for the effect of conflict event exposure on EVD cases for the Democratic Republic of Congo (DRC) and Guinea (GUI) during the week the conflict was reported at sub-national administrative unit.

The greatest impact for conflict event sub-type was armed clashes in Guinea (IRR = 3.45, 0.80-14.8 95%CI) (Fig. 4); however, this was not statistically significant, along with 12 other conflict sub-types in Guinea (abduction/forced disappearances, arrests, attacks, change to group/activity, disrupted weapons use, excessive force against protesters, looting/property destruction, mob violence, other, peaceful protests, protests with intervention and sexual violence). Violent demonstrations had the greatest significant impact on EVD cases in Guinea causing a 2.38 (1.04-5.41 95%CI) times increased risk of EVD.

Only three conflict event sub-types were not significantly associated with EBV incidence in the DRC, these were air/drone strikes, disrupted weapons use and headquarters or base establishments. For the conflict sub-types that did have a significant effect, shelling/artillery/missile attack had the biggest effect on EVD cases at 3.44 (1.27-9.3195%CI) times increased risk, followed by peaceful protests (IRR = 3.11, 2.66-3.64 95%CI), excessive force against protesters (2.83, 1.60-5.03 95%CI), looting/property destruction (2.69, 2.18-3.31 95%CI), protests with interventions (2.68, 2.05-3.52 95%CI) and violent demonstrations (2.58, 2.00-3.34 95%CI) (Fig. 4). For the results regarding conflict event type (rather than sub-event types) terms see Additional file 3.
Fig. 4 Incidence rate ratio (IRR) for the effect of conflict event exposure on EVD cases for the Democratic Republic of Congo (DRC) and Guinea (GUI) during the week the conflict was reported by conflict sub-event type.

Changing the principle behind the exposure period to a single week, 2, 4, 6, 8 and 10 weeks following the exposure, rather than extending the period, impacted the risk. The alternative lag periods resulted in conflict having a greater and more statistically significant (according to p values) impact on EVD cases (Fig. 5). All lag periods were found statistically significant for both countries and saw an increased risk from week 1 to week 10, with Guinea having a greater effect (although with wider ranging uncertainty), potentially due to the increase already found in Guinea at week 4 in the original analysis. The risk of EVD cases increased from 1.88 (1.76-2.02 95%CI) to 1.96 (1.83-2.10 95%CI) times in the DRC and from 1.96 (1.11-3.51 95%CI) to 3.30 (2.12-5.13 95%CI) times in Guinea by the 10th week following the event.

Fig. 5 Incidence rate ratio (IRR) for the effect of conflict event exposure on EVD cases for the Democratic Republic of Congo (DRC) and Guinea (GUI) from the week the conflict was reported to the 10th weeks following the conflict report.

Discussion

During recent outbreaks in 2018 to 2021, conflict event exposure increased the risk of EVD cases at a national level by a similar magnitude in the DRC and Guinea, at 1.88 and 1.98 times, respectively. However, the uncertainty in the IRR values for Guinea throughout all the analyses were much wider, compared to the DRC. In the distribution of exposure and events fit to the model, there was overlap with areas of highest reported conflict and EVD case frequency. Several of the regions/territories analysed had higher IRR values than the national risk, these included Mbandaka, Mwenga, Goma, Butembo (all in the DRC) and N’Zérékoré (in Guinea), which ranged from 4.26 to 2.06.
Evaluating if certain types of conflict may be more impactful than others contribute to our understanding of how conflict can impact disease. The conflict sub-event types with the greatest impacts in terms of EVD risk were armed clashes and shelling/artillery/missile attack in Guinea and the DRC, respectively. However, both armed clashes and shelling/artillery/missile attacks had the largest uncertainty. Violent demonstrations had the strongest and most significant impact in Guinea, while in the DRC, peaceful protests, excessive force against protesters, looting/property destruction, protests with interventions and violent demonstrations had the largest, most significant impact, with little uncertainty.

Conflict-related disruption

The cornerstone of EVD control is through reducing contact with infected bodily fluids (and vaccination) and there is the potential for conflict to impact this in multiple ways. In previous EVD outbreaks, weak health systems (due to access, supplies, safety of staff and patients and fear), complex socio-cultural and political environments (creating mistrust in governments and NGOs), ineffective messaging and community engagement have all created problems in the response [15,30]. Additionally, there has been difficulties in administering EVD vaccines due to damaged transportation and infrastructure [11,12,31]. Conflict and EVD can create a positive feedback loop, where EVD exacerbates the conflict and conflict exacerbates EVD, by increasing tension between the public and the government [14].

A potential explanation for the large number of protest-related impacts on EVD cases found here, may be the bigger impact these types of events would have on a greater number of people. For example, protests and demonstrations may be more likely to impact transportation, education and healthcare, due to the widespread disruption they can cause in dense urban areas [32,33]. Further evidence for this explanation may be that within these very impactful sub-events, looting/property destruction was also found highly impactful and important, which is often the product of protests and demonstrations and results in damage to healthcare infrastructure and supplies.

Proximity to the conflict
Proximity may impact the effect of the conflict on the population, both in terms of the number of people affected and the magnitude of the effect and may also add further evidence to the above hypothesis that protests and demonstrations, although potentially less violent, may be more impactful than battles and armed clashes. Battles (in terms of the database’s definitions) are more likely to be fought on pre-defined battle “grounds”, which are less likely to be close to settlements, or these settlements are quickly displaced following the onset of conflict due to the immediate threat to life. Meanwhile, protests and demonstrations in their nature aim to cause as much disruption to as many people as possible.

To test this hypothesis, the proximity of all battles, protests and riots to major cities by longitude and latitude (in degrees) were calculated in both the DRC [34] and Guinea [35] and averaged over the period of 2018 to 2021 (see Additional file 4: Fig. S2). On average, over the four-year period, battles were the furthest away from major cities in both countries, followed by protests and riots in the DRC and riots and then protests in Guinea. The difference in average proximity between riots and protests were much smaller in both countries, than battles, which were on average 9.5km (5.9 miles) and 25.8km (16.0 miles) further away from major settlements, compared to the average proximity of protests and riots.

Severity of the conflict

A potential explanation for why remote violence/explosions and battles were very impactful but often with higher uncertainty is that these types of conflict occurred less frequently, but when they did, they had a very large impact on EVD cases. The fewer events therefore resulted in the large uncertainty and a longer dataset may help to understand if the larger impact of these conflict types is consistent through time. Additionally, considerations must be taken for peoples' behaviour and risks during more "extreme" forms of violence such as battles and explosions, compared to protests and demonstrations. Violent conflict may have a very large initial impact (accounting for the high IRR values) but then the risk stabilises in the area as civilians take the necessary precautions (e.g., displacement) to protect their life [36].
Alternatively, there is the potential for more violent forms of conflict (such as battles and explosions) to decrease the risk of EVD. People may be more likely to stay at home during these events and not mix in public spaces, decreasing their exposure to the pathogen [37]. Furthermore, severe conflict may be more likely to cause fatalities (of both civilians and combatants), therefore the population would die from the conflict event, reducing the susceptible pool for EVD cases. In the DRC, battles caused 56% of all conflict fatalities in the fitted data here, compared to 0.19% and 3.06% for protests and riots, respectively. However, in Guinea, 64% of conflict fatalities were caused by riots, followed by 17.2% in battles and 7.12% in protests.

Duration of conflict related EVD risks

Extending the lag period decreased the effect of conflict exposure on EVD cases, however in Guinea there was a slight increased risk at 4 weeks. The effect was almost eliminated (IRR = 1) by 10 weeks in the DRC, with an IRR of 1.05, whereas for Guinea the risk decreased to 1.41 times and then increasing to 1.72. These results track with previous research which found synchronicity and correlation between the reporting of EVD cases and conflict in the DRC and suggest that the effect of conflict may be long-lasting [8,14].

It appears that the original methodology (extending the lag periods) may have been diluting the effect of conflict on EVD cases. Changing the lag periods to a single week, made all the lag periods for both countries more significant and impactful. The results show that conflict is still highly influential after multiple months following the conflict event, and in some instances has a greater and more significant effect. A potential explanation for this may be due to the disruption caused by the conflict event having a cumulative effect. Previous findings suggest that conflict lengthens the EVD treatment process e.g., longer time to detection, isolation, treatment and vaccination, creating a lasting effect [14], therefore time would be needed for EVD cases to increase and be reported, after elevated transmission.

Limitations
There are several limitations to the datasets used here, the first being the assumption that if EVD or conflict occurs, its correctly identified (e.g., confirmed and suspected EVD cases were included) and reported on the correct day with no delay. These assumptions are unlikely, as EVD cases may be missed if cases never seek formal medical assistance or are in hard-to-reach areas and some conflict events may be more likely to be reported than others e.g., events that occur in remote places are less likely to be reported.

The categorisation of conflict events is often subjective and therefore the data may not be categorised in a systematic way. The conflict category definitions were included in Additional file 1 to improve transparency and conflict sub-event type were analysed rather than event type, as these terms were less ambiguous and more descriptive. Here, we measured conflict severity in fatalities, however, more research is needed to understand conflict severity and how to measure it accurately. Quantification of conflict severity could be used to identify dose-response relationships with disease. However, understanding severity is difficult, as it will likely be heterogenous in time and space and all conflict should be considered highly disruptive and severe to those living in the conflict settings.

The datasets used here were on a relatively short timescale (2018-2021) and large spatial scales (administrative level 1 and 2), therefore the relationships found may be different at a finer granularity. In some instances, sub-setting the data (by sub-national region or conflict sub-event type) resulted in limited data to fit to the model. Small sample sizes meant that some results had wide uncertainty, were statistically insignificant or could not be calculated (resulted in an IRR of 0), particularly in Guinea. However, generally the findings were replicated in both countries, in terms of sub-event type, effects of lag and geographic distribution of risk and the timescale was chosen as this coincided with Ebola outbreaks. As more data become available on EVD cases, repeating the analysis with larger datasets would help to validate these results.

The methodology accounts for confounders by fixing them across the administrative unit but is not as effective across multiple units. Sub-national units are different geographical sizes, with different
population sizes and risk factors, therefore comparing different regions/territories can create misleading results. For example, in Guinea, Conakry was the second most populous region in the country (2022: 2,096,219 [38]) and therefore it could be argued that EVD has a greater effect there due to a greater number of susceptible people. However, N’Zérékoré is the third most populous region in Guinea, with a relatively comparable population size (2022: 1,991,428 [38]).

The recent use of vaccination may affect these results and any future comparisons with further research. For example, the sub-national region with the largest IRR here was in Équateur, part of the DRC which has received relatively little vaccination, compared to the eastern provinces [30]. The Ebola vaccine was signed off for emergency use by Congolese’s authorities and the WHO in 2017 [39] and was officially licensed by the European Medicines Agency and prequalified by the World Health Organization in November 2019. Since its approval it has been used in a ring vaccination strategy throughout the study period here [40]. Data on Ebola vaccination are available, but the use of ring vaccination means it is difficult to incorporate this into the model used here (as a binary outcome) and future work should continue to look at how vaccination may alter these results [8].

Conclusions

Here, we aimed to further understand how conflict, a known disease risk factors, has impacted EVD in the DRC and Guinea. Both countries have experienced conflict in different forms and frequency, alongside the most severe and recent EVD outbreaks, making them crucial areas for research. The analysis is to the authors’ knowledge the first attempt to quantify the effect of different forms of conflict on disease and to use this to understand the mechanisms for conflict-related disease risks.

The research presented shows the statistically significant impact that conflict has had on raising the risk of EVD cases in the DRC and Guinea in recent outbreaks. The effect appears long-lasting (>10 weeks), with certain geographic regions being more heavily impacted. Protests and riot-related conflict event types were highly influential and statistically significant here, potentially being
far more disruptive to more people, compared to battles. More research to understand how best to quantify conflict severity and intensity could provide further evidence for these mechanisms.

Extra vigilance is needed following protest- and riot-related conflict events for EVD transmission and symptoms. Effective public health messaging in urban areas may help to mitigate these risks including information on how to reduce transmission in dense areas and early clinical symptoms to be aware of. Ebola treatment centres should be prepared for an increase in cases following conflict events and that the risk may be elevated for multiple months, with sufficient vaccination stocks made available to areas most at risk.

List of abbreviations

ACLED - Armed Conflict Location & Event Data Project
CI – Confidence Interval
DRC – Democratic Republic of Congo
EVD – Ebola Virus Disease
GUI – Guinea
HEMA - Humanitarian Emergency Response Africa
IRR – Incidence Rate Ratio
MoH – Ministry of Health
NGOs – Non-Governmental Organisations
SCCS – Self-Controlled Case Series
WASH – Water, Sanitation and Hygiene

Declarations

Ethics approval and consent to participate
Although the work presented here uses human data, all the data used are from public available data sources, which are none identifiable and therefore ethical approval was waived for this analysis.
Consent for publication

Not applicable

Availability of data and materials

The datasets analysed during this study are all publicly available and references throughout the manuscript. Further code related to the methods and data visualization here are available at: github.co.uk/GinaCharnley.

Competing interests

The authors declare that they have no competing interests.

Funding

The work presented here received no specific funding, however we acknowledge joint Centre funding from the UK Medical Research Council and Department for International Development [MR/R0156600/1]. The funder played no role in the design of the study and collection of data, the analysis, and interpretation of data and in writing the manuscript.

Authors' contributions

GECC conceptualised and designed the study, collated the data sources, analysed the data, wrote the manuscript and incorporated feedback. IK contributed to interpreting the findings, provided expertise on conflicts and global health and revised several drafts of the manuscript. EBM contributed to interpreting the findings, provided expertise on conflicts and Ebola in the DRC and revised several drafts of the manuscript. KAMG co-conceptualised and designed the study, provided data sources, provided expertise on epidemiological methods, contributed to interpreting the findings and revised several drafts of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We would like to acknowledge and thank those working in the field who collected and collated the data sources used here, namely the Ministère de la Santé Publique de la République Démocratique du Congo and Ministère de la Santé et de l’Hygiène Publique de Guinée. Additionally, we would like to thank Sophie Meakin for collating the situation reports used in some of the DRC data used here.

References

