Drug Overdose Mortality Rates by Educational Attainment and Sex for Adults Aged 25 to 64 in the United States Before and During the COVID-19 Pandemic, 2015 to 2021

Jay J. Xu1*, Marissa J. Seamans2, Joseph R. Friedman3

1 Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
2 Department of Epidemiology, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
3 Center for Social Medicine and Humanities, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA

*Corresponding author: jayxu33@ucla.edu

Abstract

Introduction: Dramatic increases in U.S. drug overdose deaths involving synthetic opioids, most prominently fentanyl, beginning around 2014 have driven a marked progression in national rates of overall drug overdose deaths, which sharply rose to unprecedented levels amid the COVID-19 pandemic. Disparities in U.S. drug overdose mortality burden by educational attainment have not been widely scrutinized during the fentanyl era of the drug overdose epidemic and its intersection with the COVID-19 pandemic.

Methods: Utilizing restricted-use mortality data from the National Vital Statistics System and population estimates from the American Community Survey, we estimated annual national age-adjusted drug overdose mortality rates jointly stratified by educational attainment and sex for adults aged 25-64 from 2015 to 2021. State-level age-adjusted mortality rates were estimated in 2015 and 2021 to examine geographic trends in the cumulative evolution of disparities in drug overdose deaths by educational attainment over the course of the analysis period.

Results: Over 452,700 drug overdose deaths among U.S. adults aged 25–64 occurred from 2015 to 2021. For both men and women in this age range, age-adjusted mortality rates rose fastest among persons with at most a high school-level education, whereas little to no change in age-adjusted mortality rates was observed for Bachelors degree holders, widening pre-existing disparities in drug overdose mortality burden by educational attainment. During the analysis period, the difference in age-adjusted mortality rates between persons with at most a high school-level education and Bachelors degree holders, for both men and women, increased from less than 8-fold to approximately 13-fold. These disparities widened in nearly every state, and the widening accelerated after the onset of the COVID-19 pandemic. Among non-Bachelors degree holders, age-adjusted mortality rates increased markedly faster among men.

Conclusions: The widening disparities in drug overdose deaths by educational attainment are a likely indicator of a rapidly-increasing socioeconomic divide in drug overdose mortality more broadly. Policy strategies should address the upstream socioeconomic drivers of drug use and overdose, especially among men, and tailor interventions accordingly.

Introduction

The illicit drug supply in the U.S. has become increasingly contaminated with clandestinely manufactured fentanyl and other ultra-potent synthetic opioids [1]. Dramatic increases in synthetic opioid-involved drug overdose deaths beginning around 2014 have driven a marked progression in national rates of overall drug overdose deaths [2], during what has been characterized as the “third wave” of the U.S. opioid overdose crisis [1]. Fatal drug overdoses sharply rose to unprecedented levels after the onset of the COVID-19 pandemic in March 2020, with calendar year drug overdose deaths increasing by an unprecedented 30% from 2019 to 2020 and topping 100,000 for
the first time ever in 2021, which occurred against the backdrop of increased substance use and an elevated prevalence of adverse mental health conditions relative to pre-pandemic levels [3–5]. Nationally, this fentanyl-fueled surge in drug overdose deaths has most disproportionately affected non-Hispanic Black and American Indian and Alaska Native individuals, especially among males [6], raising important public health concerns. During the COVID-19 pandemic, disparities in drug overdose deaths by race/ethnicity have received considerable research attention [7–13]. In this manuscript, we consider an alternative but complementary disparities perspective on drug overdose deaths during the fentanyl era of the drug overdose epidemic, investigating differential drug overdose mortality burden by educational attainment (EA)—an important and modifiable social determinant of health [14]—and sex. Specifically, we estimate annual age-adjusted mortality rates (AAMR) jointly stratified by EA and sex for U.S. adults aged 25–64 during the seven year period from 2015 to 2021, the last two years of which coincide with the COVID-19 pandemic. Furthermore, to examine geographic trends in the cumulative evolution of EA-related disparities in drug overdose deaths over the course of the analysis period, we estimate and contrast sex-specific AAMR’s between adults aged 25–64 with at least some college education and adults aged 25–64 with at most a high school (HS) diploma/GED credential for each of the 50 states and D.C. in 2015 and 2021.

Materials and methods

Data sources

We obtained access to and used the National Vital Statistics System (NVSS) restricted-use “All Counties” multiple cause of death research files [15] to identify all drug overdose deaths among U.S. residents occurring between January 1, 2015 and December 31, 2021. Consistent with the Centers for Disease Control and Prevention (CDC) definition of drug overdose deaths, we define drug overdose deaths as corresponding to International Classification of Diseases, 10th Revision (ICD-10) codes X40–44 (unintentional), X60–64 (suicide), X85 (homicide), or Y10–14 (undetermined intent) as the underlying cause of death [2]. We limit our attention to drug overdose deaths of persons aged 25–64 because the vast majority of eventual Bachelors degree holders will have received their Bachelors degree by age 25, and EA is less reliably reported on U.S. death certificates for decedents aged 65+ [16]. Furthermore, this age range captures the vast majority of the at-risk population from the drug overdose epidemic, comprising over 86% of total drug overdose deaths between 2015 and 2021. Within this age range, we considered the following age subgroups for mortality rate calculations: 25–34, 35–44, 45–54, and 55–64. Mortality statistics stratified by EA and sex reported in official NVSS publications also restrict attention to this age range and consider these age subgroups [17].

Within the U.S., death certificates are submitted by 52 jurisdictions to the NVSS: New York City, New York State (minus New York City), the remaining 49 states, and D.C. The U.S. SCoD was revised in 2003 [18]–20 from its previous revision in 1989 [21], and part of the 2003 revision
involved transitioning from a year-based categorization of EA to a degree-based categorization, which individual jurisdictions gradually adopted over time. For the present analysis, we categorized EA into three categories derived from the 2003 U.S. SCoD revision-based EA reporting standard: (i) HS/GED or Less, (ii) Some College Education (including obtaining an Associates degree), and (iii) Bachelors Degree or More.

Rhode Island began reporting EA on death certificates in mid-2015 [22], the last jurisdiction to begin doing so. Furthermore, 2018 was the first full calendar year in which all U.S. jurisdictions reported EA on death certificates submitted to the NVSS according to the 2003 U.S. SCoD revision-based EA reporting standards because in 2015, 2016, and part of 2017, EA reported on death certificates from West Virginia still used the year-based categorization according to the 1989 U.S. SCoD revision-based EA reporting standard [23], and in 2015, Alabama still used the 1989 U.S. SCoD revision-based EA reporting standard [22] before making the transition in 2016 [24]. From 2015 to 2021, there were 58 drug overdose deaths with unreported EA and age, 19 drug overdose deaths with reported EA but unreported age, and 13,701 drug overdose deaths aged 25–64 with reported age but unreported EA. Of the 452,706 DO deaths from 2015 to 2021 with reported age in the 25–64 age category, 3.0% had unreported EA.

State population estimates (as well population estimates for D.C.) within EA-sex-age strata for 2015–2019 and 2021 were obtained from American Community Survey (ACS) 1-year estimates. The COVID-19 pandemic substantially disrupted ACS survey operations in 2020, affecting its quality and delaying its annual data release. The cumulative effect of the COVID-19 pandemic on 2020 ACS operations included obtaining a respondent sample whose EA distribution was excessively upwards-skewed [25]. As a result, the U.S. Census Bureau decided that for the 2020 ACS, it would not release its standard suite of 1-year data products, releasing instead a collection of experimental estimates [26]. In light of these factors, for our analysis, we opted to linearly interpolate the state population sizes in 2020 within each EA-sex-age stratum by fitting state-EA-sex-age stratum-specific univariate linear regression models of annual population estimates as a function of year for years 2015–2019 and 2021 and obtaining fitted population estimates for 2020.

Statistical Analysis

For the 2,702 drug overdose deaths occurring in West Virginia and Alabama between 2015 and 2017 with EA reported according to the 1989 SCoD revision-based EA reporting standard, we deterministically imputed their (trichotomized) EA categories using the following procedure: (i) decedents recorded as having completed at most 12th grade were classified as HS/GED or Less, (ii) decedents recorded as having completed 1–3 years of college were classified as Some College Education, and (iii) decedents recorded as having completed 4 or more years of college were classified as Bachelors Degree or More. Next, consistent with a missing at random assumption [27], we deterministically imputed the unknown EA categories of the 13,701 drug overdose deaths with unreported EA but reported age according to the following procedure: within each year-jurisdiction-sex-age stratum, we applied the relative proportions of the EA categories for drug overdose deaths with reported EA
and age to the drug overdose deaths with unreported EA but reported age, rounding as necessary. For simplicity, we omitted the 77 drug overdose deaths with unreported age from the mortality rate calculations.

Following the imputation processes and the removal of drug overdose deaths with unreported age, we calculated annual national AAMRs stratified by EA and sex from 2015 to 2021. AAMRs were calculated using direct age adjustment [28], standardized to the 2000 U.S. Standard Population [29, 30]. Furthermore, to examine the geographic trends in the cumulative evolution of EA-related disparities over the course of the analysis period, we combined the top two EA categories and calculated AAMR’s in 2015 and 2021 for each of the 50 states and D.C., jointly stratified by EA and sex. Then, for each year-location-sex stratum, we calculated the AAMR ratio between adults aged 25–64 with at most a HS-level education and adults aged 25–64 with at least some college education as a measure of the disparity in drug overdose deaths by EA. We combined the top two EA categories due to small drug overdose death counts among Bachelors degree holders in many states.

The entire analysis was performed using R version 4.2.1 [31]. This study was deemed exempt from review by the University of California, Los Angeles Institutional Review Board.

Results

Figure 1 illustrates the estimated annual AAMRs and their annual changes for U.S. adults aged 25–64 stratified by EA and sex from 2015 to 2021. Table 1 in the Appendix presents these AAMR’s as well as the ASMR’s. For both men and women, AAMR’s increased most rapidly for persons with at most a HS-level education during the analysis period, and little to no temporal variation in AAMR’s was observed for Bachelors degree holders relative to the lower two EA categories, substantially widening pre-existing disparities in drug overdose deaths by EA. Among men with at most a HS-level education, the AAMR increased by over 150% during the analysis period (2015–2021) from 59.5 to 149.3 deaths per 100,000, while the corresponding AAMR for women more than doubled from 36.3 to 72.9 deaths per 100,000. Among men with some college education, the AAMR increased more than two-fold during the analysis period from 35.5 to 74.9 deaths per 100,000, while the corresponding AAMR for women rose from 25.6 to 43.7 deaths per 100,000. Notably, the annual AAMR trajectories for men with some college education and women with at most a HS-level education were very similar during the analysis period. The AAMR for male Bachelors degree holders ticked up marginally during the analysis period from 7.5 to 11.5 deaths per 100,000, and the AAMR for female Bachelors degree holders remained virtually unchanged during the analysis period, equal to 5.0 deaths per 100,000 in 2015 and 5.6 deaths per 100,000 in 2021.

In 2015, the AAMR for men with at most a HS-level education was nearly 8 times that of male Bachelors degree holders, and the AAMR for women with at most a HS-level education was over 7 times that of female Bachelors degree holders. By 2021, these disparities widened to a greater than 13-fold difference among men and a nearly 13-fold difference among women. For all EA categories,
male ASMR’s were highest in the 25–34 age group in 2015 but became highest in the 35–44 age group in 2021. Female ASMR’s were highest in the 45–54 age group for all EA categories in 2015, but in 2021, they became highest in the 35–44 age group for non-Bachelors degree holders and remained highest in the 35–44 age group for Bachelors degree holders.

During the analysis period, cumulative growth in both male and female national AAMR’s for non-Bachelors degree holders occurred chiefly in two bifurcated phases of growth. Initial growth occurred from 2015 to 2017 before the AAMR’s appeared to flatten between 2017 and 2019 as a result of declines in drug overdose deaths involving heroin and prescription opioids that offset increases in synthetic opioid-involved drug overdose deaths during this time period [2]. AAMR’s then increased again in 2020 and 2021 amid the COVID-19 pandemic, outpacing the initial growth phase and most prominently for men with at most a HS-level education. On the absolute scale, male AAMR’s increased more rapidly than female AAMR’s within each EA category, with the differential rate of growth inversely associated with EA. Most strikingly, for adults aged 25–64 with at most a HS-level education, the male AAMR exceeded the female AAMR by slightly over 60% in 2015, but in 2021, the male AAMR became over twice that of females.

Figure 1: Estimated annual age-adjusted drug overdose mortality rates and their annual changes per 100,000, jointly stratified by educational attainment and sex for U.S. adults aged 25–64, 2015 to 2021.
Figure 2 illustrates the ratio of the AAMR’s between adults with at least some college education and those with at most a high school diploma/GED credential in 2015 and 2021 for each location-sex stratum. The 2015 and 2021 ratios for the U.S. overall are included for reference. AAMR ratios were greater than 1.0 for each of the 204 considered year-location-sex strata, and in 94 out of the 102 (92.2%) location-sex strata, the 2021 AAMR ratio exceeded the 2015 AAMR ratio. Therefore, while there was substantial variation in the magnitude of EA-related disparities in drug overdose deaths across states at both the beginning and the end of the analysis period, evidenced by the substantial variability in the AAMR ratios, the cumulative widening of disparities in drug overdose deaths by EA during the analysis period at the national level was the result of a near-universal widening of these disparities at the state level.

Figure 2: Estimated ratios of age-adjusted drug overdose mortality rates between U.S. adults aged 25–64 with at least some college education and those without in the 50 states and D.C., stratified by sex.
Discussion

In this manuscript, we documented empirical evidence that the ongoing drug overdose epidemic, which has been rapidly intensified by the proliferation of illicitly manufactured synthetic opioids, especially fentanyl, poses disproportionate risks to populations of lower EA, especially among men. EA-related disparities in fatal drug overdoses gradually worsened in years prior to the COVID-19 pandemic, a trend that was exacerbated during the COVID-19 pandemic. Viewing the drug overdose epidemic from the vantage point of heterogeneous risk profiles between population subgroups with different levels of EA, and how it intersects with sex, offers valuable insights into which segments of the U.S. population are at greatest and increasing risk. Given strong correlations between EA and a plethora of social and economic outcomes [32, 33], our study findings indicate more broadly that drug users of lower socioeconomic status (SES) are at increased and increasing vulnerability to the increasingly toxic illicit drug supply, which is consistent with the expectation that drug users who face greater financial barriers to drug addiction treatment services or medications for opioid use disorder (OUD) are more likely to turn to the illicit drug market.

In response to U.S. travel restrictions and border closures enacted during the COVID-19 pandemic that made it harder to smuggle illegal drugs into the U.S. by land, drug cartels quickly adapted to their new operating environment, focusing more on the manufacturing of fentanyl-laced counterfeit prescription pills that are easier to conceal and transport into the U.S. by postal mail [34–36]. Indeed, biospecimen drug testing studies documented increased fentanyl consumption during the COVID-19 pandemic in 2020 [37, 38]. Furthermore, the social and economic toll levied by the COVID-19 public health crisis undoubtedly impacted low-SES communities disproportionately, whose residents were likely more susceptible to drug misuse to manage stress arising from COVID-19 pandemic-attributable financial hardship and the ensuing symptoms of anxiety and depression [39]. Disruptions to drug addiction care during the COVID-19 pandemic also further compounded existing access challenges for low-SES drug users. Increased social isolation during the COVID-19 pandemic as a result of government stay-at-home orders and social distancing likely led to an increased prevalence of solitary drug use [40, 41], incurring the added risk of overdosing without other persons available to administer potentially life-saving measures such as naloxone. In sum, during the COVID-19 pandemic, the combination of shifts in the composition of the U.S. illicit drug supply, increased psychosocial and economic stress, reduced access to drug addiction treatment services, and greater opportunities for using drugs alone contributed to both the unprecedented increases in drug overdose deaths and the accelerated widening of the disparities in drug overdose deaths by EA. Our study findings also clearly demonstrate that among adults aged 25–64, men experienced increasingly disproportionate risk of drug overdose mortality over the course of the analysis period, especially those with lower levels of EA.

Our study is subject to a number of limitations. First, our study focuses exclusively on the 25–64 age range, so our study findings may not reflect trends in the population aged 65+, which has also seen steep increases in drug overdose-attributable AAMR’s during the fentanyl era [12]. Second, EA on death certificates is subject to misreporting [16]. Third, our procedure to deterministically
impute the unknown EA categories of the examined drug overdose deaths with unreported EA but reported age assumed that the distribution of EA is independent of reporting status within year-jurisdiction-sex-age strata, an assumption that is unverifiable. Fourth, our procedure to deterministically impute the EA categories of drug overdose deaths occurring in Alabama and West Virginia that reported EA according to the 1989 SCoD revision-based EA reporting standard is subject to error, although the EA categories for the subset of these decedents reported as having completed at most 12th grade were presumably all (or virtually all) correctly imputed as HS/GED or Less. Because both imputation tasks were performed deterministically, the presented mortality rates do not reflect the uncertainty in the true EA categories for those drug overdose deaths whose EA category was unknown and imputed. However, given the small percentage (3.0%) of the examined drug overdose deaths with imputed EA category values, utilizing a more proper stochastic imputation procedure for each imputation task would not be expected to meaningfully alter the conclusions of our analysis.

Conclusions

Given the current unprecedented magnitude of drug overdose mortality in the U.S. and its upward trajectory, stemming the tide of fatal drug overdoses should be a top national public health priority. In the near term, expanding access to drug addiction treatment services, including medication-assisted treatment [33, 41] and telehealth care [45], as well as lowering logistical and financial barriers to medications for OUD [46], represent critical evidence-based policies toward that end. Investments in modern overdose surveillance systems [17], ideally nationally-linked, publicly accessible, and updated in real time, are also warranted to help promptly identify areas of greatest need and guide resource allocation. Our study findings demonstrate that U.S. policy makers must be cognizant of the already wide and widening disparities in drug overdose deaths by EA, a likely indicator of a rapidly increasing socioeconomic divide in drug overdose mortality more broadly. Demand-side policy strategies should consider the unique needs of low-SES drug users, especially among men, and tailor interventions accordingly. Investments pertaining to upstream socioeconomic determinants of drug use, including access to preventative care, mental health services, and stable housing, are not only important for drug overdose prevention [18] but are also important for the prevention of other socially-bound public health hazards.

References

Prevalence of Depression Symptoms in US Adults Before and During the COVID-19 Pandemic.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High School/GED or Less</td>
<td></td>
</tr>
<tr>
<td>25-34 years</td>
<td>64.9</td>
<td>33.4</td>
<td>85.2</td>
<td>44.3</td>
<td>98.6</td>
<td>50.0</td>
<td>92.3</td>
<td>50.2</td>
<td>93.8</td>
<td>49.7</td>
<td>131.8</td>
<td>67.0</td>
<td>151.5</td>
<td>76.8</td>
</tr>
<tr>
<td>35-44 years</td>
<td>62.2</td>
<td>38.2</td>
<td>81.6</td>
<td>45.5</td>
<td>94.3</td>
<td>50.2</td>
<td>94.2</td>
<td>50.2</td>
<td>102.6</td>
<td>51.6</td>
<td>141.6</td>
<td>71.3</td>
<td>169.6</td>
<td>85.5</td>
</tr>
<tr>
<td>45-54 years</td>
<td>60.5</td>
<td>42.7</td>
<td>75.4</td>
<td>47.9</td>
<td>86.5</td>
<td>50.5</td>
<td>84.6</td>
<td>45.3</td>
<td>90.3</td>
<td>47.5</td>
<td>119.7</td>
<td>57.5</td>
<td>144.8</td>
<td>68.7</td>
</tr>
<tr>
<td>55-64 years</td>
<td>44.7</td>
<td>27.0</td>
<td>54.6</td>
<td>30.1</td>
<td>62.3</td>
<td>32.2</td>
<td>65.2</td>
<td>31.9</td>
<td>73.1</td>
<td>33.3</td>
<td>92.6</td>
<td>39.6</td>
<td>115.0</td>
<td>49.6</td>
</tr>
<tr>
<td>Age-Adjusted</td>
<td>59.5</td>
<td>36.3</td>
<td>76.4</td>
<td>43.2</td>
<td>88.0</td>
<td>47.2</td>
<td>86.3</td>
<td>45.9</td>
<td>92.2</td>
<td>47.0</td>
<td>125.2</td>
<td>61.3</td>
<td>149.3</td>
<td>72.9</td>
</tr>
<tr>
<td>Some College Education</td>
<td></td>
</tr>
<tr>
<td>25-34 years</td>
<td>43.3</td>
<td>20.0</td>
<td>57.4</td>
<td>25.3</td>
<td>60.6</td>
<td>29.3</td>
<td>54.1</td>
<td>25.5</td>
<td>53.8</td>
<td>27.5</td>
<td>71.0</td>
<td>35.6</td>
<td>77.7</td>
<td>39.3</td>
</tr>
<tr>
<td>35-44 years</td>
<td>38.0</td>
<td>28.7</td>
<td>49.1</td>
<td>32.3</td>
<td>56.2</td>
<td>36.0</td>
<td>56.1</td>
<td>33.5</td>
<td>62.9</td>
<td>34.6</td>
<td>79.6</td>
<td>44.7</td>
<td>89.9</td>
<td>51.6</td>
</tr>
<tr>
<td>45-54 years</td>
<td>32.2</td>
<td>30.4</td>
<td>36.1</td>
<td>32.7</td>
<td>42.4</td>
<td>35.4</td>
<td>42.9</td>
<td>33.1</td>
<td>44.5</td>
<td>33.3</td>
<td>59.3</td>
<td>40.4</td>
<td>68.1</td>
<td>46.1</td>
</tr>
<tr>
<td>55-64 years</td>
<td>33.1</td>
<td>25.8</td>
<td>44.6</td>
<td>36.7</td>
<td>51.8</td>
<td>37.6</td>
<td>51.1</td>
<td>34.7</td>
<td>58.9</td>
<td>43.2</td>
<td>77.4</td>
<td>49.4</td>
<td>89.6</td>
<td>56.7</td>
</tr>
<tr>
<td>Age-Adjusted</td>
<td>35.2</td>
<td>23.1</td>
<td>47.7</td>
<td>36.2</td>
<td>51.5</td>
<td>37.2</td>
<td>49.1</td>
<td>35.0</td>
<td>55.2</td>
<td>36.4</td>
<td>73.5</td>
<td>40.9</td>
<td>86.1</td>
<td>53.2</td>
</tr>
<tr>
<td>Bachelor’s Degree or More</td>
<td></td>
</tr>
<tr>
<td>25-34 years</td>
<td>8.0</td>
<td>3.0</td>
<td>9.8</td>
<td>3.2</td>
<td>10.2</td>
<td>3.4</td>
<td>9.1</td>
<td>2.9</td>
<td>8.9</td>
<td>2.9</td>
<td>10.5</td>
<td>3.5</td>
<td>10.6</td>
<td>3.2</td>
</tr>
<tr>
<td>35-44 years</td>
<td>7.7</td>
<td>4.6</td>
<td>10.0</td>
<td>4.9</td>
<td>9.9</td>
<td>4.9</td>
<td>10.0</td>
<td>5.0</td>
<td>10.1</td>
<td>5.0</td>
<td>12.2</td>
<td>5.8</td>
<td>13.4</td>
<td>6.3</td>
</tr>
<tr>
<td>45-54 years</td>
<td>7.4</td>
<td>6.8</td>
<td>8.9</td>
<td>6.5</td>
<td>9.6</td>
<td>6.1</td>
<td>7.9</td>
<td>5.5</td>
<td>9.7</td>
<td>5.8</td>
<td>11.0</td>
<td>6.3</td>
<td>10.8</td>
<td>6.8</td>
</tr>
<tr>
<td>55-64 years</td>
<td>6.7</td>
<td>5.9</td>
<td>7.7</td>
<td>6.1</td>
<td>8.6</td>
<td>6.3</td>
<td>8.0</td>
<td>5.8</td>
<td>8.2</td>
<td>5.3</td>
<td>9.4</td>
<td>5.9</td>
<td>10.2</td>
<td>6.4</td>
</tr>
<tr>
<td>Age-Adjusted</td>
<td>7.5</td>
<td>5.0</td>
<td>9.3</td>
<td>5.1</td>
<td>9.7</td>
<td>5.0</td>
<td>8.9</td>
<td>4.7</td>
<td>9.4</td>
<td>4.6</td>
<td>11.0</td>
<td>5.3</td>
<td>11.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Table 1: Estimated annual age-specific and age-adjusted drug overdose mortality rates per 100,000 by educational attainment and sex for U.S. adults aged 25–64, 2015–2021.