A review of behavioural rating scales for the assessment of Attention Deficit/Hyperactivity Disorder among adults: Efficacy, best practices, and research recommendations.

Authorship

Marius Grandjean¹, Shachar Hochman¹, Raja Mukherjee², Roi Cohen Kadosh¹

¹School of Psychology, University of Surrey, Guildford GU2 7XH, United Kingdom
²Adult Neurodevelopmental Service, Horizon House, Epsom, KT17 4QJ, United Kingdom

Correspondence: Dr Shachar Hochman (s.hochman@surrey.ac.uk)

Abstract

This study aimed to improve understanding of the best behavioural rating scales for adult ADHD assessment by mapping and comparing these scales, with a particular focus on the largely unexplored area of detecting feigned or invalid symptom presentation. A comprehensive review and comparison of the most recent literature on behavioural rating scales for adult ADHD assessment was conducted, examining their psychometric properties and the breadth of symptoms they assess. The investigation found that the Conners’ Adult ADHD Rating Scales (CAARS), Mind Excessively Wandering Scale (MEWS), and Wender Utah Rating Scale (WURS) emerged as the most precise scales for adult ADHD assessment. The study also noted a growing emphasis on the development of tools to assess feigned or invalid symptom presentation, either as independent measures or integrated within existing scales. Stand-alone tools were found to be more effective than embedded ones, with the ADHD Symptom Infrequency Scale (ASIS) identified as the most precise scale for detecting feigning. Consequently, the review offers recommendations for the most accurate behavioural rating scales in different research-related contexts involving adult ADHD assessment.

Keywords

Attention deficit hyperactivity disorder (ADHD); behavioural rating scale; questionnaire; psychometrics; adult; assessment.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder exhibiting clinical heterogeneity, marked by the presence of a sustained tendency towards inattention and distractibility, as well as hyperactivity and impulsivity, causing interference in functioning or development (American Psychiatric Association, 2022). In many cases, ADHD continues to affect individuals into adulthood, and can be associated with an increased risk of developing other mental health disorders, as well as negative outcomes such as educational underachievement, challenges with employment and interpersonal relationships, and potential involvement with criminal activities (Sayal et al., 2018). The phenomenon of adult ADHD can be differentiated into two distinct subtypes, namely persistent and symptomatic adult ADHD. The former subtype is characterised by the enduring presence of ADHD symptoms over an extended period, spanning from childhood through adulthood. Conversely, the latter subtype refers to the presence of clinically significant symptoms of ADHD that cause impairment in daily functioning without a specific childhood-onset (Song et al., 2021). Recent research has reported the global prevalence rates of persistent and symptomatic adult ADHD to be 2.58% and 6.76% respectively, corresponding to 139.84 million and 366.33 million of affected adults worldwide (Song et al., 2021).

When assessing adult ADHD, various methods are used, including interviews, continuous performance tests (CPTs), and behavioural rating scales. CPTs are computer-based neuropsychological tests that require the individual to respond to a series of stimuli, measuring specific cognitive functions that are impaired in ADHD. Meanwhile, behavioural rating scales are subjective measures completed by either the individual or an informant. These scales usually assess the frequency and severity of ADHD-related behaviours. While clinical interviews have often been regarded as the gold standard for ADHD assessment (Murphy & Gordon, 1998; Ramsay, 2015), a recent comprehensive review by Marshall et al. (2021) found that a combination of interviews, CPTs and behavioural rating scales result in the highest rate of diagnostic accuracy. Unfortunately, such an extensive intervention may not always be feasible (Kessler et al., 2005), and it is resource intensive. In research settings, behavioural rating scales and/or CPTs are often used as the primary outcome of studies on new treatment for ADHD (Allenby et al., 2018; Alyagon et al., 2020; Berger et al., 2021; McGough et al., 2019; Nahum et al., 2023; Paz et al., 2018; Weaver et al., 2012).
studies have examined the effectiveness of CPTs (Baggio et al., 2020; Epstein et al., 2003; Ogundele et al., 2011; Riccio & Reynolds, 2001; Vaughn et al., 2011), only a few have assessed the usefulness of behavioural rating scales (Marshall et al., 2021; Taylor et al., 2011). Given their relatively low cost and quick administration, rating scales are often favoured as the main outcome measure in studies focused on new treatments for ADHD (Alyagon et al., 2020; McGough et al., 2019; Paz et al., 2018; Weaver et al., 2012). However, there is a relative lack of a clear understanding of the quality and adequacy of these rating scales. This prevents researchers to make informed decisions when selecting which scale to use and for what purpose.

To enhance the reader’s understanding of the commonly used behavioural rating scales used in the assessment of adult ADHD, we will provide a brief and non-exhaustive overview of the most frequently used measures for assessing adult ADHD. These rating scales are either available publicly at no cost or commercially. Among the publicly available scales, there is the Wender Utah Rating Scale (WURS) which is a retrospective self-reported measure consisting of 61 items that assess experienced childhood symptoms of ADHD in adults. A shorter version of the WURS known as WURS-25 is also available (Ward et al., 1993). Another widely used measure is the Adult ADHD Self-Report Scales (ASRS), which assesses the 18 symptoms of ADHD outlined in the DSM-IV (Adler et al., 2006). In addition to the free measures previously mentioned, there are also commercially available measures. To begin, Barkley Adult ADHD Rating Scale (BAARS-IV) has various subscales for assessing current and childhood symptoms based on DSM-V criteria. Each scale consists of 27 items and can be administered either through self-report or by an observer (Barkley, 2011). Then, there is the Brown Attention-Deficit Disorder Scales (BADDs), which is a self-reported questionnaire consisting of 40 to 50 items divided into six subscales. It assesses symptoms associated with ADHD and executive function impairments (Brown, 1996), as such impairments has been suggested to be one of the underlying mechanisms of ADHD (Barkley, 1997). Lastly, the Conners’ Adult ADHD Rating Scales (CAARS, long version) has 66 items that assess the presence and severity of ADHD symptoms through statements about daily activities and behavioural tendencies. Similarly, to the BAARS-IV, the CAARS also has both self- and observer-reported versions that comprise identical items. Interestingly, The CAARS also includes an Inconsistency Index, which is a measure for careless or random responding (Conners et al., 1999). In addition to the original
Inconsistency Index, researchers have developed two additional indexes for the CAARS aiming to support the psychometric value of the CAARS; The first is the CAARS Infrequency Index (CII), which consists of items from the CAARS that are rarely endorsed by individuals with or without ADHD. The CII is useful for identifying overreporting of symptoms (J. A. Suhr et al., 2011). The second Index is the Exaggeration Index (EI), which includes items from the Dissociative Experiences Scale (DES) that are integrated into the CAARS. The EI measures the extent to which an individual reports exaggerated or extreme symptoms of ADHD (Harrison & Armstrong, 2016).

In previous reviews, the CAARS was argumentatively recommended as the most useful measure due to its psychometric properties (Taylor et al., 2011), its coverage of a large constellation of symptoms and its ability to identify invalid symptom presentation (Marshall et al., 2021), which is becoming an increasingly concerning issue. Over the last decade, studies have shown that behavioural rating scales can be easily falsified (Jachimowicz & Geiselman, 2004; Lee Booksh et al., 2010; Quinn, 2003). This issue is compounded by the fact that some individuals may feign ADHD symptoms for a variety of reasons, such as to provide a socially acceptable excuse for their difficulties (J. Suhr & Wei, 2013) or to obtain benefits associated with ADHD medication (Hinshaw & Scheffler, 2014). This is particularly concerning because the non-specific and subjective nature of ADHD symptoms makes it easier for individuals to feign symptoms during formal evaluations, which is especially prevalent among adults, particularly college students. Additionally, the diagnostic criteria for adult ADHD, as emphasised by the DSM-V, rely heavily on subjective symptoms rather than cognitive or functional deficits. Therefore, when using behavioural rating scales to assess ADHD symptoms, it is crucial to consider the possibility of feigned results. The primary objective in this paper is to analyse the most recent developments pertaining to the use of behavioural rating scales for assessing symptoms of ADHD and to provide guidelines regarding their optimal utilization based on specific research-related settings.

Before delving further into this review, we briefly describe the fundamental statistics that we use. First, sensitivity, also referred to as the true positive rate, is the probability that a test or measure correctly identifies the presence of a specific condition. That is, if an ADHD rating scale has a sensitivity of 0.60, it means that 60% of individuals with ADHD would be correctly identified as having the condition. Secondly, specificity, or the true negative rate, is the
probability that a test or measure correctly identifies the absence of a particular condition. For example, an ADHD rating scale with a specificity of 0.30 indicates that 30% of individuals without ADHD would be correctly identified as not having the condition. Then, positive predictive value (PPV) is the probability that an individual has a condition if the test or measure identifies them as having it. For instance, if an ADHD rating scale has a PPV of 0.80 and an individual is identified as having ADHD through the test, then the individual has an 80% chance of having ADHD. In contrast, negative predictive value (NPV) is the probability that an individual does not have a particular condition if the test or measure identifies them as not having it. For example, if an ADHD rating scale has an NPV of 0.70 and an individual is identified as not having ADHD through the test, then the individual has a 70% chance of not having ADHD (Ivnik et al., 2001). In simpler terms, sensitivity measures how well a test can correctly find positive cases. On the other hand, PPV looks at how likely it is that a positive test result truly means the person has the condition. This way, for example, it is possible to have a test that doesn't catch all positive cases (low sensitivity), but when it does yield a positive result, it's usually correct (high PPV). In contrast, specificity measures how well the test can correctly identify those without the condition (negative cases). The NPV, meanwhile, gauges how likely it is that a negative test result truly means the person doesn't have the condition. Some authors argued that although sensitivity and specificity are crucial in determining true positive and true negative, they fail to account for the confidence level a test score can provide in either confirming or excluding a diagnosis or condition. Likewise, PPV and NPV are useful in clinical decision-making but do not indicate the frequency with which the test identifies the targeted behaviour. Hence, it is strongly recommended to interpret all four values concurrently and use qualitative descriptors to interpret their clinical usefulness (Lange & Lippa, 2017) (see Table 1).
Table 1. Recommended qualitative descriptors for sensitivity, specificity, PPV and NPV values as proposed by Lange & Lippa (2017).

<table>
<thead>
<tr>
<th>Value as a percentage</th>
<th>Qualitative descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>Very low</td>
</tr>
<tr>
<td>10-24</td>
<td>Low</td>
</tr>
<tr>
<td>25-39</td>
<td>Low-moderate</td>
</tr>
<tr>
<td>40-59</td>
<td>Moderate</td>
</tr>
<tr>
<td>60-74</td>
<td>Moderate-high</td>
</tr>
<tr>
<td>75-89</td>
<td>High</td>
</tr>
<tr>
<td>90-100</td>
<td>Very-high</td>
</tr>
</tbody>
</table>

Note. PPV = positive predictive value, NPV = negative predictive value.

Materials and Methods

We conducted a comprehensive search in the PubMed database between 2019 and February 2023, using the search terms “ADHD” AND "attention deficit hyperactivity disorder" AND "assessment or testing or evaluation" AND "adult" AND "diagnosis" (see Figure 1). We specifically chose these terms to match those used in the most recent review of adult ADHD assessment (Marshall et al., 2021) which examined the literature published between 1998 and 2019. Therefore, we selected 2019 as our starting point to provide an updated view of the state of behavioural rating scales for adult ADHD assessment. Electronic publications were the only publications considered for inclusion in the review. In the initial search, a total of 1264 abstracts of journal articles were identified, from which 73 were considered potentially relevant to adult ADHD assessment. After a further consideration of the abstracts, the full texts of 51 journal articles were reviewed, in addition to their bibliographies and citations, which led to the identification and review of an additional 5 articles. The final phase of the literature search aimed at identifying articles that met the inclusion criteria culminating in a final sample of 11 articles (see Table 2). A detailed description of the reviewed papers can be found in Appendix 1.
Figure 1. Flow diagram illustrating the literature search process and article selection.

Table 2. Inclusion criteria, based on Marshall et al. (2021)

- Published in English peer reviewed journals.
- ADHD is diagnosed by widely used clinical or research semi-structured or structured interview.
- Group study investigation behaviour rating scales for diagnosis, screening, or identification of ADHD.
- Neuropsychological tests are standardized and have normative data.
- Results provide diagnostic accuracy statistics, at minimum sensitivity and specificity.
- Participants are adults, 18 years old or older.
Results

Two studies aimed to evaluate the WURS in identifying adults with ADHD compared to healthy controls or patients with other psychiatric disorders. The first study used the short version of the WURS (WURS-25) and found a high level of sensitivity 90% and specificity 88%, however they did not report PPV nor NPV (Brevik et al., 2020). The second study compared the full version of the WURS with the WURS-25 and found that both versions had high sensitivity and specificity values when distinguishing between control and ADHD groups. Specifically, the full WURS had a sensitivity of 95%, a specificity of 93%, a PPV of 94%, and a NPV of 84%, while the WURS-25 had a sensitivity of 91%, a specificity of 94%, a PPV of 88%, and an NPV of 91%. When differentiating between ADHD and other psychiatric disorders, the full WURS had very high specificity of 94% and NPV of 91% and high sensitivity of 84% and PPV of 88%. In contrast, the WURS-25 demonstrated high specificity of 85% and NPV of 79% and moderate-to-high sensitivity of 62% and PPV of 73% (Gift et al., 2021).

Next, one study looked at the ASRS and found that the scale demonstrated a high level of sensitivity of 80% and specificity of 88% in distinguishing between adults who were seeking assessment for ADHD and healthy controls. However, there was no mention of PPV nor NPV (Brevik et al., 2020).

Three studies were conducted on the CAARS. The first one use focused on the main scale and the t-scores, which are standardised scores that compares the individual score with the reference group. They found that utilizing a t-score threshold of > 65 for the identification of ADHD among clinical controls was associated with a moderate-to-high sensitivity of 64%, a high specificity of 86%, a moderate PPV of 51%, and a moderate-to-high NPV of 71%. In contrast, employing a t-score threshold of > 70 yielded a low sensitivity of 14%, a very-high specificity of 92%, a moderate PPV of 47%, and a moderate-to-high NPV of 68% (Harrison et al., 2019). The other studies focused on the validity indexes of the CAARS, which assess for the detection of feigning and non-credible symptom presentation. Becke et al. (2021) created the ADHD credibility index (ACI), a 12-items scale which was then compared with the CII. For the detection of feigning, the ACI had a very high specificity of 98%, a low-to-moderate sensitivity of 30%, and PPV and NPV ranging from 69% to 95% and 58% to 92%, respectively, varying between moderate and very high. Meanwhile, the CII had a very high specificity of 95%, a moderate sensitivity of 46%, and PPV and NPV ranging from 51% to 90% and 63% to 94%.
respectively, also varying between moderate and very high (Becke et al., 2021). The authors also created the CII-ACI-Compound Index, a combination of items from both validity indexes. The CII-ACI-Compound Index had a high specificity of 87% to 92%, a moderate sensitivity of 41% to 50%, and PPV ranging from 15% to 87% and NPV ranging from 60% to 97%, varying between low-to-high and moderate-to-high and very high (Becke et al., 2022).

Instead of utilizing embedded validity indices to detect feigning of ADHD symptoms, Courrégé and colleagues (2019) developed a self-administered measure known as the ADHD Symptom Infrequency Scale (ASIS). Comprising 52 true/false items, the ASIS is subdivided into two scales: the ADHD scale, which includes 19 items designed to align with DSM-5 diagnostic criteria, and the Infrequency scale, which includes 33 items intended to be endorsed more frequently by individuals simulating ADHD than those with a genuine diagnosis. Using a sample composed of patients with diagnosed ADHD and instructed simulators, the infrequency scale of the ASIS demonstrated a high sensitivity of 79% to 86%, specificity of 89%, PPV of 71% to 79%, and a very high NPV of 92% to 93% in the detection of feigning (Courrégé et al., 2019).

Another study, which included a clinical control group, reported that the infrequency scale of the ASIS had a very high specificity of 90%, moderate-to-high sensitivity of 71%, moderate-to-high PPV of 65%, and a very high NPV of 93% for detecting feigning (Skeel et al., 2022).

Another recent stand-alone measure, the Multidimensional ADHD Rating Scale (MARS), was developed by Potts and colleagues (2021). The MARS includes three categories of items: 18 symptom items, 22 impairment items, and 4 symptom-validity items. Additionally, three "catch" items are incorporated into the assessment to measure effort and attention during the administration. The items are rated on a scale ranging from 0 to 8, where the symptom scale ranges from 0 ("never") to 8 ("very often"), and the invalid scale ranges from 0 ("not at all") to 8 ("severe"). For the detection of ADHD, the MARS yielded a high sensitivity of 86% to 92%, a moderate-to-high specificity of 58% to 67%, and PPV ranging from 60% to 65% and high NPV of 86% to 92%. For the detection of feigning, the infrequency scale of the MARS showed a very high specificity of 92%, a moderate-to-high sensitivity of 65%, very high PPV of 92%, and moderate-to-high NPV of 65% (Potts et al., 2021). In another study using a similar sample, the infrequency scale of the MARS and found a specificity of 88%, a moderate-to-high sensitivity of 62%, and moderate-to-high PPV of 63-88% and NPV of 69-87% for the detection of feigning (Potts et al., 2022).
Furthermore, a recent study by Harrison et al. (2022) examined the validity of two new indicators proposed by Aita et al. (2018) for identifying feigned ADHD using the Personal Assessment Inventory (PAI). The PAI is a self-report personality measure consisting of 344 items divided into four scales in which respondents are required to rate each item on a four-point Likert scale ranging from 1 (indicating "false") to 4 (indicating "very true") (Morey, 1991). The study utilized a sample of patients with genuine ADHD and healthy controls who were asked to either respond truthfully or feign ADHD. The results revealed that the Item-FAA had a high specificity of 78%, a moderate sensitivity of 45%, a low PPV of 19%, and a very high NPV of 92%, while the Scale-FAA had a high specificity of 79%, a low-to-moderate sensitivity of 36%, a low PPV of 17%, and a very high NPV of 91% for the detection of feigning (Harrison et al., 2022).

Finally, Mowlem and colleagues (2019) developed the Mind Excessively Wandering Scale (MEWS) to assess the presence of mind wandering in individuals ADHD. The MEWS defines mind wandering as "periods in time in which attention switches from a current task to unrelated thoughts and feelings" (Smallwood & Schooler, 2015). The MEWS is a self-report measure consisting of 12 or 15 items, which are rated on a 4-point Likert-type scale ranging from 0 (indicating "not at all or rarely") to 3 (indicating "nearly all of the time or constantly"). In their study, the MEWS was found to have a high level of sensitivity of 90% and specificity of 90% in the diagnosis of ADHD using sample of patients with ADHD and healthy controls. The authors reported no PPV nor NPV (Mowlem et al., 2019).
Discussion

The purpose of this paper was to scrutinize the latest advancements concerning the utilisation of behavioural rating scales in the evaluation of ADHD symptoms. The paper also aimed to provide researchers with an updated and comprehensive understanding of the current state of behavioural rating scales utilised in the assessment of adult ADHD, to aid them in making informed decisions when selecting an appropriate scale for their research.

The traditional approach to compare rating scales used for ADHD assessment is by examining their psychometric properties. However, there is no agreed-upon gold standard regarding which statistics are more important or how to determine when one scale is better than another. In the present study, we chose to focus on evaluating the sensitivity, specificity, PPV, and NPV of the rating scales. Our findings yielded the following results, when differentiating between healthy controls and patients with ADHD, the WURS exhibited very-high sensitivity along with the WURS-25 and the MEWS, whereas ASRS and the MARS had high sensitivity, and the CAARS had moderate sensitivity. Moreover, the WURS and the MEWS showed very-high specificity, while the WURS-25, ASRS and CAARS demonstrated high specificity, and the MARS showed moderate-to-high sensitivity. The WURS also displayed very-high PPV with a high NPV, whereas the CAARS exhibited moderate PPV with a moderate-to-high NPV and the MARS had moderate-to-high PPV and high NPV. Similarly, when distinguishing between clinical controls and patients with ADHD, the WURS demonstrated very-high sensitivity, and the WURS-25 displayed moderate-to-high sensitivity. Both the WURS and WURS-25 exhibited high specificity. The WURS had a high PPV and a very-high NPV, while the WURS-25 displayed moderate-to-high PPV and high NPV. Taken alone, our results tend to support that the WURS and the MEWS may be the most accurate behavioural rating scales for the assessment of adult ADHD (see Appendix 2).

However, the various studies reviewed in this paper also reported divergent results compared to previous research that has carried outside the timeframe reviewed in this review. For instance, Brevik et al., (2020) found higher specificity for the ASRS (88%) than previously reported by other studies (ranging from 27% to 68%) (Dunlop et al., 2018; Pettersson et al., 2018; Söderström et al., 2014; van de Glind et al., 2013). Similarly, Gift et al., (2021) found a higher specificity for the WURS (93-94%) compared to prior findings (ranging from 57% to 70%) (Luty et al., 2009; McCann et al., 2000). Finally, although the specificity of the CAARS
generally remained high across studies, the sensitivity found by Harrison et al. (2019) (64%) was lower than previously reported (97%) when the diagnosis is based on self and observer reports (Luty et al., 2009). These discrepancies between the studies may then be attributed to factors such as differences in sample size, addition of informant’s feedback, or whether there is a clinical group. The latter is of particular issue because clinical settings typically involve patients with other psychiatric conditions, such as depression and anxiety, that are known to share comorbidities with ADHD (Anker et al., 2018; Kessler et al., 2006). As a result, there is a higher risk of these patients being erroneously diagnosed. In conclusion, research to date suggest that the CAARS, the MEWS and the WURS are the most accurate measures for the assessment of adult ADHD.

It is noteworthy that the CAARS stands out among behavioural rating scales in that it possesses validity indicators capable of detecting feigned symptoms. In addition to its initial infrequency index, the CII (J. A. Suhr et al., 2011) and the EI (Harrison & Armstrong, 2016), a new index, the ACI, was recently developed (Becke et al., 2021). Although the ACI had very-high sensitivity, its specificity was found to be low-to-moderate. To improve its overall classification accuracy, the authors of the study developed the CII-ACI-Compound, which showed a very high sensitivity but only a moderate specificity (Becke et al., 2022). Although these indexes show promise, further research is necessary to improve their accuracy. Additionally, they are based on different theoretical foundations and may identify various subgroups of examinees as non-credible (Becke et al., 2021). Conversely, as opposed to measures embedded within existing rating scales, some authors have created stand-alone measures that assess ADHD directly while accounting for the existence of feigned symptoms. In spite of the fact that the MARS has shown promise in previous studies (Potts et al., 2021, 2022), its efficacy has not yet been tested on clinical groups, which may have led to inflated results, as explained earlier. On the contrary, the ASIS has exhibited good psychometric properties in its initial validation study (Courrégé et al., 2019) and these findings have already been replicated with a sample of patients reporting symptoms of depression and anxiety (Skeel et al., 2022). Overall, the recent years have seen an increasing focus on the creation of measures to identify feigning, which exhibit potential due to the non-specificity and inherent subjectivity of the symptoms assessed by behavioural rating scales. Nevertheless, additional research is necessary to refine these new indices and enhance their effectiveness.
The examination of the existing literature on the use of behavioural rating scales for adult ADHD assessment revealed that they come in various forms and can evaluate different ranges of symptoms (see Figure 2). For example, the WURS primarily assesses childhood symptoms, whereas the CAARS assesses current symptoms and can be used to monitor symptom changes over time. Therefore, we emphasize that the selection of a behavioural rating scale should be based on the primary variable of interest or research objectives. Nonetheless, for a measure that is suitable across a wide range of contexts, we endorse the findings of previous reviews (Marshall et al., 2021; Taylor et al., 2011) and strongly recommend the utilisation of the CAARS. It should be completed collaboratively by both the patient and a pertinent informant, along with either the CII or the EI. We propose this scale for the following compelling reasons. Firstly, the literature has identified the CAARS as one of the most accurate measures available. Secondly, the CAARS is a comprehensive tool that assesses a broad range of ADHD symptoms beyond those outlined in the DSM-V as opposed to the WURS or the ASRS. Thirdly, the CAARS is strengthened as a standalone instrument by its inclusion of validity indicators, which not only enhance its overall utility but also assist in identifying cases where symptoms may have been inaccurately presented. Finally, as previously mentioned, the CAARS is particularly advantageous for studies assessing the efficacy of new ADHD treatments due to its ability to evaluate the current presence and severity of ADHD symptoms. Unlike the WURS, which focuses on historical symptoms, the CAARS can monitor changes in symptoms over time, allowing for a comprehensive assessment of treatment effectiveness. Although the ASIS and MARS are more effective at detecting invalid symptom presentation as well as feigning, they are still underdevelopment and requires independent validation of their effectiveness by other researchers. Accordingly, the validity indicators of the CAARS remain the most optimal choice thus far.

Figure 2. Tree-graph representing behavioural rating scales used in the assessment of adult ADHD.
Note. The measures are highlighted in green if they are publicly available, in red if they are commercially available and in blue if they are still under development. Note that the CII and EI are in red because they rely on the utilisation of the CAARS. The validation mark emphasizes the rating scales that we recommend based on their accuracy. Narrowband measures refer to scales that focus solely on evaluating specific symptoms associated with ADHD. Broadband measures are assessing a wider range of behaviours. WURS = Wender Utah Rating Scale. ASRS = ADHD self-report scale. CAARS = Conner’s Adult ADHD Rating Scales. CII = CAARS Infrequency Index. ACI = ADHD Credibility Index. ASIS = ADHD Symptom Infrequency Scale. BAARS-IV = Barkley Adult ADHD Rating Scale-Fourth Edition. EI = Exaggeration Index. MEWS = Mind Excessively Wandering Scale. MARS = Multidimensional ADHD Rating Scale.

When interpreting the findings of this review, it’s important to consider both its strengths and limitations. One potential limitation is that only the Medline database was searched, and the search only retrieved electronic articles. As a result, there’s a possibility of publication bias due to the lack of other sources of information. While this paper aimed to update and expand the results of Marshall et al. (2021), we decided not to control for the presence of a clinical group. Therefore, some of the experiments reviewed may not accurately reflect the use of rating scales in a clinical environment, where patients may present other clinical diagnoses that are comorbid with ADHD. However, our use of more liberal inclusion criteria than Marshall et al. (2021) is also a strength, as it allowed us to review a larger number of papers than we would have otherwise. To the authors’ knowledge, this paper is the only review on behavioural rating scales for the assessment of adult ADHD that proposed recommendations for their utilisation in research-related settings.

In conclusion, the objective of this paper was to provide updated insights for researchers by examining recent developments in the use of behavioural rating scales to assess adult ADHD.
The growing body of research on these scales has raised concerns about their susceptibility to feigning, highlighting the need to consider the objectives of the ADHD assessment when choosing rating scales. While standalone measures may be more appropriate for research settings, combining different measures can enhance diagnostic accuracy in clinical settings. To enhance the practical applicability of feigning measures, further research should involve clinical groups to validate their effectiveness in settings that closely reflect the clinical reality. Future studies should also systematically report sensitivity and specificity along with PPV and NPV to make to facilitate their comparison with existing measures. It is worth noting that this paper focused exclusively on behavioural rating scales, which should not be solely relied upon for making a diagnosis. A comprehensive evaluation of ADHD should involve obtaining information from multiple sources, such as direct examination of the patient, interviews with the patient and possible informants.

Funding details.

The work was supported by the MRC Impact Acceleration Grant to Roi Cohen Kadosh.

Disclosure statement.

R. Mukherjee has delivered presentations for several pharmaceutical companies specializing in ADHD, whereby the funds generated were specifically allocated to the neurodevelopmental teams, with no direct financial compensation received by the author. The remaining authors declare no conflicts of interest.
References

The MARS and the ASIS are still underdevelopment therefore not yet publicly nor commercially available. The WURS and ASRS are publicly available, the MEWS is available without charge by contacting philip.asherson@kcl.ac.uk. The ASRS, the CAARS and the WURS are commercially available.
Appendices

Appendix 1. Articles providing diagnostic accuracy for behaviour rating scale used in the assessment of adult ADHD.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Participants</th>
<th>C-G</th>
<th>P/N</th>
<th>Measure</th>
<th>Relevant Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Becke et al., 2021</td>
<td>1001 credible neurotypical adult controls (median age 49), 22 overreporting</td>
<td>No</td>
<td>Yes</td>
<td>WURS-25, ASRS, CAARS, CII, ACI, TOMM, GET.</td>
<td>The CAARS-ACI index was found to be useful in distinguishing genuine patients with ADHD from simulators and symptom overreport but did not detect non-credible adults diagnosed with ADHD with adequate accuracy.</td>
</tr>
<tr>
<td></td>
<td>neurotypical adult controls (median age 32), 100 credible adults with ADHD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(median age 34), 22 non-credible adults with ADHD (median age 31,5) 242</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>adults instructed to simulate (median age 20).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brevik et al., 2020</td>
<td>646 adults with ADHD (mean age 34), 908 adult controls (mean age 29)</td>
<td>No</td>
<td>No</td>
<td>WURS, ASRS.</td>
<td>Both the WURS and the ASRS exhibit high diagnostic accuracy, with the WURS showing superior discriminatory properties.</td>
</tr>
<tr>
<td>Courrégé et al.,</td>
<td>Study 1: 30 adult controls, 17 adults thinking they have ADHD, 28 adults</td>
<td>No</td>
<td>Yes</td>
<td>ASIS, BAARS-IV</td>
<td>The ASIS indicated strong internal consistency and convergent validity with the BAARS-IV. Moreover, the ASIS was found to be highly sensitive and specific to malingering.</td>
</tr>
<tr>
<td>2019</td>
<td>diagnosed with ADHD, 31 adult simulators (group mean age 33) Study 2: 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>adult controls, 31 adults thinking they have ADHD, 29 adults diagnosed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with ADHD, 31 adult simulators (group mean age 33). Study 3: 48 adult</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>controls, 33 adults thinking they have ADHD, 26 adults diagnosed with</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ADHD, 38 adult simulators (group mean age 36).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Participants</td>
<td>C-G</td>
<td>P/N</td>
<td>Measure</td>
<td>Relevant Outcome</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-----</td>
<td>-----</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>Gift et al., 2021</td>
<td>137 adults with ADHD (mean age 31), 230 adults with major depression or generalized anxiety disorder (MDD / GAD) (mean age 38), 120 adult controls (mean age 34)</td>
<td>Yes</td>
<td>Yes</td>
<td>WURS, WURS-25</td>
<td>The full WURS was more effective in distinguishing ADHD from MDD and GAD, compared to the WURS-25. On the other hand, the WURS-25 showed good separation of ADHD subjects from normal controls. However, the WURS performed better in differentiating ADHD patients from psychiatric controls, with higher sensitivity and specificity.</td>
</tr>
<tr>
<td>Harrison et al., 2022</td>
<td>111 adults with ADHD (mean age 22), 66 clinical controls (mean age 23.8), 36 definite malingerers (mean age 23), 117 adults without diagnosis (mean age 23)</td>
<td>No</td>
<td>Yes</td>
<td>PAI, CII, EI, WMT, MSVT, TOMM, VSVT, TOVA</td>
<td>The PAI algorithms proposed to identify feigned ADHD had low positive predictive value, hence they appear inadequate as symptom validity measures.</td>
</tr>
<tr>
<td>Mowlem et al., 2019</td>
<td>Study 1: 41 adults with ADHD (mean age 28), 47 adult controls (mean age 29). Study 2: 81 adults with ADHD (mean age 33), 30 adult controls (29)</td>
<td>No</td>
<td>No</td>
<td>MEWS, BRS, CAARS, ALS-SF, WFIRES-S</td>
<td>The MEWS has been found to be a dependable and credible tool to measure excessive mind wandering (MW) in adults diagnosed with ADHD. The study also revealed that individuals with ADHD reported substantially higher levels of MW when compared to their non-ADHD counterparts.</td>
</tr>
<tr>
<td>Skeel et al., 2022</td>
<td>101 adult controls, 99 adults with elevated DASS, 104 adults with diagnosed ADHD, 75 adult simulators (group mean age 42)</td>
<td>Yes</td>
<td>Yes</td>
<td>ASIS, BAARS-IV, DASS</td>
<td>The infrequency scale of the ASIS was deemed a trustworthy and effective measure for detecting ADHD feigning, even when individuals with symptoms of depression and anxiety were included in the sample.</td>
</tr>
<tr>
<td>Becke et al., 2022</td>
<td>856 adult controls (median age 50), 72 adults with ADHD (median age 35), 135 adult simulators (median age 39).</td>
<td>No</td>
<td>Yes</td>
<td>WURS-25, ASRS, CAARS, CII, ACI, TOMM, GET.</td>
<td>The combination of specific items from the CAARS Infrequency Index (CII) and the ADHD Credibility Index (ACI) in the CII-ACI-Compound</td>
</tr>
<tr>
<td>Reference</td>
<td>Participants</td>
<td>C-G</td>
<td>P/N</td>
<td>Measure</td>
<td>Relevant Outcome</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>-----</td>
<td>-----</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Potts et al., 2021</td>
<td>Study 1: 39 adults with ADHD, 56 malingering adults, 62 adult controls (group mean age 19) Study 2: 49 adults with ADHD, 68 malingering adults, 70 adult controls (group mean age 18)</td>
<td>No</td>
<td>Yes</td>
<td>MARS</td>
<td>The MARS indexes could detect individuals with ADHD at high sensitivity rates but had moderate specificity with regard to non-ADHD controls. The infrequency index was effective in identifying genuine ADHD from malingered ADHD.</td>
</tr>
<tr>
<td>Potts et al., 2022</td>
<td>34 adults with ADHD (mean age 18), 34 malingering adults (mean age 18)</td>
<td>No</td>
<td>Yes</td>
<td>MARS, CAT-A, WMT</td>
<td>The infrequency scale of the MARS had a higher sensitivity rate of with close to optimal specificity compared to other tests for detecting feigned ADHD.</td>
</tr>
<tr>
<td>Harrison et al., 2019</td>
<td>507 clinical controls (mean age 22) and 249 adults with ADHD (mean age 21)</td>
<td>Yes</td>
<td>Yes</td>
<td>CAARS</td>
<td>The CAARS is reliable for screening (specificity) but not diagnosing (sensitivity). It often misidentified individuals has having ADHD when they presented other psychological conditions.</td>
</tr>
</tbody>
</table>

Note. C-G = Clinical Group. “Yes” was attributed if there was the presence of a clinical group. P/N = predictive value. “Yes” was attributed if PPV & NVP were reported along with sensitivity and specificity.

Appendix 2. Psychometric statistics retrieved from the studies reviewed, arranged by measurement, and shorted by scale.

Measurement of ADHD

<table>
<thead>
<tr>
<th>Scale</th>
<th>Sensitivity %</th>
<th>Specificity %</th>
<th>PPV %</th>
<th>NPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>WURS-61</td>
<td>84-95</td>
<td>93-94</td>
<td>88-94</td>
<td>84-91</td>
</tr>
<tr>
<td>WURS-25</td>
<td>62-90</td>
<td>85-94</td>
<td>73-88</td>
<td>79-91</td>
</tr>
<tr>
<td>ASRS</td>
<td>80</td>
<td>88</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>CAARS</td>
<td>64</td>
<td>86</td>
<td>51</td>
<td>71</td>
</tr>
<tr>
<td>MARS</td>
<td>86</td>
<td>58</td>
<td>60</td>
<td>86</td>
</tr>
<tr>
<td>MEWS</td>
<td>90</td>
<td>90</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

Measurement of Feigning

<table>
<thead>
<tr>
<th>Scale</th>
<th>Sensitivity %</th>
<th>Specificity %</th>
<th>PPV%</th>
<th>NPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI</td>
<td>30</td>
<td>98</td>
<td>69-95</td>
<td>58-92</td>
</tr>
<tr>
<td>CII</td>
<td>46</td>
<td>95</td>
<td>51-90</td>
<td>63-94</td>
</tr>
<tr>
<td>ACI-CII</td>
<td>41</td>
<td>87</td>
<td>15-87</td>
<td>60-67</td>
</tr>
<tr>
<td>ASIS</td>
<td>71-79</td>
<td>89-90</td>
<td>65-71</td>
<td>92-93</td>
</tr>
<tr>
<td>MARS</td>
<td>62-65</td>
<td>88-92</td>
<td>63-92</td>
<td>69-87</td>
</tr>
<tr>
<td>PAI-Item</td>
<td>45</td>
<td>78</td>
<td>19</td>
<td>92</td>
</tr>
<tr>
<td>PAI-Scale</td>
<td>36</td>
<td>79</td>
<td>17</td>
<td>91</td>
</tr>
</tbody>
</table>

Note. PPV = Positive Predictive Value. NPV = Negative Predictive Value. WURS-61 = Wender Utah Rating Scale, Long form. WURS-25 = Wender Utah Rating Scale, Short-form. ASRS = ADHD self-report scale. CAARS = Conner’s Adult ADHD Rating Scales. MARS = Multidimensional ADHD Rating Scale. MEWS = Mind Excessively Wandering Scale. ACI = ADHD Credibility Index. CII = CAARS Infrequency Index. ACI-CII = ACI-CII Compound index. ASIS = ADHD Symptom Infrequency Scale. PAI = Personal Assessment Inventory.