Characterisation of populations at risk of sub-optimal dosing of artemisinin-based combination therapy in Africa

Short title: Population groups at risk of sub-optimal artemisinin-based therapy in Africa

Abena Takyi¹²³⁴¶, Verena I. Carrara¹²³⁵¶, Prabin Dahal¹²³, Marianna Przybylska⁶, Eli Harriss⁷, Genevieve Insaidoo⁸, Karen I. Barnes²³⁹, Philippe J Guerin¹²³, Kasia Stepniewska¹²³

¹ Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
² Infectious Diseases Data Observatory (IDDO), Oxford, United Kingdom.
³ WorldWide Antimalarial Resistance Network (WWARN), Oxford, United Kingdom.
⁴ Department of Child Health, Korle Bu Teaching Hospital, Accra, Ghana.
⁵ Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
⁶ Royal Infirmary Edinburgh, NHS Lothian, Edinburgh, United Kingdom.
⁷ The Knowledge Centre, Bodleian Health Care Libraries, University of Oxford, Oxford, OX3 7DQ, UK
⁸ Holy family Hospital, Nkawkaw, Eastern Region, Ghana
⁹ Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.

Corresponding authors:
Kasia Stepniewska kasia.stepniewska@wwarn.org
Philippe J. Guerin philippe.guerin@wwarn.org

¶ These authors contributed equally to this work.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Introduction: Selection of resistant malaria strains occurs when parasites are exposed to inadequate antimalarial drug concentrations. The proportion of uncomplicated *falciparum* malaria patients at risk of being sub-optimally dosed with the current World Health Organization (WHO) recommended artemisinin-based combination therapies (ACTs) is unknown. This study aims to estimate this proportion and the excess number of treatment failures (recrudescences) associated with sub-optimal dosing in Sub-Saharan Africa.

Methods: Sub-populations at risk of sub-optimal dosing include wasted children <5 years of age; patients with hyperparasitaemia; pregnant women; people living with HIV; and overweight adults. Country-level data on population structure were extracted from openly accessible data sources. Pooled adjusted Hazard Ratios for PCR-confirmed recrudescence were estimated for each risk group from published meta-analyses using fixed-effect meta-analysis.

Results: In 2020, of 153.1 million uncomplicated *P. falciparum* malaria patients in Africa, the largest risk groups were the hyperparasitaemic patients (13.2 million, 8.6% of uncomplicated malaria cases) and overweight adults (10.3 million, 6.7% of uncomplicated cases). The excess total number of treatment failures ranged from 323,247 for a 98% baseline ACT efficacy to 1,292,987 for a 92% baseline ACT efficacy.

Conclusion: An estimated 1 in nearly 4 people with uncomplicated confirmed *P. falciparum* malaria in Africa are at risk of receiving a sub-optimal antimalarial drug dosing. This increases the risk of antimalarial drug resistance and poses a serious threat to malaria control and elimination efforts. Changes in antimalarial dosing or treatment duration of current antimalarials may be needed and new antimalarials development should ensure sufficient drug concentration levels in these sub-populations that carry a high malaria burden.
Introduction

In 2021, the World Health Organization (WHO) Africa region alone accounted for approximately 234 of the estimated 247 million malaria cases and 96% of the estimated 619,000 malaria deaths worldwide. Four sub-Saharan Africa countries contributed to about half of the total burden of cases. Increasing investment in malaria control and the scaling up of artemisinin-based combination treatment (ACT) deployment led to a steady decline of 27% in the incidence of malaria cases between 2000 and 2015. Since the number of malaria cases is rising again, most of the increase occurring in the African region [1]. The COVID-19 pandemic seriously disrupted healthcare systems and alongside the direct impact on malaria control programmes, in most endemic countries, access to health care remains challenging for many patients; the 2022 WHO World Malaria Report estimates that an additional 13.4 million cases and 63,000 deaths worldwide were due to disruptions during the pandemic [1].

Plasmodium falciparum (*Pf*) is responsible for most cases of severe malaria and the majority of malaria deaths. The continuous reduction in malaria deaths prior to the pandemic, 37% since 2000, persisted despite the increasing number of cases observed. This success might be attributed to the widespread availability of intravenous artesunate followed by an ACT for the treatment of severe malaria [2, 3]. Following the emergence and spread of *Pf* resistant strains to sequential monotherapies, namely chloroquine in the 1960s, followed by sulfadoxine-pyrimethamine in the 1980s [4, 5], and then mefloquine in the 1990s [6], the ACTs became the WHO recommended first-line treatment for uncomplicated *Pf* malaria in 2006 [7]. Since its introduction, artemisinin resistance has been reported in 2007 in Southeast Asia and in Eastern India [8-10]. Resistance to the partner drugs associated with the artemisinin derivatives is of high concern in these regions, leaving very few therapeutic options [11, 12]. With the recent confirmation of independent foci of clinically significant artemisinin resistance emerging on the African continent, specifically in Uganda, Rwanda and Eritrea, and low
PCR-adjusted efficacy including in Burkina Faso and Angola, artemisinin and/or partner drug resistance could threaten malaria control and elimination efforts across the continent [13]. Resistance can arise as a consequence of spontaneous changes in the genetic structure of the parasite which provides a competitive advantage allowing it to survive the treatment even when the patient receives recommended doses of ACTs [5]. Another scenario conducive for the selection of resistant parasite strains is inadequate drug exposure [14] or sub-optimal-dosing, a situation where parasites are exposed to an insufficient drug concentration and/or for an inadequate duration to clear the infection [5]. Reduced drug exposure can occur for various reasons including prescription of an inadequate dose (lower than the manufacturer’s recommended dose), poor patient adherence, poor-quality medicines (either sub-standard or falsified medicines with reduced active ingredients), or inadequate absorption (e.g. acute vomiting shortly after drug administration) [15, 16]. These contributory factors may be avoidable. Absorption, distribution or metabolism of the drug, can also differ among specific groups of patients so that taking the same recommended dose in mg/kg body weight can lead to differing drug exposure [14]. As control efforts in Africa result in reduced transmission and case burden of infection, acquired immunity is waning, increasing the risk of more severe forms of the disease as well as resistant strains emerging and surviving in non-immune patients [17]. In the absence of alternatives to artemisinin based antimalarials in the near future, protecting the efficacy of available ACTs by identifying patient groups at high risk of receiving inadequate dosing and finding ways to optimise their treatment is paramount for the success of disease control and elimination. The current WHO guidelines for malaria [14] identify five groups of population at risk of sub-optimal dosing: (i) malnourished children <5 years of age, (ii) pregnant women, (iii) overweight adults, (iv) patients with uncomplicated hyperparasitaemia, (v) patients co-infected with HIV or TB. WHO states that for these groups “data on antimalarial drug efficacy are still limited and insufficient evidence exists to warrant dose modification”. Close monitoring of these sub-groups is strongly recommended as the risk for treatment failure and/or development of severe malaria with standard drug dosing is...
increased. However, the current WHO protocol for “methods for surveillance of antimalarial drug
efficacy” recommends excluding severely malnourished children, cases of uncomplicated
hyperparasitaemia, pregnant women and people living with HIV (PLHIV) from Therapeutic Efficacy
Studies (TES) [18, 19]. Consequently, current ACT dosage regimens optimised from trials conducted
initially in healthy adults and well-nourished children, must be extrapolated to these excluded
populations [20].

This study aims to estimate the proportion of uncomplicated *Pf* malaria cases in endemic African
countries at risk of receiving sub-optimal dosing of oral ACTs and to estimate the fraction of treated
patients likely to fail treatment because of sub-optimal dosing.

Methods

African countries with a malaria transmission intensity estimated at one or more cases per 1000
population in 2020 [21] were included. Malaria risk was considered four times higher in rural areas
than urban settings based on published entomological inoculation rate estimates. Proportion of risk
groups within malaria patient population was assumed to be the same as in the overall country
population, but the difference in malaria prevalence between urban and rural areas was accounted
for. Levels of malaria endemicity were categorised as hypo-endemic if *Pf* rate in children aged 2-9
years of age was ≤10%; meso-endemic if parasite rate was 11-50%; or hyperendemic if >50%.

Malnutrition was defined as wasting (z-score weight-for-height<-2SD), overweight as body-mass index
(BMI) ≥ 25kg/m², hyperparasitaemia as >100,000 parasites per microliter. Details of data sources,
variables extracted and variables derived are provided in supplementary material p2-8.

As ACT coverage and adherence was not available across all sub-populations, 100% coverage of and
adherence with ACTs was assumed.
Estimation of failure rates on ACTs for sub-population of interest

Absolute and relative estimates of PCR-confirmed recrudescence were extracted from published meta-analyses or systematic literature reviews, searched for on Epistemonikos (supplementary material p9). Two additional systematic reviews were conducted to collate necessary data to support this analysis: one on the efficacy of ACTs in PLHIV (Prospero registration CRD42018089860, study ongoing), and another in non-pregnant, overweight or obese adults (Prospero registration CRD42018090521, available in supplementary material p10-12).

Where available, fixed-effect pooled estimates from meta-analyses’ Hazard Ratios (HR) were calculated by risk group of interest. Otherwise, risk of treatment failure was derived from individual studies and a sensitivity analysis was performed assuming HR range 1.2-2.0. A 2-8% range of hypothetical treatment failure rates in adequately dosed patients was considered, given the current resistance data available from Africa and WHO recommendations to change drug policy if Adequate Clinical and Parasitological Response (ACPR) rate falls below 90% [18].

Results

Number of malaria cases

Of 154.6 million confirmed cases, 153.1 million were estimated to be due to uncomplicated malaria of which 37.4 million (24.4%) were in children <5 years of age, 56.1 million (36.6%) in those 5-14 years of age, and 59.6 million (39.0%) in adults >14 years. Country-specific extracted data are provided in supplementary material p12-19. Patients with hyperparasitaemia (13.2 million, 8.6% of uncomplicated malaria cases) and overweight adults (10.3 million, 6.7% of uncomplicated cases) were the largest risk groups in all regions and endemicity areas. Malaria in wasted children was estimated to reach 2.5 million, representing 1.6% of all uncomplicated cases. There were 6.4 million uncomplicated cases in pregnant women, 4.2% of total malaria burden and 10.7% of cases in adult population. The highest
proportions of PLHIV and of pregnant women at increased risk of sub-optimal dosing were in East Africa (1.5% and 2.9%, respectively), while wasted children were predominant in meso-endemic regions (2.4% vs. 0.1% in hypo-endemic areas), Table 1.

Table 1. Number (in millions) of uncomplicated malaria cases per sub-population at increased risk of sub-optimal dosing.

<table>
<thead>
<tr>
<th>Sub-population</th>
<th>Wasted (in <5 years)</th>
<th>Pregnancy (in females >14 years)</th>
<th>Overweight (in >14 years)</th>
<th>PLHIV (in all ages)</th>
<th>Hyperparasitaemia (in all ages)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>N 2.5</td>
<td>6.4</td>
<td>10.3</td>
<td>1.9</td>
<td>13.2</td>
</tr>
<tr>
<td>41 African countries</td>
<td>% 1.6</td>
<td>4.2</td>
<td>6.7</td>
<td>1.2</td>
<td>8.6</td>
</tr>
<tr>
<td>By region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Africa</td>
<td>N <0.1</td>
<td>0.1</td>
<td>0.2</td>
<td><0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>(1 country)</td>
<td>% 0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>East Africa</td>
<td>N 0.5</td>
<td>2.9</td>
<td>4.7</td>
<td>1.5</td>
<td>5.2</td>
</tr>
<tr>
<td>(15 countries)</td>
<td>% 0.3</td>
<td>1.9</td>
<td>3.1</td>
<td>1.0</td>
<td>3.4</td>
</tr>
<tr>
<td>West Africa</td>
<td>N 1.1</td>
<td>2.0</td>
<td>3.6</td>
<td>0.2</td>
<td>4.8</td>
</tr>
<tr>
<td>(15 countries)</td>
<td>% 0.7</td>
<td>1.3</td>
<td>2.4</td>
<td>0.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Central Africa</td>
<td>N 0.9</td>
<td>1.4</td>
<td>1.8</td>
<td>0.2</td>
<td>3.1</td>
</tr>
<tr>
<td>(9 countries)</td>
<td>% 0.6</td>
<td>0.9</td>
<td>1.1</td>
<td>0.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Southern Africa</td>
<td>N <0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>(1 country)</td>
<td>% 0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>By endemicity¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypo-endemic</td>
<td>N 0.1</td>
<td>1.0</td>
<td>2.0</td>
<td>0.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>
155 Percentages are in total of uncomplicated cases. The list of countries by region and by endemicity areas are reported in supplementary material p12-13.

156 1 Hypo-endemicity: Plasmodium falciparum (Pf) prevalence in 2-9 years old <10%; Meso-endemicity: Pf prevalence in 2-9 years old 11-50%. No country was reported as hyper-endemic in 2020.
159 In <5 years: children under 5 years old; in >14 years: adults aged 15 years and older.

161 Distribution of estimated malaria cases across risk groups varied between countries (Fig. 1 and supplementary material p17-19). The proportion of PLHIV with malaria varied between <0.1 and 4.4% in all countries except Zimbabwe and Namibia, where this sub-population harboured an estimated 7.9 and 8.0% of all uncomplicated Pf cases respectively. The proportion of overweight adults varied between 10 and 32% of adults with uncomplicated Pf malaria. Proportion of wasted children among children under 5 years with uncomplicated Pf malaria was the highest in South Sudan (24%) and Djibouti (30%), (supplementary material p19).

169 Fig 1. Number (in million) of estimated uncomplicated Pf malaria cases by country and region, showing sub-population distribution with increased risk of sub-optimal dosing.

172 Number of treatment failures

173 The systematic review identified five IPD meta-analyses which provided HR estimates for hyperparasitaemic patients (PRISMA flow diagram in supplementary material p9), and individual studies provided estimates for PLHIV (n=4) and malnourished children <5 years of age (n=1), Table 2.
No relevant studies were identified for overweight or obese patients (supplementary material p10-12) nor pregnant women.

Table 2. Risk of treatment failure by age group and sub-population at increased risk of sub-optimal dosing used in calculation of the excess number of malaria infections.¹

<table>
<thead>
<tr>
<th>Risk groups</th>
<th>Hazard Ratios [95%CI]</th>
<th>References to IPD meta-analyses or individual studies</th>
</tr>
</thead>
<tbody>
<tr>
<td><5 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperparasitaemic</td>
<td>1.50 [1.21-1.86] (Pooled)</td>
<td>WWARN A-L Dose Impact SG, 2015 (PMID 25788162)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saito M, 2020 (PMID 32530424)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WWARN DP SG, 2013 (PMID 24311989)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WWARN AS-AQ SG, 2015 (PMID 25888957)</td>
</tr>
<tr>
<td>PLHIV</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(from individual studies in Uganda and Zambia)</td>
<td>Kajubi R, 2016 (PMID 5170492)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kamya MR 2006 (PMID 1925269)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parikh S, 2016 (PMID 4946019)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Van Geertruyden JP, 2006 (PMID 16960779)</td>
</tr>
<tr>
<td>Wasted</td>
<td>1.41 [1.07; 1.86]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stepniewska K, 2016 (65th annual meeting ASTM&H, conference paper)</td>
</tr>
<tr>
<td>None of these</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>5 to 14 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperparasitaemic</td>
<td>1.50 [1.21-1.86] (Pooled)</td>
<td>WWARN A-L Dose Impact SG, 2015 (PMID 25788162)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saito M, 2020 (PMID 32530424)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WWARN DP SG, 2013 (PMID 24311989)</td>
</tr>
<tr>
<td>Hyperparasitaemic</td>
<td>1.50 [1.21-1.86] (Pooled)</td>
<td>WWARN A-L Dose Impact SG, 2015 (PMID 25788162)</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saito M, 2020 (PMID 32530424)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WWARN DP SG, 2013 (PMID 24311989)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WWARN AS-AQ SG, 2015 (PMID 25888957)</td>
</tr>
<tr>
<td>PLHIV</td>
<td>1.5</td>
<td>Kajubi R, 2016 (PMID 5170492)</td>
</tr>
<tr>
<td></td>
<td>(from 2 individual studies)</td>
<td>Kamya MR 2006 (PMID 1925269)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parikh S, 2016 (PMID 4946019)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Van Geertruyden JP, 2006 (PMID 16960779)</td>
</tr>
<tr>
<td>None of these</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>>14 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overweight</td>
<td>1.5 (Assumed)</td>
<td></td>
</tr>
<tr>
<td>Pregnant</td>
<td>1.5 (Assumed)</td>
<td></td>
</tr>
<tr>
<td>None of these</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

1 HR for treatment failure associated with hyperparasitaemia or with HIV was assumed to be the same across all age groups.

At drug efficacy of 98%, 95% and 92%, the expected number of PCR-corrected treatment failures (recrudescences) were estimated as: 3.1, 7.6 or 12.3 million, and the number of excess rates as 0.4, 1.1 or 1.4 million, respectively (assuming HR=1.5 for pregnant women and overweight patients). The largest contribution to the excess number of treatment failures came from hyperparasitaemic patients.
Overweight adults, pregnant women, and PLHIV contributed to 23.6%, 14.6%, and 4.7% of excess failures, respectively, which, in a sensitivity analysis, changed to 12.7%, 7.8%, 2.5% (HR=1.2 assumed) and to 33.0%, 20.4%, 6.6% (HR=2.0 assumed), respectively. Wasted children contributed to 12.9% excess failures.

Table 3: Excess failures (in millions) estimations in different risk groups, assuming different treatment failure rates and a range of assumed Hazard Ratios (HR) for PLHIV, pregnant women, and overweight adults.

<table>
<thead>
<tr>
<th>Risk groups</th>
<th>Main Analysis</th>
<th>Sensitivity analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperparasitaemic</td>
<td>2%</td>
<td>5%</td>
</tr>
<tr>
<td>failure</td>
<td>failure</td>
<td>failure</td>
</tr>
<tr>
<td>PLHIV</td>
<td>0.096</td>
<td>0.240</td>
</tr>
<tr>
<td>Wasted</td>
<td>0.056</td>
<td>0.140</td>
</tr>
<tr>
<td>sub-total for <5y</td>
<td>0.154</td>
<td>0.386</td>
</tr>
<tr>
<td>5-14 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperparasitaemic</td>
<td>2%</td>
<td>5%</td>
</tr>
<tr>
<td>failure</td>
<td>failure</td>
<td>failure</td>
</tr>
<tr>
<td>PLHIV</td>
<td>0.057</td>
<td>0.143</td>
</tr>
<tr>
<td>Wasted</td>
<td>0.058</td>
<td>0.147</td>
</tr>
<tr>
<td>sub-total for 5-14y</td>
<td>0.157</td>
<td>0.386</td>
</tr>
<tr>
<td>>14 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperparasitaemic</td>
<td>0.039</td>
<td>0.098</td>
</tr>
<tr>
<td>PLHIV</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>Wasted</td>
<td>0.058</td>
<td>0.147</td>
</tr>
<tr>
<td>sub-total for >14y</td>
<td>0.157</td>
<td>0.386</td>
</tr>
</tbody>
</table>
Fig 2. Estimated number of excess treatment failures in millions for different baseline treatment efficacy assuming Hazard Ratio (HR) of 1.2, 1.5 and 2.0 in patients living with HIV (PLHIV), overweight adults, and pregnant women.

Discussion

This study estimated that nearly one in four uncomplicated Pf malaria patients in Africa are within a sub-population of patients considered at risk of sub-optimal ACT dosing by the WHO [1]. We estimated that excess annual treatment failures could range between 0.32 to 1.29 million, 0.44 to 1.09 million and 0.62 to 2.49 million individuals in the five identified sub-populations with an ACPR of 98%, 95% and 92%, respectively.

Until optimised dosage regimens are defined for these groups, the close monitoring of treatment response in all those at risk of sub-optimal dosing will become paramount to successfully limit the
emergence and spread of artemisinin- and partner drug-resistant parasite strains on the African
continent. This is especially important at a time when clinically significant artemisinin resistance has
been confirmed in at least three African countries [13] and when acquired immunity is waning in
regions successfully controlling the overall malaria burden [17]; and is part of the new WHO strategy
to minimize the threat and impact of antimalarial drug resistance in Africa [13].

Patients with uncomplicated hyperparasitaemia accounted for 13.2 million, or 8.6%, of estimated
uncomplicated malaria cases and are the largest contributor of estimated excess treatment failures.
In this study uncomplicated hyperparasitaemia was defined as >100,000 parasites/µL, based on two
meta-analyses defining this as the threshold for an increased risk of treatment failure [22, 23] and its
proportion based on a meta-analysis on 56,000 individual patients’ data that included 29 African
countries in low, moderate, and high malaria transmission areas [24]. This proportion however may
be an underestimation as patients with this level of parasitaemia are often excluded from
uncomplicated malaria clinical trials [19]. Patients with uncomplicated hyperparasitaemia and without
other clinical signs of severity are an important reservoir of de-novo resistance [25]. Additionally,
inadequate treatment may aggravate the patient’s clinical condition and increase risk of death [26].
Although severely ill hyperparasitaemic patients are likely to be hospitalised and treated parentally,
recognising a patient with isolated uncomplicated hyperparasitaemia is challenging as diagnosis is
usually made by qualitative malaria rapid diagnostic tests and without microscopic confirmation of
parasite density. These patients are thus likely to receive a standard oral ACT dosage regimen that
may be insufficient to reduce their high parasite biomass thus increasing the risk of recrudescence
[25]. Once the diagnosis of uncomplicated hyperparasitaemia is made then the treatment remains
problematic as evidence to date to support, e.g. increasing the ACT duration, is insufficient [14, 27].
Malaria and undernutrition often coincide in Africa, where approximately 1 in 3 children under 5 years
of age are underweight, supplementary material p25. The risk of malaria and treatment failure
according to nutritional status remains complex [28]. Furthermore, malnutrition may worsen the
severity of malaria and increase the risk of malaria deaths [29] and acutely undernourished (wasted)
242 children are at an increased risk of ACT treatment failure [30]. This is reflected within the current WHO malaria treatment guidelines when referring to children “malnourished” as being at risk of sub-optimal dosing. In 2019, a year prior to the COVID-19 pandemic, an estimated 12.7 million children <5 years of age in Africa were acutely malnourished, of whom 3.5 million were considered severely wasted (weight-for-height Z-score <-3SD) and at higher risk of infection, complications and death [31]. The many social, economic, and health-related disruptions triggered by the COVID-19 pandemic alongside the current food shortage due to the war in Ukraine aggravate the nutritional status of an additional 1.46 million children in Africa [32]. The present study estimates that 2.5 million moderately (weight-for-height Z-score <-2SD) wasted children <5 years of age suffer from uncomplicated malaria; unless they present with danger signs or complications from their malnutrition status, these children are likely to be treated with ACTs including those in nutrition rehabilitation [33]. There is strong evidence from studies conducted in Mali and Niger that severely wasted children, treated with a full course of artemether-lumefantrine and high-fat nutritional supplements, have decreased drug exposure and a higher risk of reinfection compared to those who are well-nourished [34]. Importantly, even mild wasting (weight-for-height Z-score <-1SD) increases the risk of treatment failure to the above estimates underestimate the total effects of wasting on ACT treatment failure [30]. Furthermore, in the WWARN individual pharmacokinetic-pharmacodynamic data analysis of patients treated with artemether-lumefantrine, underweight (weight-for-age Z score <-2 SD) children under 3 years of age had a 23% [95%CI 1; 41] lower day 7 lumefantrine concentration [35] and underweight African children <3 years of age had a higher risk of treatment failure (HR 1.66 [95%CI 1.05; 2.63]) compared to adequately-nourished children of the same age [23]. Improving our understanding of the complex interactions between nutritional status, antimalarial drug absorption and ACT efficacy is paramount to improve clinical management of these patients and avoid preventable treatment failures and increasing antimalarial resistance.

In this study, persons who are overweight accounted for an estimated 10.3 million, or 6.7% of all estimated uncomplicated malaria cases, the second largest risk group. The pharmacological profile of
lipophilic antimalarial drugs in overweight or obese people may be altered. One small recent pharmacokinetic study on healthy males showed non-significantly lowered artemether-lumefantrine plasma drug concentrations with higher body-weight, but was likely underpowered with only 7 overweight and 3 obese participants included [36]. Publications evaluating their risks of sub-optimal dosing [37], recrudescence or even severity are still too sparse to provide reliable estimates of effect, which is expected to vary with both the degree of obesity, antimalarial used, and level of immunity among adults enrolled. One study conducted in Sweden retrospectively reviewed medical charts of patients hospitalised with falciparum malaria and concluded that median body mass index (BMI) in patients with severe malaria was significantly higher (29.3 kg/m2) than for those with uncomplicated malaria, concluding obesity (BMI \geq30 kg/m2) was significantly associated with severe malaria at diagnosis [38]. A study by Hatz et al. in 165 non-immune adults reported a decreased artemether-lumefantrine day-28 parasitological cure rate (93.4% [95%CI 85.3; 97.8] in patients \geq65 kg compared to those <65 kg [100% [95%CI 92.5; 100]] [39]. In principle, dosing of ACTs should be based on a target mg/kg body weight dose, but ACTs are mostly available as pre-packaged treatments based on a single adult weight-band (e.g. artemether-lumefantrine dosage is identical for anyone weighing \geq35 kg) [14]. Increasing the treatment dose or prolonging the treatment regimen [40] for overweight patients could be feasible; however, it may be challenging in some primary health care contexts. As malaria transmission intensity decreases, the age distribution of malaria morbidity and mortality burden expands, with increased prevalence of malaria in the adult population. In parallel an increase in the prevalence of overweight/obesity in African adults has also been observed [41-43]. Therefore, improving diagnosis and treatment in older age groups remains relevant to advance elimination and delay resistance [44]; thus overweight adults should be actively included in dose optimization studies to provide data on this important population. PLHIV could contribute to 1.2% of all estimated uncomplicated malaria cases and between 2.6% and 6.6% of estimated excess failures. As antiretroviral therapy (ART) coverage increases [45] together with a shift towards dolutegravir-based ARTs that have fewer drug-drug interactions [46], PLHIV may
become less at risk of sub-optimal ACT dosing with standard 3-day regimen; this risk remains however for those receiving rifampicin-based tuberculosis treatment or efavirenz-based ARTs [47, 48]. Furthermore, PLHIV have higher parasites densities and children infected with HIV have been reported having slower parasite clearance than HIV-free children [49]. A recent review on the role of HIV infection on malaria transmission suggests a higher risk of re-infection in population infected with HIV-1 [50].

The current WHO Malaria guidelines for treating uncomplicated malaria in pregnancy recommend that artemether-lumefantrine should be used in all trimesters [14]. However, artemether-lumefantrine, the most widely used ACT in Africa, had a lower PCR-corrected cure rate compared to other ACTs in a large IPD meta-analysis evaluating the efficacy and tolerability of ACTs in pregnancy [51], which could be attributed to changes in the pharmacokinetics of lumefantrine during pregnancy resulting in lower drug concentration compared to non-pregnant population [52]. Longer artemether-lumefantrine regimens have been tested in Thailand and in the Democratic Republic of Congo, with a higher Day-7 lumefantrine concentration compared to the standard 3-day regimen but did not show increase ACPRs [53]. Further studies to optimise antimalarial drug treatment in pregnancy are needed, as are harmonised antimalarial therapeutic efficacy assessments in pregnancy studies [54].

Study limitations and assumptions

This study provides an estimate of the significant magnitude of the population at risk of sub-optimal dosing living in 41 African countries; those estimates are based on the latest malaria and population data openly available and are derived from several sources with some assumptions. Assumptions made to evaluate the number of treatment failure and the proportion of excess treatment failure for each sub-population evaluated. Estimates have been calculated assuming an equal risk for everyone in a population sub-group and an equal risk by age category within that sub-group. The estimated incidence of severe malaria cases from 2015 was applied to calculate uncomplicated episodes from the 2020 total malaria data reported by WHO although malaria trends were decreasing until 2019.
Recent IPD meta-analysis were not available for each population category nor were exclusively evaluating treatment failure risk in Africa. Risks of treatment failure associated with multiple factors could not be evaluated (e.g., hyperparasitaemia in pregnancy). Because sub-group populations and malaria endemicity levels were extracted at country level, granularity of risk may have been lost including level of transmission or impact of seasonality. We did not account for the quality of antimalarials (either substandards or falsified), the impact of other co-morbidities on the drug absorption, the impact of drugs other than antiretrovirals e.g. antituberculosis drugs or the true adherence to the treatment. We believe that the majority of our assumptions are likely to underestimate the true overall impact of under-dosing, so provide a “best case” scenario.

Conclusion

This study estimates that nearly 1 in 4 people with uncomplicated confirmed malaria in Africa are at risk of sub-optimal antimalarial drug dosing. This is the first attempt to quantify this issue, which poses a serious threat to malaria control efforts. Adequate antimalarial drug dosing is essential for both maximising cure rates and the prevention or delay of resistance emergence or its expansion. Optimised drug dosing or longer treatment duration of currently used ACTs may be needed in those at risk of sub-optimal antimalarial drug dosing. The largest contribution to the excess number of treatment failures came from hyperparasitaemic patients. A malaria diagnosis that includes a quantitative or semi-quantitative parasite count at all levels of health care would be of great public health value to identify patients with uncomplicated hyperparasitaemia who should receive an adapted treatment. New antimalarials should be evaluated to provide sufficient drug concentrations not only in otherwise healthy adults, but also to all at risk sub-populations that carry a high malaria burden.
Acknowledgments

The authors would like to thank Jamie T. Griffin and colleagues for sharing the data used in their model for estimating the proportion of malaria cases in each age group according to the different types of malaria transmission (Figure 3c from the manuscript entitled Griffin, J.T., N.M. Ferguson, and A.C. Ghani, *Estimates of the changing age-burden of Plasmodium falciparum malaria disease in sub-Saharan Africa*. Nat Commun, 2014. 5: p. 3136). This study is supported by the Bill & Melinda Gates Foundation (grant INV-004713).

References

488 safety of 3 and 5 day courses of artemether-lumefantrine for the treatment of uncomplicated
489 falciparum malaria in an area of emerging artemisinin resistance in Myanmar. Malar J.
491 PubMed Central PMCID: PMCPMC6042398.
492 41. Agyemang C, Boatemaas S, Agyemang Frempong G, de-Graft Aikins A. Obesity in Sub-Saharan
494 42. Group NCDRFC-AW. Trends in obesity and diabetes across Africa from 1980 to 2014: an
495 analysis of pooled population-based studies. Int J Epidemiol. 2017;46(5):1421-32. doi:
497 43. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and
498 national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic
501 PMCID: PMCPMC4624264.
502 44. Griffin JT, Ferguson NM, Ghani AC. Estimates of the changing age-burden of Plasmodium
504 10.1038/ncomms4136. PubMed PMID: 24518518; PubMed Central PMCID: PMCPMC3923296.
505 45. Obebe OO, Falohun OO. Epidemiology of malaria among HIV/AIDS patients in sub-Saharan
509 Interactions between Dolutegravir and Artemether-Lumefantrine or Artesunate-Amodiaquine.
511 PMID: 30420479; PubMed Central PMCID: PMCPMC6355558.
512 47. Usman SO, Oreagba IA, Akinyede AA, Agbaje EO, Akinleye MO, Onwujobi AG, et al. Effect of
513 nevirapine, efavirenz and lopinavir/ritonavir on the therapeutic concentration and toxicity of
514 lumefantrine in people living with HIV at Lagos University Teaching Hospital, Nigeria. J Pharmacol Sci.
517 Participant Data Population Pharmacokinetic Meta-analysis of Drug-Drug Interactions between
520 Central PMCID: PMCPMC6355558.
522 clearance following artemisinin-based combination therapy among Ugandan children with
523 uncomplicated Plasmodium falciparum malaria. Malar J. 2014;13:32. Epub 20140128. doi:
525 50. Roberds A, Ferraro E, Luckhart S, Stewart VA. HIV-1 Impact on Malaria Transmission: A
527 20210412. doi: 10.3389/fcimb.2021.656938. PubMed PMID: 33912477; PubMed Central PMCID:
528 PMCPMC8071860.
530 tolerability of artemisinin-based and quinine-based treatments for uncomplicated falciparum
531 malaria in pregnancy: a systematic review and individual patient data meta-analysis. Lancet Infect
533 32530424; PubMed Central PMCID: PMCPMC7391007.
535 lumefantrine dosing for malaria treatment in young children and pregnant women: A

Technical Expert Group (TEG) on Malaria Chemotherapy. KIB is also a member of the WHO Drug Resistance and Containment. KIB, NJW, JT and SP are members of the WHO Malaria Chemotherapy sub-group on dosage recommendations. GL, KH, FE and RB are employees of Novartis, the manufacturer of the drug that is the subject of this publication. EAA and NJW are members of the Editorial Board of PLOS Medicine. None of the authors declare any other conflict of interest.

Supplementary material

Supplementary material is available as one appendix

medRxiv preprint doi: https://doi.org/10.1101/2023.05.24.23290481; this version posted May 30, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Figure 1
Figure 2