Venous Thromboembolism and the Effects of Statin and Hormone Therapy: A Case-Control Study of 250,000 Women 50-64 years of age

John W. Davis, BA¹
Susan C. Weller, PhD.¹,²
Laura Porterfield, MD²,³
Lu Chen, MS¹
Gregg Wilkinson, PhD¹

1. Department of Population Health Science, School of Public and Population Health, University of Texas Medical Branch, Galveston, Tx
2. Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Tx
3. Department of Family Medicine, School of Medicine, University of Texas Medical Branch, Galveston, Tx

Corresponding Author:
Susan C. Weller
Dept Population Health Science
School of Public and Population Health
University of Texas Medical Branch
300 Harborside Dr.
Galveston, Tx 77555-1153

Email: sweller@utmb.edu
Phone: 409-772-2551
Competing interests None declared.
Funding The data were obtained with a grant to SCW from the Texas Academy of Family Physicians Foundation.

(Word Count: 262 abstract; text 3,491)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background. Post-menopausal hormone therapy (HT) may elevate the risk of venous thromboembolism (VTE), while statin therapy may lower risk.

Purpose. To estimate VTE risk from HT exposure with/without statin therapy in women 50-64 years of age.

Methods. A case-control study in a large commercially-insured database matched cases of VTE diagnoses (1:10) to controls without VTE on age +/- 2 yrs. Conditional logistic regression estimated odds ratios (ORs) for recent HT exposure (any estrogen and/or progestogen within 60 days) and current statin therapy (≥90 days continuous exposure) controlling for VTE risk factors, comorbidities, and coronary artery disease.

Results. In a comparison of cases (n=20,359) and matched controls (n=203,590), 9% (n=19,558) had recent HT exposure and 16% (n=36,238) had current/continuous statin exposure. After adjustment for all covariates, the OR for any recent HT exposure (regardless of statin exposure) was 1.51 (95% CI: 1.43, 1.60) compared to no HT exposure. The OR for current statin therapy (regardless of HT exposure) was 0.88 (95% CI: 0.84, 0.93). For those with HT exposure without statin therapy the OR was 1.53 (95% CI: 1.44, 1.63), for those with HT exposure with statin therapy the OR was 1.25 (95% CI: 1.10, 1.43), and for those exposed to statin therapy without HT exposure the OR was 0.89 (95% CI: 0.85, 0.94), compared those not exposed to either statin or HT. HT with statin therapy had a 18% significantly lower odds ratio than HT without statin therapy (OR=0.82, 95% CI: 0.71, 0.94). High intensity statin therapy showed greater risk reduction.

Conclusion. Statin therapy may reduce VTE risk associated with HT.
Venous Thromboembolism and the Effects of Statin and Hormone Therapy: A Case-Control Study of 250,000 Women 50-64 years of age

INTRODUCTION

Menopause-associated symptoms, such as ‘hot flashes’, vaginal dryness, disruptions in sleep patterns, and cognitive changes, are both common deleteriously affect quality of life.1–3 Hormone therapy (HT) is an effective treatment for many of these symptoms.4,5 However, concern for venous thromboembolism (VTE), stroke, or myocardial infarction (MI) risk prevents many symptomatic women from receiving HT.6–8 Clinical trials in post-menopausal women estimated that HT may double the risk for venous thromboembolism (VTE).9–11 However, most of the trial participants initiated HT after 60 years of age9,11,12 and vascular risk may be lower when initiation is nearer menopause.13–15 Also, the trials were conducted with oral, conjugated equine estrogen (CEE),9,16 which may have a higher risk profile than other types and routes of estrogen administration.17–21 Observational studies suggest significant differences in HT risk by type of hormone exposure and route of administration.19,21–23

In the decades since HT trials were conducted, evidence has accumulated on the efficacy of statin therapy to reduce risk for major cardiovascular events24,25 and VTE,26 adverse outcomes that limit use of menopausal HT,27–29 but few have estimated statin therapy’s effect on HT-associated VTE risk. Those that have examined the joint effect of HT and statin therapy have found a reduction in vascular events, suggesting that the anti-inflammatory and anti-thrombotic effects associated with statin therapy may mediate the risk of adverse cardiovascular events associated with HT.12,30 A UK population-based case-control study of VTE in post-menopausal women found that among those not on statin therapy, the odds ratio for VTE from oral HT exposure was 51% higher than for those not exposed to oral HT; and among those on statin therapy, the odds ratio for oral HT exposure was 21% higher than for those not exposed to oral HT.30 Similar reductions have been found for cardiovascular events,12 C-reactive protein,31 and mortality.32
These studies suggest statins may reduce excess risk of VTE associated with HT, although some were conducted when statin usage was less common and HT usage more common than they are now. In the past two decades, rates of statin use have increased from 16% (2002) to 26% (2017), while use of estrogen products (oral, vaginal, and transdermal) in women over 50 deceased from approximately 12.5% (2006) to 9.2% (2015) with much larger reductions in oral estrogen products. Also, previous findings should be validated in the US population because of the different formulary, prescribing patterns, and higher VTE incidence compared to European countries. VTE incidence in the UK ranged from 150-175 cases (2017-2019), while US rates were 214 cases per 100,000 person-years (2015-2019). Thus, this study explored the effect of statin therapy on VTE risk in women 50-64 years of age exposed to exogenous hormones. Specifically, using a case-control design in a large health administrative database, the study tested hypotheses that VTE risk would be greatest for women exposed to HT without a statin, reduced for those with concomitant statin therapy, and lowest for those exposed to statin therapy without hormone exposures, compared to women who are not exposed to either hormone or statin therapy.

METHODS

Data Source and Cohort Selection

A case-control study was designed within Optum’s de-identified Clinformatics® Data Mart Database that contains claims for approximately 62 million unique enrollees from. Excluding Medicare Advantage subscribers, there are approximately 15 million annual members, a third of whom have continuous enrollment for three or more years. Because VTE incidence is relatively low, Clinformatics® is one of the few US databases containing a sufficient sample size to study VTE risk factors. The database contains information on outpatient and inpatient visits, diagnoses, and filled prescriptions. The study cohort was limited to women 50-64 years of age with one or more years of continuous enrollment between 2007-2019. The sample focused on women in this age range based on the average age at menopause, higher rates of menopausal HT in
this range,34 and the tendency to transition from commercial insurance to Medicare at 65 years.

This study focused on statin therapy and HT as part of a larger project studying VTE risks in a population of commercially-insured older women. Study design details, including ICD and CPT codes, have been reported elsewhere.19 The Strengthening of Reporting in Observational studies in Epidemiology (STROBE) guidelines were followed in reporting selection, exposure, and outcomes.37

Cases

Cases were defined as women with a diagnostic code for VTE during the observation period followed by one or more prescriptions for an anti-coagulant (excluding heparin flushes), intravascular vena cava filter (identified by CPT codes), or death within 30 days of the VTE diagnosis.19 Combining diagnostic claim codes with anticoagulant prescription claims increases VTE diagnostic accuracy and detection of “definite” cases.38 Date of VTE diagnosis was defined as the index date, and anyone with less than 12 months of previous enrollment data before that date was excluded. Also, women who had an acute or chronic VTE diagnosis or an IVC filter placement in the year prior to the index date or who were exposed to an anticoagulant within the 14 days prior to the index date (anyone with a filled prescription for an anticoagulant during that period) were excluded.

Controls

Controls were randomly selected and matched to cases by month of index date and age within +/- two years at a 10:1 ratio. Controls, like cases, were excluded with less than 12 months of enrollment prior to the index date, a history of prior VTE or IVC placement in the one year lookback period, or history of anticoagulant within the 14 days prior to index date.

HT Exposure

HT exposure was defined by a filled prescription for: (1) estrogen alone, (2) estrogen
combined with a progestogen, (3) progestogen alone, and (4) estrogen combined with testosterone (with or without a progestogen) and the duration of the prescription (30 or 90 days). Thus, exposure to any of the above hormones was evaluated regardless of route (oral/non-oral) or indication (e.g., menopausal HT or contraception). Timing of HT exposure was defined as recent (within 60 days of the index date) or past/none, because previous research has shown VTE risk diminished after 60 days. National Drug Codes (NDCs) for hormones were identified using Red Book and/or from a list supplied by the Food and Drug Administration (hormone list published previously).

Statin Exposure

Statin exposure was defined by duration and continuity of therapy. Although the UK case-control study on VTE risk with HT and/or statin exposure defined statin exposure as occurring within 90 days of the index date, here we defined current statin therapy exposure as continuous filled prescriptions for 90 or more days prior to and including the index date, because most statin trials show effectiveness after a longer duration. The comparison category was shorter or discontinuous exposures throughout the prior year or no exposure in the past year. Intensity of therapy during most recent 30 days prior to the index date was considered as: 1) high, 2) low/moderate, or 3) none. AHA guidelines defined high intensity as Atorvastatin >40mg/d or Rosuvastatin >20mg/d. Lower doses of Atorvastatin and Rosuvastatin and all other statin exposures were considered low or moderate doses. National Drug Codes (NDCs) from Red Book were used to identify statin prescriptions and formulations by intensity of statin therapy (Appendix Statin List).

Statistical Analysis

Risk for VTE with statin and/or HT exposures was estimated with adjusted odds ratios (ORs) and 95% confidence intervals, while controlling for covariates. Because of the matched design, conditional logistic regression models were used. Covariates included region of residence, age at index date, and history of cancer (except non-melanoma skin cancer; none/nonmetastatic/metastatic), history of prothrombotic
conditions or thrombosis, and varicose veins within the previous year; and within 30
days of the index date: hospitalization or surgery, or trauma. In addition, coronary
artery disease, stroke, lipid disorders, and smoking within the past year were included,
as they may affect indications for/against HT and/or statin therapy. Finally, the
Elixhauser set of comorbidities was included to control for general health status. The Elixhauser comorbidity list has been validated for predicting mortality and includes
chronic conditions such as congestive heart failure, obesity, liver disease, diabetes, etc.
Comorbidities in the Elixhauser set that were known risk factors for VTE (cancers and
hypercoaguable conditions) were removed from the index and used as separate
covariates. The final Elixhauser comorbidity index was summed and coded into terciles:
0 comorbidities, 1-2, and 3+ comorbidities.

To see the combined effect of statin therapy and HT on VTE risk, models were
estimated first for the main effects of HT and statin exposure, controlling for all
covariates. Stratified analyses examined the stability of main effects across different
subsamples with varying comorbidities (without cancer or hypercoaguable conditions
and with below median/above median comorbidity burdens). VTE odds were also
estimated by most recent intensity of statin exposure. Second to estimate the risk of
VTE with and without HT and statin therapy, models estimated the odds ratios for VTE
in the subgroups of women formed by their HT and statin therapy exposures: (1) HT
exposure without statin therapy, (2) HT exposure with statin therapy, (3) statin therapy
without HT exposure, and (4) neither HT or statin therapy (reference group). Finally, a
model estimated the effect of higher intensity statin therapy by creating subgroups
within groups (2) and (3) for lower and higher intensity statin therapy.

RESULTS

Sample Characteristics

The selection of cases and controls has been described previously. In brief, there
were 22.9 million women identified as having at least one year of continuous enrollment
within the Clininformatics® database, of whom 74,600 (0.33%) had a first, acute VTE with
12 months of prior enrollment, and 22,380,610 were eligible controls (no acute VTE diagnoses from 2008-2019) for matching. After these criteria were applied, 20,359 cases remained (definite cases); 54% (n=10,995) were pulmonary embolisms (PE) (with or without deep vein thrombosis, DVT), 46% (n=9,364) were DVT without a PE, and 6% (n=1,197) died within 30 days following the diagnosis. There was a 100% matching success rate for the control group (n=203,590). Women were approximately equally distributed in five-year age intervals and a larger proportion of cases had VTE risk factors such as trauma, hospitalization/surgery, and cancer than controls (Table 1).

Statin and Hormone Exposures.
Recent exposures to any HT occurred in 9% (n=19,558) of the sample (10.5% cases, 8.6% controls). Of those exposures, 76% were menopausal estrogen or estrogen-progestogen combinations (71% oral/29% non-oral), 13% were estrogen-progestin contraceptives, 8% were progesterone only, and 4% were estrogen-testosterone combinations. Those with recent HT exposure tended to be younger (34% unexposed, 43% exposed <55 yrs). For statin therapy, 16% (n=36,238; 18.3% cases, 16.0% controls) of the sample had current/continuous exposure for at least three months before and including the index date, 8% (n=17,569) had shorter or discontinuous exposures, and 76% (n=170,142) had no exposure. As a check on the dichotomization of statin exposure, intermittent exposures were compared to the current/continuous and non-exposure groups and showed they could reasonably be combined with the no exposure subgroup. Shorter/intermittent exposure was not significantly different from no exposure (OR=1.05, 95% CI: 0.99, 1.12) but was significantly different from three or more months of current/continuous exposure (OR=1.18, 95% CI: 1.10, 1.25). Those with current/continuous statin exposure tended to be older (29% unexposed, 45% exposed >60), have a hyperlipidemia diagnosis (29% unexposed, 86% exposed), or have CAD (4% unexposed, 14% exposed) than those without current/continuous exposure. Among those exposed to statins, 80% were exposed to low/moderate intensity and 20% were exposed to high intensity in the 30 days prior to the index date.
After adjustment for all covariates, the odds ratio for any recent HT exposure (regardless of statin exposure) was elevated 51% compared to no recent HT exposure (OR=1.51, 95% CI: 1.43, 1.60). The odds ratio for 90 days or more of current statin therapy (regardless of HT exposure) was 12% lower than for less/no statin therapy (OR=0.88, 95% CI: 0.84, 0.93). Intensity of statin therapy affected the reduction in risk with slightly less reduction with low/moderate intensity (OR=0.90, 95% CI: 0.85, 0.95) and slightly more with high intensity (OR=0.82, 95% CI: 0.75, 0.90) compared to those without current statin exposure.

Results for HT and statin therapy were consistent across the total sample, a subsample without cancer or hypercoagulability conditions, and subsamples with above and below median comorbidity burdens (Table 2). The one exception was a slightly higher odds ratio for recent HT exposure for women with fewer comorbidities and slightly lower for women with more comorbidities, compared to those without recent HT exposures.

Patient Groups with HT and/or Statin Exposures

As hypothesized, the odds ratio was highest for women exposed to HT without statin therapy compared to the reference group who had neither recent HT nor statin exposure (Table 3, Model 1). The odds ratio for those with HT exposure but without statin therapy (n=16,350) was 53% elevated (OR=1.53, 95% CI: 1.44, 1.63) over those without recent HT and without statin therapy (the reference group, n=171,361). The odds ratio for HT exposure combined with statin therapy (n=3,208) was 25% higher (OR=1.25, 95% CI: 1.10, 1.43) than the reference group. A direct comparison between HT with statin therapy and HT without statin therapy showed a 18% significantly lower odds ratios with statin therapy (OR=0.82, 95% CI: 0.71, 0.94). Finally, the lowest risk was for those exposed to statin therapy without HT exposure; the odds ratio was 11% (OR=0.89, 95% CI: 0.85, 0.94) lower than the reference group. There was no significant interaction between HT and statin therapy on VTE risk.

When subgroups exposed to statin therapy were subdivided into low/moderate or high intensity therapy, a larger protective effect was observed with high intensity therapy
compared to the reference group without recent HT or statin exposure (Table 3, Model 2). Odds ratios were elevated 53% with recent exposure to HT without statin therapy (as above) and were elevated 29% with low/moderate intensity statin therapy (OR=1.29, 95% CI: 1.12, 1.49), but were not elevated with high intensity statin therapy (OR=1.06, 95% CI: 0.77, 1.45) compared to those without recent HT and without current statin therapy. A direct comparison between HT without statin therapy and HT with low/moderate statin therapy showed a significant 16% reduction (OR=0.84, 95% CI: 0.73, 0.98). A direct comparison between HT without statin therapy and HT with high intensity statin therapy showed a 31% reduction (OR=0.69, 95% CI: 0.50, 0.95). The odds ratio for those without recent HT exposure showed a 16% reduction with high intensity statin therapy (OR=0.84, 95% CI: 0.76, 0.92) and a 9% reduction with low/moderate intensity, compared to those without recent HT and without current/continuous statin therapy.

DISCUSSION

This is the first study in a US claims database that assessed the odds of VTE in women of post-menopausal age based on HT and statin exposures. In weighing the benefits of menopausal symptom relief against reported risks of VTE from large clinical trials and cohort studies, this study provides insight into additional factors affecting the risk profile of HT users. In this study of 50 to 64 year old US women, results indicated the significant association between HT and VTE may be reduced with concomitant statin therapy. Recent HT exposure elevated risk 53% without statin exposure, but elevated risk 25% when combined with statin therapy, compared to those without recent HT and without current statin exposure - a significant 18% reduction. This is noteworthy, as those on statin therapy may be at moderate risk of cardiovascular disease. Those exposed to HT and high intensity statin therapy did not have a significant elevation in risk compared to those not exposed to either HT or statins. Higher intensity statin therapy reduced risk 31%, providing evidence of a dose-response effect in the association.
The risk reduction for those with HT and concomitant statin therapy was similar to results from the UK case-control study with post-menopausal women.30 This study and the UK study each showed an almost 20% reduction in risk with statin therapy, although the UK study used an earlier time period (1987-2008), broader age range (50-79 years), and focused on oral menopausal HT exposures.30 This study used the AHA definition of higher intensity statin therapy and showed additional reductions with higher intensity, while the UK study used a different definition and did not see additional benefits. The re-analysis of the HERS cohort also showed reductions in VTE with statin therapy, with or without HT.12 While the risk of VTE with HT was 75% greater than placebo (HR=1.75, p=0.04) if unexposed to statins, women exposed to both statins and HT were not at significantly different risk of VTE than placebo (HR=1.34, p=0.45).12

The overall effect sizes for HT and for statin therapy in this study were consistent with those found in other studies. The 51% increase in risk for VTE with HT exposure found in this study is consistent with similar studies. A large, UK case-control study found any menopausal HT exposure in the past 90 days increased the odds ratio 43%, oral exposures increased the odds ratio 58%, and CEE exposures almost doubled the odds ratio compared to no HT exposure.21 Clinical trial estimates that HT may double the risk for venous thromboembolism (VTE)9,10 may be higher because of the older age of initiation of HT and the use of oral, conjugated equine estrogen (CEE) in the trials. Despite population differences between the UK and US, this study affirms and expands previous findings.

The overall reduction in VTE risk with statin therapy observed in this study (12%) is smaller than estimated in previous observational studies but similar to the reduction found in RCTs. Cohort studies suggest current statin exposure may reduce VTE risk by 25%, while RCTs suggest a 15% reduction in risk,26 although effectiveness may be accentuated by intensity of therapy.26,28,46,47 Differences between cohort and RCT findings may be attributable to differences in patient populations,48 as well as other factors. In this study, statin therapy did not interact with HT, but instead had an independent reduction in VTE.
One difference between this study and the large UK case-control studies21,30 is the number of US women on higher risk combined hormone contraceptives.19 Women over 50 years of age exposed to combined hormonal contraceptives have five to nine times higher risk of VTE compared to those with no hormone exposure; and three times higher compared to menopausal combined HT.19 In this study, HT risk was slightly higher for those with fewer comorbidities and slightly lower for those with more comorbidities compared to no HT exposure, likely due to greater exposure to contraceptives (and higher risk estrogen and progestin formulations) in younger women with fewer comorbidities.19

Limitations

There are several limitations to this study. Most importantly, this study is a case-control design in an administrative claims database and contains all the inherent limitations of a secondary, observational dataset. Bias was minimized, however, in three ways. First, we employed a strict case definition. Whereas others21,30,32,49 included “probable” cases of VTE in their primary analyses, we only included cases that had 1) both an ICD code and 2) a confirmatory event (i.e., hospitalization, death, or anticoagulant prescription within 30 days of event). While this decreased the available sample for analysis, it increased the likelihood that a person identified as a case was a definite case, improving reliability of estimates. Second, we adjusted for VTE and cardiovascular risk factors, as well as comorbidities that could potentially confound comparisons. To minimize indication bias, we controlled for CAD, stroke, and lipid disorders. However, the dataset did not have information on over-the-counter medications, such as aspirin. Concomitant use of low-dose aspirin and statin therapy could lead to overestimates of the anti-thrombotic effect of statin therapy. Third, a time-restricted design offered an unbiased estimation of exposure risk for the population in the base cohort although the base cohort may not be representative of the US population. Other limitations include a lookback period that was one or more years, rather than a lifetime medical history. In addition, while claims databases contain data such as patient age, sex, and region of
residence, they lack data on many patient characteristics such as race/ethnicity, income, educational level, and indications for prescriptions.

A primary strength of the administrative claims database was the medical detail and the large volume of women enrolled. Medication and diagnostic detail combined with the large sample size allowed for the estimation of effect size for low prevalence exposures and outcomes. This was especially true for estimating risk among those with both hormone and statin exposures. Furthermore, there were sufficient women to make inferences about intensity of statin therapy in VTE reduction.

CONCLUSION

In the decades following the WHI trials, clinical guidelines discouraged HT due to potential adverse cardiovascular events and long-term risk of breast cancer. Guidelines are now more nuanced as to when to consider prescribing menopausal HT, encouraging shared medical decision-making and the weighing of potential benefits of therapy against the risks for individual patients. While HT exposure may still increase long-term risk of breast cancer,\(^{50}\) thrombotic risk appears to be a function of hormone formulation, route of exposure, dose, and age of initiation. With this study, it also appears concomitant statin therapy may reduce the risk of HT-related thrombosis, mediating adverse effects in those who might be at risk of cardiovascular disease.
REFERENCES

Table 1. Sample Description.

<table>
<thead>
<tr>
<th>Variable</th>
<th>VTE Cases (n=20,359)</th>
<th>Comparators (n=203,590)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTE Index Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-2010</td>
<td>24.32% (4951)</td>
<td>24.32% (49510)</td>
</tr>
<tr>
<td>2011-2014</td>
<td>33.14% (6747)</td>
<td>33.14% (67470)</td>
</tr>
<tr>
<td>2015-2019</td>
<td>42.54% (8661)</td>
<td>42.54% (86610)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-54</td>
<td>33.35% (6789)</td>
<td>34.84% (70927)</td>
</tr>
<tr>
<td>55-60</td>
<td>34.80% (7084)</td>
<td>33.52% (68237)</td>
</tr>
<tr>
<td>61-65</td>
<td>31.86% (6486)</td>
<td>31.64% (64426)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast</td>
<td>8.28% (1686)</td>
<td>8.85% (18010)</td>
</tr>
<tr>
<td>Midwest</td>
<td>27.81% (5661)</td>
<td>25.55% (52021)</td>
</tr>
<tr>
<td>South</td>
<td>43.77% (8912)</td>
<td>44.77% (91138)</td>
</tr>
<tr>
<td>West</td>
<td>19.98% (4067)</td>
<td>20.11% (40947)</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.16% (33)</td>
<td>0.72% (1474)</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>13.81% (2812)</td>
<td>37.32% (75981)</td>
</tr>
<tr>
<td>1-2</td>
<td>30.25% (6158)</td>
<td>40.23% (81909)</td>
</tr>
<tr>
<td>3+</td>
<td>55.94% (11389)</td>
<td>22.45% (45700)</td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>74.00% (15065)</td>
<td>94.42% (192220)</td>
</tr>
<tr>
<td>Solid Tumor</td>
<td>11.11% (2262)</td>
<td>4.80% (9764)</td>
</tr>
<tr>
<td>Metastatic</td>
<td>14.89% (3032)</td>
<td>0.79% (1606)</td>
</tr>
<tr>
<td>Trauma</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.03% (3060)</td>
<td>2.96% (6030)</td>
</tr>
<tr>
<td>Hosp./Surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30.22% (6152)</td>
<td>2.29% (4672)</td>
</tr>
<tr>
<td>Hypercoag. Cond</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.99% (2237)</td>
<td>1.25% (2551)</td>
</tr>
<tr>
<td>Varicose Veins</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.73% (556)</td>
<td>0.88% (1790)</td>
</tr>
<tr>
<td>CAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.47% (2743)</td>
<td>4.80% (9775)</td>
</tr>
<tr>
<td>Stroke</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.34% (1495)</td>
<td>2.40% (4886)</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>46.18% (9402)</td>
<td>37.35% (76043)</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.13% (4710)</td>
<td>9.46% (19263)</td>
</tr>
</tbody>
</table>
Table 2. Sub-Analyses Stratified by Comorbidities

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>N</th>
<th>Model 1: Full Sample*</th>
<th>Model 2: Cancer/Hypercoag Exclusion**</th>
<th>Model 3: Stratified Elixhauser<2*</th>
<th>Model 4: Stratified Elixhauser ≥2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20359</td>
<td>20359</td>
<td>13835</td>
<td>5850</td>
<td>14509</td>
</tr>
<tr>
<td>Control Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>203590</td>
<td>203590</td>
<td>190170</td>
<td>124217</td>
<td>79373</td>
</tr>
<tr>
<td>HT None or in 61-365d</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>204391</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT Any Recent (0-60d)</td>
<td>19558</td>
<td>1.51 (1.43, 1.60)</td>
<td>1.59 (1.50, 1.69)</td>
<td>2.06 (1.88, 2.26)</td>
<td>1.26 (1.16, 1.37)</td>
</tr>
<tr>
<td>Statin <3 mo or None</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>187711</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statin ≥3 mo</td>
<td></td>
<td>0.88 (0.84, 0.93)</td>
<td>0.91 (0.86, 0.96)</td>
<td>0.95 (0.83, 1.07)</td>
<td>0.89 (0.84, 0.94)</td>
</tr>
</tbody>
</table>

*Model adjusted for age, comorbidity score, region, cancer, hospitalization/surgery, trauma, hypercoagulability, varicose veins, coronary artery disease, stroke, lipid disorders, and smoking history.

** Model adjusted for age, comorbidity score, region, hospitalization/surgery, trauma, varicose veins, coronary artery disease, stroke, lipid disorders, and smoking history.
Table 3: VTE Odds Ratios for patient Subgroups by Recent HT and Statin Exposures

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Group Size</th>
<th>Adj Model 1: ORs*</th>
<th>Adj Model 2 with Statin Intensity: ORs*</th>
</tr>
</thead>
<tbody>
<tr>
<td>No recent HT & No current Statin (Ref)</td>
<td>171361</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Recent HT (without Current Statin)</td>
<td>16350</td>
<td>1.53 (1.44, 1.63)</td>
<td>1.53 (1.44, 1.63)</td>
</tr>
<tr>
<td>Recent HT with Current Statin</td>
<td>3208</td>
<td>1.25 (1.10, 1.43)</td>
<td>--</td>
</tr>
<tr>
<td>Low/Mod Statin</td>
<td>2668</td>
<td>--</td>
<td>1.29 (1.12, 1.49)</td>
</tr>
<tr>
<td>High Statin</td>
<td>540</td>
<td>--</td>
<td>1.06 (0.77, 1.45)</td>
</tr>
<tr>
<td>Current Statin (Without Recent HT)</td>
<td>33030</td>
<td>0.89 (0.85, 0.94)</td>
<td>--</td>
</tr>
<tr>
<td>Low/Mod Statin</td>
<td>26343</td>
<td>--</td>
<td>0.91 (0.86, 0.96)</td>
</tr>
<tr>
<td>High Statin</td>
<td>6687</td>
<td>--</td>
<td>0.84 (0.76, 0.92)</td>
</tr>
</tbody>
</table>

*Odds Ratios have been adjusted for age, comorbidity score, region, cancer, hospitalization/surgery, trauma, hypercoagulability, varicose veins, coronary artery disease, stroke, lipid disorders, and smoking history.