Intravenous thrombolysis prior to endovascular treatment in posterior circulation occlusions; a MR CLEAN Registry study.

Authors

- R.R.M.M. Knapen, MD, Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+; School for Cardiovascular Diseases Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands;
- F.A.V. Pirson, MD PhD, Department of Neurology, Haaglanden MC, The Hague, The Netherlands;
- L.C.M. Langezaal, MD, Department of Radiology, St. Antonius Hospital, Nieuwegein, The Netherlands;
- J. Brouwer, MD, Department of Neurology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands;
- C.B. Majoie, MD PhD, Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands;
- B.J. Emmer, MD PhD, Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands;
- J.A. Vos, MD PhD, Department of Radiology, St. Antonius Hospital, Nieuwegein, The Netherlands;

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
- P.J. van Doormaal, MD, Department of Radiology, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands;
- A.J. Yoo, MD PhD, Department of Radiology/Neurointervention, Texas Stroke Institute, Dallas-Fort Worth, United States;
- A.A.E. Bruggeman, MD PhD, Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- G.J. Lycklama à Nijeholt, MD PhD, Department of Radiology, Haaglanden MC, the Hague;
- C. van der Leij, MD PhD, Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands;
- R.J. van Oostenbrugge, MD PhD, Department of Neurology, Maastricht University Medical Center+; School for Cardiovascular Diseases Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands;
- W.H. van Zwam, MD PhD, Department of Radiology & Nuclear Medicine, Maastricht University Medical Center+; School for Cardiovascular Diseases Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands;
- W.J. Schonewille, MD PhD, Department of Neurology, St. Antonius Hospital, Nieuwegein, The Netherlands;
- On behalf of the MR CLEAN Registry Investigators.
Short title

IVT + EVT vs EVT in posterior circulation strokes.

Corresponding author

R.R.M.M. (Bob) Knapen
Maastricht University Medical Centre +, Department of Radiology
P. Debyelaan 25, 6229HX, Maastricht, The Netherlands
Email: Robrecht.knapen@mumc.nl

Total words: 4370
Abstract

Background and aims
The effectiveness of intravenous thrombolysis (IVT) prior to endovascular treatment (EVT) has been investigated in randomized trials and meta-analyses. These studies mainly concerned anterior circulation occlusions. We aimed to investigate clinical, technical, and safety outcomes of IVT prior to EVT in posterior circulation occlusions in a nationwide registry.

Methods
Patients were included from the MR CLEAN Registry: a nationwide, prospective, multicenter registry of patients with acute ischemic stroke (AIS) due to a large intracranial vessel occlusion receiving EVT between 2014 and 2019. All patients with a posterior circulation occlusion were included. Primary outcome was a shift towards better functional outcome on the modified Rankin scale (mRS) at 90 days. Secondary outcomes were favorable functional outcome (mRS 0-3), occurrence of symptomatic intracranial hemorrhages (sICH), successful reperfusion (eTICI≥2B), first-attempt successful reperfusion, and mortality at 90 days. Regression analyses with adjustments based on univariate analyses and literature were applied.

Results
A total of 248 patients were included, who received either IVT (n=125) or no IVT (n=123) prior to EVT. Results show no differences in a shift on the mRS (acOR:1.04, 95%CI:0.61-1.76). Although sICH occurred more often in the IVT group (4.8% versus 2.4%), regression analysis did not show a significant difference (aOR:1.65, 95%CI:0.33-8.35). Successful reperfusion, favorable functional outcome, first-attempt successful reperfusion, and mortality did not differ between patients treated with and without IVT.
Conclusions

We found no significant differences in clinical, technical and safety outcomes between patients with a large vessel occlusion in the posterior circulation treated with or without IVT prior to endovascular therapy. Our results are in line with the literature on the anterior circulation.
Introduction

Intravenous thrombolysis (IVT) prior to endovascular treatment (EVT) is recommended in all patients with ischemic stroke due to an intracranial large vessel occlusion in the anterior circulation within 4.5 hours after symptom onset. (1) Although treatment with IVT between 4.5 and 9 hours may be considered in the presence of a mismatch on CT perfusion in the anterior circulation, there is no consensus about the indication for IVT prior to EVT in this late time window. (1)

Recent meta-analyses and randomized clinical trials (RCTs) found no superiority or non-inferiority in functional outcome and mortality at 90 days between patients with a large vessel occlusion (LVO) treated with and without IVT prior to EVT. (2-8) These studies mainly concerned patients with anterior circulation occlusions.

The BEST, BASICS, ATTENTION, and BAOCHE trials are RCTs on the effectiveness of EVT in patients with a basilar artery occlusion. (9-12) ATTENTION and BAOCHE showed a beneficial effect of EVT in patients treated within 12 hours and between 6-24 hours of symptom onset, respectively. However, no RCTs are available on the effectiveness of IVT in posterior circulation occlusions. (13) Two meta-analyses, based on cohort studies, showed lower incidences of intracranial hemorrhage in patients treated with IVT alone for posterior circulation stroke as compared to anterior circulation stroke. (14, 15) In patients with posterior circulation stroke compared to anterior circulation stroke treated with IVT, but without EVT, higher mortality rates were found. (15) When patients were treated with IVT prior to EVT, sICH rates were comparable and mortality rates were higher in the posterior circulation occlusion as compared to anterior circulation occlusion. (15)
Since the available data from the literature is limited, our study aimed to investigate the outcomes of patients with posterior circulation occlusion treated with EVT, with or without prior IVT in a large nationwide registry (MR CLEAN Registry).(16)

Methods

Design and participants

Patients were included from the MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands) Registry: a prospective, observational study in all EVT performing centers (n=18) in the Netherlands. The registry included patients treated with EVT for acute ischemic stroke due to large vessel occlusion between March 2014 and December 2018. The MR CLEAN Registry study protocol was evaluated by the medical ethics committee of the Erasmus University Medical Center and permission was granted to carry out the study as a registry. The need for obtaining informed consent was waived. For the current study, the following inclusion criteria were used: age ≥ 18 years, NIHSS ≥ 2; occlusion in the posterior circulation confirmed by CT-angiography (CTA). Patients in whom no intracranial access was obtained were excluded.

Outcome measures

The primary outcome was the modified Rankin Scale score at 90 days follow-up, ranging from 0 (no disability) to 6 (death). Secondary outcomes were favorable functional outcome (defined as mRS 0-3), functional independent outcome (defined as mRS 0-2), and the National Institute of Health Stroke Scale (NIHSS) score at 24-48 hours. Technical outcomes included procedure duration (defined as groin
puncture to reperfusion), first-attempt successful reperfusion and successful reperfusion. Safety outcomes were the occurrence of symptomatic intracranial hemorrhages (sICH) within 3 days after EVT, mortality at 90 days, and serious adverse events (e.g. stroke progression and pneumonia).

Imaging assessment
Intracranial hemorrhage was defined as symptomatic when the patient had neurological deterioration (at least 4 points increase on the NIHSS) in combination with a hemorrhage (according to the Heidelberg criteria), which was related to the clinical deterioration. An adverse event committee evaluated the medical reports and imaging to determine a sICH.

Recanalization status was scored on digital subtraction angiography (DSA) according to the extended Thrombolysis in Cerebral Ischemia (eTICI) by an independent core laboratory. This core laboratory consisted of eight interventional radiologists or neuroradiologists, all blinded to the clinical findings. The eTICI ranges from 0 (no reperfusion) to 3 (complete reperfusion). In this study, successful reperfusion was defined as eTICI $\geq 2B$ (50-90% reperfusion of affected area), excellent reperfusion as eTICI 3, and first-attempt successful recanalization as eTICI $\geq 2C$ (90-99% reperfusion of affected area) in combination with one attempt.

When only a DSA was performed because of recanalization, it was registered as early recanalization. When the DSA was made in only one direction, the maximum eTICI score was set at 2A. The posterior circulation Acute Stroke Prognosis Early Computed Tomography Score (PC-ASPECTS) was scored on non-contrast CT (NCCT), while the posterior circulation collateral score (PC-CS) was scored on baseline CTA by the core laboratory.
Statistical analysis

Baseline characteristics were presented using descriptive statistics. Dichotomous and ordinal parameters were compared using Pearson’s chi-squared test or Fisher’s exact test. Continuous variables were tested using independent-samples t-test or Mann-Whitney U test, after checking for the normality using histograms.

For the primary outcome, a multivariable ordinal logistics regression model was used to compare the use of IVT for a one-step shift on the mRS score at 90 days follow-up. Continuous variables were checked on normality of distribution of the residuals using Q-Q plots. When no normality was seen, the variable was transformed using a natural logarithm. After exponentiating the regression coefficient, relative percentages were calculated using the following formula: (exponentiate(coefficient) -1) *100%. Adjusted (a) odds ratios (OR) or beta estimates with 95% confidence intervals were used to present the regression model results.

All regression models were adjusted for potential confounders: age, sex, baseline NIHSS score, pre-mRS score (dichotomized 0-2 versus 3-5), diabetes mellitus, hypertension in patients’ history, systolic blood pressure when entering the hospital, the use of anticoagulation medication, the collaterals at CTA baseline, and the time between estimated large vessel occlusion and groin puncture. These confounders were chosen based on univariate analyses complemented with parameters observed in previous literature. All analyses were performed using RStudio (version 2022.07.2). The alpha was set at 5%.

Missing values
Original data were used for the descriptive analyses, whereas multiple imputations were used for the missing data before conducting the regression analyses. The complete list of variables used for imputation is described in Supplemental 1.

Subgroup analyses

An interaction term was calculated to assess the interaction between occlusion location and IVT on the mRS score at 90 days. Subgroup analyses were added exploratory. The same variables for adjustment were used as for the primary analysis, regardless of the group sizes.

The corresponding author had full access to all the data in this study and takes responsibility for its integrity and the data analysis. Source data will not be made available because of legislative issues on patient privacy. Detailed statistical analyses and analytic methods will be made available on reasonable request to the corresponding author. This study was conducted using the STROBE guidelines.

Results

Baseline characteristics

A total of 5768 patients were included in the MR CLEAN Registry, of which 264 patients had a posterior circulation occlusion. After applying the in- and exclusion criteria, a total of 248 patients were analyzed in the current study (Figure 1). Patients with IVT less often used anticoagulation prior to EVT, had lower pre-mRS scores, had faster onset to groin puncture times and more often showed early recanalization compared to the patients treated without IVT (Table 1).
Clinical outcome

There was no significant difference in the mRS score at 90 days between patients treated with IVT and without IVT (acOR:1.04, 95%CI:0.61-1.76). Also, no differences were seen in mortality and favorable functional outcome at 90 days, aOR:0.93 (95%CI:0.50-1.74), and aOR:0.80 (95%CI:0.43-1.49) respectively.

Technical outcome

Although patients treated with IVT prior to EVT had an on average shorter procedure time (56 vs 65 minutes, p =0.13), no significant differences were seen in the adjusted regression analysis after transforming the data (-13%, 95%CI:-27 – 3.7). Additionally, no differences were seen in first-attempt successful recanalization rates and successful recanalization rates (aOR:1.26, 95%CI:0.57-2.77 and aOR:0.70, 95%CI:0.37-1.32 respectively).

Safety outcome

In 47% of the patients treated without IVT and in 54% with IVT prior to EVT any SAE occurred (p=0.31). Symptomatic ICH was twice as often seen in patients treated with IVT prior to EVT (4.8% versus 2.4%), however, this difference was not statistically significant in regression analysis (aOR:1.65, 95%CI:0.33 – 8.35).

Subgroup analysis

There was a significant interaction between occlusion location and IVT on the mRS score at 90 days (p<0.00). In the subgroup analyses, IVT had a negative association with mRS score at 90 days (meaning higher mRS scores) in patients with an isolated posterior cerebral artery occlusion (acOR: 0.08, 95%CI: 0.00-0.72) (Supplemental
Figure 1). There was a trend towards a better functional outcome in patients with an isolated basilar artery occlusions treated with prior IVT (acOR: 2.28, 95%CI: 0.95-5.49).

Discussion

In this study, the use of IVT prior to EVT in patients with a posterior circulation occlusion did not lead to significant differences in clinical, technical, and safety outcomes.

Literature is scarce about the impact of IVT prior to EVT in patients with ischemic stroke due to posterior circulation occlusion. In the anterior circulation, multiple studies, including trials and registries, showed no superiority or non-inferiority in patients treated with IVT prior to EVT on functional outcome at 90 days.(2, 6, 17) No trials are performed yet on the effect of IVT prior to EVT in the posterior circulation.

In the BAOCHE, ATTENTION, and BEST trials 15%, 34%, and 27% of the patients received IVT respectively,(9, 11, 12) while 79% of patients in the BASICS trial received IVT.(10) Main reason for the difference is the treatment window. BAOCHE included patients between 6-24 hours after symptom onset, the ATTENTION up to 12 hours of estimated time of BAO (eBAO), and the BEST up to 8 hours after eBAO, while BASICS patients were included within 6 hours of eBAO. Another reason may be that BAOCHE, ATTENTION, and BEST included patients from China, where, to receive IVT, payment in advance is required.(9, 11, 12) In the Netherlands IVT is reimbursed, which may explain the higher rates of IVT in the MR CLEAN Registry.
The four above mentioned trials showed around 45% favorable functional outcome (mRS 0-3) in the EVT group. Similar results are presented in the current study, supplemental 2 gives an overview of favorable functional outcome in patients with only a BAO. Favorable functional outcome was seen in 44% in patients with BAO treated with IVT and 42% in patients not treated with IVT. Despite the lower pre-mRS in patients treated with IVT, no differences in favorable functional outcome were seen.

Subgroup analysis on occlusion location (supplemental 3) suggests that the potential benefit of IVT diminishes as the occlusion is more distally located when combined with EVT. Analyses were performed on a limited number of patients precluding strong conclusions, indicating the need for pooling data.

In 4.8% of the patients treated with IVT prior to EVT a sICH was seen. Comparable sICH rates were seen in the EVT groups of the BASICS (4.5%), ATTENTION (6%), BEST (8%), and BAOCHE (5%) trials.(9-12) However, these EVT groups include patients treated with and without IVT prior to EVT, while different sICH criteria were used.

Patients treated with IVT prior to EVT showed higher rates of early recanalization (17%) compared to patients treated without IVT prior to EVT (5.7%). These higher rates did not lead to differences in clinical outcome. The clinical outcome measure (mRS score at 90 days) may not be optimal to detect small differences in clinical outcomes, and a more sensitive outcome measure may be needed.

Our study has limitations. First of all, patients who recanalized after treatment with IVT alone were not included in the MR CLEAN Registry, since only EVT treated patients are included. This selection bias causes an underestimation of the effect of
IVT prior to EVT in patients with a BAO. Secondly, during the MR CLEAN Registry, many patients with basilar artery occlusion were included (when eligible) in the BASICS trial, causing also potential selection bias. However, this selection bias was probably limited, since a previous publication showed similar favorable functional outcome in patients treated within the MR CLEAN Registry compared to the BASICS trial.(18) Thirdly, our registry based on real-world data has the limitations of a non-randomized study: use of IVT was left to the treating physician and the numbers are small. In the American Heart Association (AHA) guidelines IVT is contraindicated in some patients using anticoagulation and with high systolic blood pressures(19); to minimize this effect analyses were adjusted for these potential confounders. Finally, in this study, thrombus characteristics, such as the length of the occlusion and thrombus density, were not taken into account in the analysis. However, the impact of these characteristics seems to be limited.(20)

Conclusion

We found no significant differences in clinical, technical and safety outcomes between patients with a large vessel occlusion in the posterior circulation treated with or without IVT prior to endovascular therapy. Our results are in line with the literature about the anterior circulation.
Acknowledgments

We thank all the investigators of the MR CLEAN (Multicenter Randomized Controlled
Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands)
Registry for their effort and contributions.

MR CLEAN Registry investigators:

Executive committee
Diederik W.J. Dippel¹; Aad van der Lugt²; Charles B.L.M. Majoie³; Yvo B.W.E.M.
Roos⁴; Robert J. van Oostenbrugge⁵; Wim H. van Zwam⁶; Jelis Boiten¹⁴; Jan Albert
Vos⁸

Study coordinators
Ivo G.H. Jansen³; Maxim J.H.L. Mulder¹,²; Robert- Jan B. Goldhoorn⁵,⁶; Kars C.J.
Compagne²; Manon Kappelhof³; Josje Brouwer⁴; Sanne J. den Hartog¹,²,⁴⁰; Wouter
H. Hinsenveld⁵,⁶

Local principal investigators
Diederik W.J. Dippel¹; Bob Roozenbeek¹; Aad van der Lugt²; Charles B.L.M. Majoie³;
Yvo B.W.E.M. Roos⁴; Bart J. Emmer³; Jonathan M. Coutinho⁴; Wouter J. Schonewille⁷;
Jan Albert Vos⁸; Marieke J.H. Wermer⁹; Marianne A.A. van Walderveen¹⁰; Adriaan
C.G.M. van Es¹⁰; Julie Staals⁵; Robert J. van Oostenbrugge⁵; Wim H. van Zwam⁶;
Jeannette Hofmeijer¹¹; Jasper M. Martens¹²; Geert J. Lycklama à Nijeholt¹³; Jelis
Boiten¹⁴; Sebastiaan F. de Bruijn¹⁵; Lukas C. van Dijk¹⁶; H. Bart van der Worp¹⁷; Rob
H. Lo¹⁸; Ewoud J. van Dijk¹⁹; Hieronymus D. Boogaarts²⁰; J. de Vries²²; Paul L.M. de
Kort²¹; Julia van Tuij²¹; Jo P. Peluso²⁶; Puck Fransen²²; Jan S.P. van den Berg²²;
Boudewijn A.A.M. van Hasselt; Leo A.M. Aerden; René J. Dallinga; Maarten Uyttenboogaart; Omid Eschgi; Reinoud P.H. Bokkers; Tobien H.C.M.L. Schreuder; Roel J.J. Heijboer; Koos Keizer; Lonneke S.F. Yo; Heleen M. den Hertog; Emiel J.C. Sturm; Paul J.A.M. Brouwers

Imaging assessment committee

Charles B.L.M. Majoie (chair); Wim H. van Zwam; Aad van der Lugt; Geert J. Lycklama à Nijeholt; Marianne A.A. van Walderveen; Marieke E.S. Sprengers; Sjoerd F.M. Jenniskens; René van den Berg; Albert J. Yoo; Ludo F.M. Beenen; Alida A. Postma; Stefan D. Roosendaal; Bas F.W. van der Kallen; Ido R. van den Wijngaard; Adriaan C.G.M. van Es; Bart J. Emmer; Jasper M. Martens; Lonneke S.F. Yo; Jan Albert Vos; Joost Bot; Pieter-Jan van Doormaal; Anton Meijer; Elyas Ghariq; Reinoud P.H. Bokkers; Marc P. van Proosdij; G. Menno Krietemeijer; Jo P. Peluso; Hieronymus D. Boogaarts; Rob Lo; Wouter Dinkelaar; Auke P.A. Appelman; Bas Hammer; Sjoert Pegge; Anouk van der Hoorn; Saman Vinke; Sandra Cornelissen; Christiaan van der Leij; Rutger Brans

Writing committee

Diederik W.J. Dippel (chair); Aad van der Lugt; Charles B.L.M. Majoie; Yvo B.W.E.M. Roos; Robert J. van Oostenbrugge; Wim H. van Zwam; Geert J. Lycklama à Nijeholt; Jelis Boiten; Jan Albert Vos; Wouter J. Schonewille; Jeannette Hofmeijer; Jasper M. Martens; H. Bart van der Worp; Rob H. Lo

Adverse event committee

Robert J. van Oostenbrugge (chair); Jeannette Hofmeijer; H. Zwenneke Flach
Trial methodologist
Hester F. Lingsma

Research nurses / local trial coordinators
Naziha el Ghannouti; Martin Sterrenberg; Wilma Pellikaan; Rita Sprengers;
Marjan Elfrink; Michelle Simons; Marjolein Vossers; Joke de Meris; Tamara
Vermeulen; Annet Geerlings; Gina van Vemde; Tiny Simons; Gert
Messchendorp; Nynke Nicolai; Hester Bongenaar; Karin Bodde; Sandra
Kleijn; Jasmijn Lodico; Hanneke Droste; Maureen Wollaert; Sabrina
Verheesen; D. Jeurrissen; Erna Bos; Yvonne Drabbe; Michelle Sandiman;
Nicoline Aaldering; Berber Zweedijk; Jocova Vervoort; Eva Ponjee; Sharon
Romviel; Karin Kanselaar; Denn Barning

Clinical/imaging data acquisition
Esmee Venema; Vicky Chalos; Ralph R. Geuskens; Tim van Straaten; Saliha
Ergezen; Roger R.M. Harmsma; Daan Muijres; Anouk de Jong; Olvert A.
Berkhemer; Anna M.M. Boers; J. Huguet; P.F.C. Groot; Marieke A. Mens;
Katinka R. van Kranendonk; Kilian M. Treurniet; Manon L. Tolhuisen; Heitor
Alves; Annick J. Weterings; Eleonora L.F. Kirkels; Eva J.H.F. Voogd; Lieve M.
Schupp; Sabine L. Collette; Adrien E.D. Groot; Natalie E. LeCouffe; Praneeta
R. Konduri; Haryadi Prasetya; Nerea Arrarte-Terreros; Lucas A. Ramos; Nikki
Boodt; Anne F.A.V Pirson; Agnetha A.E. Bruggeman

17
List of affiliations

Department of Neurology¹, Radiology², Public Health⁴⁰, Erasmus MC University Medical Center;
Department of Radiology and Nuclear Medicine³, Neurology⁴, Biomedical Engineering & Physics³⁹, Amsterdam UMC, University of Amsterdam, Amsterdam;
Department of Neurology⁵, Radiology⁶, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM);
Department of Neurology⁷, Radiology⁸, Sint Antonius Hospital, Nieuwegein;
Department of Neurology⁹, Radiology¹⁰, Leiden University Medical Center;
Department of Neurology¹¹, Radiology¹², Rijnstate Hospital, Arnhem;
Department of Radiology¹³, Neurology¹⁴, Haaglanden MC, the Hague;
Department of Neurology¹⁵, Radiology¹⁶, HAGA Hospital, the Hague;
Department of Neurology¹⁷, Radiology¹⁸, University Medical Center Utrecht;
Department of Neurology¹⁹, Neurosurgery²⁰, Radiology²⁷, Radboud University Medical Center, Nijmegen;
Department of Neurology²¹, Radiology²⁶, Elisabeth-TweeSteden ziekenhuis, Tilburg;
Department of Neurology²², Radiology²³, Isala Klinieken, Zwolle;
Department of Neurology²⁴, Radiology²⁵, Reinier de Graaf Gasthuis, Delft;
Department of Neurology²⁸, Radiology²⁹, University Medical Center Groningen;
Department of Neurology³⁰, Radiology³¹, Atrium Medical Center, Heerlen;
Department of Neurology³², Radiology³³, Catharina Hospital, Eindhoven;
Department of Neurology³⁴, Radiology³⁵, Medisch Spectrum Twente, Enschede;
Department of Radiology³⁶, Amsterdam UMC, Vrije Universiteit van Amsterdam, Amsterdam;
Department of Radiology³⁷, Noordwest Ziekenhuisgroep, Alkmaar;
Department of Radiology, Texas Stroke Institute, Texas, United States of America; Department of Radiology, Albert Schweitzer Hospital, Dordrecht.

Sources of Funding

The MR CLEAN Registry (Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke) was partly funded by Stichting Toegepast Wetenschappelijk instituut voor Neuromodulatie (TWIN), Erasmus MC University Medical Center, Maastricht University Medical Center, and Amsterdam University Medical Center.

Disclosures

CBLMM reports grants from the Netherlands Cardiovascular Research Initiative, an initiative of the Dutch Heart Foundation, European Commission, Healthcare Evaluation Netherlands, and Stryker (all paid to institution); and is a (minority interest) shareholder of Nicolab. BJE reports grants from leading the Change Healthcare Evaluation program, and TKI-PPP Grant Topsector lifesciences (all paid to institution); and participates as a representative of the UEMS Neuroradiology Dutch, and as Board member of the Dutch Society of Radiology. P-JvD reports consulting fees from Stryker, Siemens, and Stryker (all paid to institution); participates in the advisory board of DX Medical solutions; and is shareholder of DX Medical Solutions. AJY reports grants from Medtronic, Cerenovus, Penumbra, Stryker, and Genentech; holds stock options in Nico-lab; and is a consultant for Vesalio, Cerenovus, Penumbra, and Philips, all outside the submitted work. WHvZ reports speaker fees from Stryker, Cerenovus, and Nicolab, and consulting fees from...
Philips (all paid to institution); participated in the advisory boards of WeTrust (Philips) and ANAIS (Anaconda) (all paid to institution); and participated in the advisory boards of InEcxtremis (CHU Montpellier, Montpellier, France) and DISTAL (University Hospital Basel, Basel, Switzerland), studies for which no payments were received. All other authors declare no competing interests.
References

7. Fischer U, Kaesmacher J, Strbian D, Eker O, Cognard C, Plattner PS, et al. Thrombectomy alone versus intravenous alteplase plus thrombectomy in patients...

Tables

Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Treated without IVT (n=123)</th>
<th>Treated with IVT (n=125)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age – Median [IQR]</td>
<td>69</td>
<td>56-76</td>
<td>62</td>
</tr>
<tr>
<td>Male - n (%)</td>
<td>64</td>
<td>52</td>
<td>78</td>
</tr>
<tr>
<td>BMI – Median [IQR]±</td>
<td>26</td>
<td>23-29</td>
<td>26</td>
</tr>
<tr>
<td>Patients history – n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous stroke</td>
<td>27/120</td>
<td>23</td>
<td>19/125</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>23/120</td>
<td>19</td>
<td>14/125</td>
</tr>
<tr>
<td>Hypertension</td>
<td>63/118</td>
<td>53</td>
<td>61/124</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>27/116</td>
<td>23</td>
<td>26/122</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>20/120</td>
<td>17</td>
<td>11/123</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>20/121</td>
<td>17</td>
<td>23/125</td>
</tr>
<tr>
<td>Current smoking</td>
<td>27/84</td>
<td>32</td>
<td>26/93</td>
</tr>
<tr>
<td>Medication – n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiplatelet</td>
<td>36/119</td>
<td>30</td>
<td>32/123</td>
</tr>
<tr>
<td>Anticoagulation</td>
<td>24/118</td>
<td>20</td>
<td>6/122</td>
</tr>
<tr>
<td>Antihypertensive</td>
<td>68/116</td>
<td>59</td>
<td>56/122</td>
</tr>
<tr>
<td>Statin</td>
<td>36/118</td>
<td>31</td>
<td>34/121</td>
</tr>
<tr>
<td>Clinical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIHSS baseline – Median</td>
<td>17</td>
<td>9.3-29</td>
<td>15</td>
</tr>
<tr>
<td>Pre-mRS – n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>IQR</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>130-170</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Systolic blood pressure – median mmHg [IQR]

Course symptoms – n (%)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum from onset</td>
<td>56/116</td>
<td>48</td>
<td>65/123</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Progressive deficit</td>
<td>44/116</td>
<td>38</td>
<td>41/123</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Fluctuating deficit</td>
<td>16/116</td>
<td>14</td>
<td>17/123</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Imaging

Occlusion location – n (%)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intracranial VA</td>
<td>6/120</td>
<td>5.0</td>
<td>8/123</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>57/120</td>
<td>48</td>
<td>38/123</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>BA extending in PCA</td>
<td>38/120</td>
<td>32</td>
<td>54/123</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>PCA</td>
<td>15/120</td>
<td>13</td>
<td>17/123</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Non occlusive</td>
<td>4/120</td>
<td>3.3</td>
<td>6/123</td>
<td>4.9</td>
<td></td>
</tr>
</tbody>
</table>

PC-ASPECTS – n (%)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>4/121</td>
<td>3.3</td>
<td>2/124</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>5-7</td>
<td>11/121</td>
<td>9.1</td>
<td>6/124</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>8-10</td>
<td>106/121</td>
<td>88</td>
<td>116/124</td>
<td>94</td>
<td></td>
</tr>
</tbody>
</table>

PC-collaterals – n (%)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>14/120</td>
<td>12</td>
<td>19/122</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-7</td>
<td>64/120</td>
<td>53</td>
<td>61/122</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>8-10</td>
<td>42/120</td>
<td>35</td>
<td>42/122</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

- **Duration onset symptoms to groin in minutes** –
 - Median [IQR]: 360 [228-565], 234 [169-311] < 0.00
- **Duration eLVO to groin in minutes** – Median [IQR] $:
 - 300 [195-438], 207 [157-290] < 0.00
- **Door to groin in minutes** – Median [IQR] #:
 - 89 [48-146], 79 [57-105] 0.14
- **Performed procedure** – n (%) 0.01
 - DSA: 7 [5.7], 21 [17]
 - EVT: 116 [94], 104 [83]
- **Technique first attempt** – n (%)
 - Stent retriever: 65/115 [57], 66/100 [66] 0.20
 - Direct aspiration: 41/115 [36], 30/100 [30] 0.46
 - Transfer from primary: 45 [37], 59 [47] 0.12

± n=137, missing in 111 patients; * n=245, missing in 3 patients; ^ n=240, missing in 8 patients; $ n=231, missing in 17 patients; # n=235, missing in 13 patients.

IVT, intravenous thrombolysis; BMI, body mass index; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; VA, vertebral artery; BA, basilar artery; PCA, posterior cerebral artery; PC-ASPECTS, posterior circulation Alberta.
Stroke Program EarlyComputed Tomography score; eLVO, estimate large vessel occlusion; DSA, digital subtraction angiography; EVT, endovascular treatment.
<table>
<thead>
<tr>
<th></th>
<th>Treated without IVT (n=123)</th>
<th>Treated with IVT (n=125)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRS at 90 days – n (%)</td>
<td></td>
<td></td>
<td>0.59</td>
</tr>
<tr>
<td>0</td>
<td>9/118 7.6</td>
<td>8/118 6.8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10/118 8.5</td>
<td>13/118 11</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>21/118 18</td>
<td>20/118 17</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17/118 14</td>
<td>10/118 8.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7/118 5.9</td>
<td>9/118 7.6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3/118 2.5</td>
<td>8/118 6.8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>51/118 43</td>
<td>50/118 42</td>
<td></td>
</tr>
<tr>
<td>mRS 0-2 at 90 days – n (%)</td>
<td>40/118 34</td>
<td>41/118 35</td>
<td>1.00</td>
</tr>
<tr>
<td>mRS 0-3 at 90 days – n (%)</td>
<td>57/118 48</td>
<td>51/118 43</td>
<td>0.51</td>
</tr>
<tr>
<td>Mortality at 90 days – n (%)</td>
<td>51/118 43</td>
<td>50/118 42</td>
<td>1.00</td>
</tr>
<tr>
<td>NIHSS at 24-48 hours –</td>
<td>9 3-28</td>
<td>8 3-21</td>
<td>0.33</td>
</tr>
<tr>
<td>Median [IQR] *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post eTICI – n (%)</td>
<td>13/118 11</td>
<td>15/113 13</td>
<td>0.32</td>
</tr>
<tr>
<td>1</td>
<td>7/118 5.9</td>
<td>2/113 1.8</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>7/118 5.9</td>
<td>14/113 12</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>28/118 24</td>
<td>28/113 25</td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>13/118 11</td>
<td>10/113 8.9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50/118 42</td>
<td>44/113 39</td>
<td></td>
</tr>
<tr>
<td>Post eTICI ≥2B – n (%)</td>
<td>91/118 77</td>
<td>82/113 73</td>
<td>0.52</td>
</tr>
<tr>
<td>Post eTICI ≥2C – n (%)</td>
<td>63/118 53</td>
<td>54/113 48</td>
<td>0.47</td>
</tr>
<tr>
<td>Event</td>
<td>Count</td>
<td>Percentage</td>
<td>Count</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Post eTICI 3 – n (%)</td>
<td>50/118</td>
<td>39%</td>
<td>44/113</td>
</tr>
<tr>
<td>sICH – n (%)</td>
<td>3</td>
<td>2.4%</td>
<td>6</td>
</tr>
<tr>
<td>Stroke progression – n (%)</td>
<td>22</td>
<td>18%</td>
<td>21</td>
</tr>
<tr>
<td>Any SAE – n (%)</td>
<td>58</td>
<td>47%</td>
<td>68</td>
</tr>
<tr>
<td>Pneumonia – n (%)</td>
<td>14</td>
<td>11%</td>
<td>17</td>
</tr>
<tr>
<td>Duration of procedure in</td>
<td>65</td>
<td>56%</td>
<td>56</td>
</tr>
</tbody>
</table>

Minimum [IQR]^ minutes

* n=235, missing in 13 patients; ^ n=232, missing in 16 patients

IVT, intravenous thrombolysis; mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; eTICI, extended Thrombolysis In Cerebral Infarction; sICH, symptomatic intracranial hemorrhage; SAE, serious adverse event.
Table 3.

<table>
<thead>
<tr>
<th>Patients treated without IVT as first modality</th>
<th>EE</th>
<th>Unadjusted (95% CI)</th>
<th>Adjusted (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRS at 90 days*</td>
<td>cOR</td>
<td>0.99 (0.62 – 1.57)</td>
<td>1.04 (0.61 – 1.76)</td>
</tr>
<tr>
<td>mRS 0-2 at 90 days</td>
<td>OR</td>
<td>1.09 (0.64 – 1.84)</td>
<td>1.02 (0.54 – 1.93)</td>
</tr>
<tr>
<td>mRS 0-3 at 90 days</td>
<td>OR</td>
<td>0.84 (0.51 – 1.39)</td>
<td>0.80 (0.43 – 1.49)</td>
</tr>
<tr>
<td>Mortality at 90 days</td>
<td>OR</td>
<td>0.93 (0.56 – 1.55)</td>
<td>0.93 (0.50 – 1.74)</td>
</tr>
<tr>
<td>Post EVT eTICI</td>
<td>cOR</td>
<td>0.76 (0.48 – 1.19)</td>
<td>0.78 (0.47 – 1.28)</td>
</tr>
<tr>
<td>Successful recanalization</td>
<td>OR</td>
<td>0.67 (0.38 – 1.19)</td>
<td>0.70 (0.37 – 1.32)</td>
</tr>
<tr>
<td>(eTICI ≥ 2B)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent recanalization</td>
<td>OR</td>
<td>0.79 (0.47 – 1.33)</td>
<td>0.74 (0.41 – 1.34)</td>
</tr>
<tr>
<td>(eTICI 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any serious adverse event</td>
<td>OR</td>
<td>1.34 (0.81 – 2.21)</td>
<td>1.44 (0.82 – 2.54)</td>
</tr>
<tr>
<td>Symptomatic ICH</td>
<td>OR</td>
<td>2.02 (0.49 – 8.31)</td>
<td>1.65 (0.33 – 8.35)</td>
</tr>
<tr>
<td>Stroke progression</td>
<td>OR</td>
<td>0.93 (0.48 – 1.80)</td>
<td>0.98 (0.45 – 2.10)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>OR</td>
<td>1.23 (0.57 – 2.62)</td>
<td>1.09 (0.47 – 2.52)</td>
</tr>
<tr>
<td>First-attempt successful recanalization</td>
<td>OR</td>
<td>0.98 (0.50 – 1.94)</td>
<td>1.26 (0.57 – 2.77)</td>
</tr>
<tr>
<td>NIHSS at 24-48 hours</td>
<td>%</td>
<td>-6.8 (-30 – 25)</td>
<td>-1.5 (-26 – 31)</td>
</tr>
<tr>
<td>Procedure time</td>
<td>%</td>
<td>-13 (-26 – 2.2)</td>
<td>-13 (-27 – 3.7)</td>
</tr>
</tbody>
</table>

*: shift towards a better functional outcome on the full scale.

mRS, modified Rankin Scale; eTICI, extended Thrombolysis In Cerebral Infarction; ICH, intracranial hemorrhage; NIHSS, National Institutes of Health Stroke Scale.
Figures

Figure 1. Flow-chart of included patients in this study.

NIHSS, National Institutes of Health Stroke Scale; EVT, endovascular treatment; IVT, intravenous thrombolysis.
Figure 2. Distribution of the modified Rankin Scale. Multiple logistic regression with adjustment showed no significant difference between patients treated with intravenous thrombolysis prior endovascular treatment compared to patients treated with IVT prior EVT (adjusted common odds ratio 1.04 (95%CI:0.61 – 1.76)).

IVT, intravenous thrombolysis; mRS, modified Rankin Scale.
MR CLEAN Registry (March 2014 – December 2018)

- n=5768

- 5504 Exclusions:
 - 14: Age < 18 years
 - 9: Included other trials
 - 288: No MR CLEAN Trial Center
 - 5193: Anterior circulation

- Posterior circulation occlusions, n=264

- 16 Exclusions:
 - 4: NIHSS of 0 or 1
 - 12: No access possible

- Endovascular procedures included, n=248

- EVT, n=123

- EVT + IVT, n=125
Treated with IVT (n=125)

- mRS 0: 7%
- mRS 1: 11%
- mRS 2: 17%
- mRS 3: 9%
- mRS 4: 8%
- mRS 5: 7%
- mRS 6: 42%

Treated without IVT (n=123)

- mRS 0: 8%
- mRS 1: 9%
- mRS 2: 18%
- mRS 3: 14%
- mRS 4: 6%
- mRS 5: 3%
- mRS 6: 43%