Trends in congenital clubfoot prevalence and co-occurring anomalies during 1994-2021 in Denmark: A nationwide register-based study of 1,315,282 live born infants

PAULA L. HEDLEY*, ULRIK LAUSTEN-THOMSEN3, KRISTIN M. CONWAY5, KLAUS HINDSØ4, PAUL A. ROMITTI1,5, MICHAEL CHRISTIANSEN1,6

1Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark

2Brazen Bio, Los Angeles, California, USA

3Department of Neonatology, University Hospital Rigshospitalet, Copenhagen, Denmark

4Pediatric Section, Department of Orthopedic Surgery, University Hospital Rigshospitalet, Copenhagen, Denmark

5Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, USA

6Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark

Word Counts

Abstract (Word Count=248)

Introduction (Word Count=300)

Manuscript – including Abstract and Introduction (Word Count=2791)

Corresponding author:
Paula L. Hedley*, PhD, MPH
Department for Congenital Disorders
Statens Serum Institut
5 Artillerivej DK2300S
Copenhagen, Denmark
Telephone: +45 32 68 81 92; E-mail: phy@ssi.dk

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background and purpose: Congenital clubfoot is a common musculoskeletal anomaly, with a suspected multifactorial etiopathogenesis. To begin examining its etiopathogenesis in a nationwide Danish population, liveborn infants with clubfoot were ascertained to classify co-occurring congenital anomalies, estimate annual prevalence, and compare occurrence with maternal smoking rates, a commonly reported risk factor.

Patients and methods: This case-cohort study used data from the Danish National Patient Register and Danish Civil Registration System to identify 1,315,282 liveborn infants delivered during 1994–2021 in Denmark to Danish parents. Among these, 2,358 infants (65.1% male) were ascertained with clubfoot and classified as syndromic (co-occurring chromosomal, genetic, or teratogenic syndromes) and nonsyndromic (isolated or co-occurring multiple congenital anomalies [MCA]). Annual prevalence estimates and corresponding 95% confidence intervals (CIs) for children with nonsyndromic clubfoot were estimated using Poisson regression and compared with population-based, maternal annual smoking rates obtained from publicly available resources.

Results: Infants most often presented with nonsyndromic clubfoot (isolated=84.6%; MCA=10.9%); limb and heart anomalies were the most frequently identified MCAs. Prevalence (per 1,000 liveborn infants) was 1.52 (CI 1.45 – 1.58) for isolated and 0.19 (CI 0.17 – 0.22) for MCA clubfoot. Prevalence estimates for both isolated and MCA clubfoot remained stable during the study period, despite marked decreases in population-based maternal smoking rates.

Interpretation: From 1994-2021, prevalence of nonsyndromic clubfoot in Denmark was reasonably stable. Reduction in population-level maternal smoking rates did not seem to impact prevalence estimates. Ascertainment and characterization of this cohort provides a population-based clinical and biological resource for etiopathogenic investigations.

Key words:

Clubfoot, Talipes equinovarus, Congenital anomalies, Epidemiological monitoring, Neonatal biobanking
Introduction

Congenital talipes equinovarus (clubfoot) is the most common musculoskeletal anomaly affecting 1-2 per 1000 newborns (1). Males are twice as likely to be affected, and bilateral presentation is slightly more frequent than unilateral presentation (1). The most common treatment for clubfoot is serial stretching and casting (Ponseti treatment) (2); tenotomy may be required as part of this treatment (3). Untreated clubfoot results in serious disability (3).

Approximately 80% of individuals with clubfoot present as isolated; the remainder present with other congenital anomalies (CAs), including syndromic (chromosomal, genetic, or teratogenic) or nonsyndromic (multiple CAs [MCAs]) phenotypes (4). Clubfoot presenting with neuromuscular anomalies (e.g., neural tube defects, arthrogryposis), bilateral renal agenesis, and Potter sequence are considered secondary to these anomalies (4).

Clubfoot etiopathogenesis is poorly understood, but likely caused by a combination of gene variants and environmental (broadly defined) exposures (5). Excess of clubfoot among males and certain racial/ethnic groups (6), together with the proportion of bilateral diagnoses, suggest strong genetic contributions. Additionally, evidence of a genetic component among individuals with isolated clubfoot is suggested by the heritability of 30% estimated in a Danish twin study (5). Several environmental exposures have also been associated with clubfoot, most consistently maternal cigarette smoking (7). Furthermore, even with correction in infancy, the varying propensity of relapse observed among children provides additional evidence that clubfoot has a heterogenous etiopathogenesis (8).

Herein, we present our use of nationwide registers in Denmark to ascertain clubfoot diagnoses among live births during 1994-2021. We describe CAs co-occurring with clubfoot and estimate annual prevalence during this period as well as during a restricted period (2010-2021), following establishment of clubfoot specialist centres (9). We also compare prevalence estimates with population-based, maternal annual smoking rates. Characterization of our cohort provides a nationwide resource for etiopathogenic investigations and life course surveillance of clinical outcomes.

Patients and Methods

The Danish Biobank Register contains information from the Danish Civil Registration System (date of birth, country of birth, and country of birth of both parents) and the Danish National Patient Register (diagnostic codes and dates of diagnosis) for all individuals with specimens stored in the Danish National Biobank. Using the Danish Biobank Register online interface (10), we ascertained the number of infants, born during 1st January 1994 through 31st December 2021 and diagnosed with congenital clubfoot (ICD-10-DK: DQ660 – talipes equinovarus or DQ663B – clubfoot, unspecified) within one year of birth using data from individuals with a dried blood spot specimen (DBSS), taken for neonatal screening and stored at the Danish Neonatal Screening Biobank (DNSB). Although terminations of pregnancy, fetal deaths, and very early neonatal deaths (deaths within the first 24 hours of life) are naturally excluded, the coverage for DNSB in Denmark is close to 100% (11); consequently, our study sample represents a nationwide cohort of all infants alive at time of screening (days 5–7 in 1994-2008, and days 2-3 in 2009-2021).

To reduce etiopathogenic heterogeneity, case children diagnosed with neural tube defects (ICD-10-DK: DQ00, DQ01, DQ05), bilateral renal agenesis (ICD-10-DK: DQ60.1), Potter sequence (ICD-10-DK: DQ60.6), or arthrogryposis multiplex congenita (ICD-10-DK: DQ74.3) were excluded, because clubfoot secondary to these diagnoses would be considered etiopathogenically different from primary (idiopathic) clubfoot (4). The cohort was also limited to children born in Denmark to Danish parents (both parents born in Denmark).
Statistics

Eligible, congenital clubfoot case children were classified as isolated (no additional, major CA) or presenting with co-occurrence of major CAs, using a hierarchical grouping of chromosomal anomalies, genetic syndromes, teratogenic syndromes, and nonsyndromic, major anomalies (ICD-10-DK codes shown in Supplementary Table 1). Frequencies and proportions for descriptive characteristics of each group were calculated. Subsequent analyses were restricted to children with nonsyndromic clubfoot (i.e., isolated clubfoot and clubfoot with MCAs).

A trend analysis was performed using Poisson regression for isolated and MCA clubfoot cases. Pearson correlation was performed to assess the relationship between numerical variables. Prevalence of clubfoot was estimated by dividing the total number of infants diagnosed with clubfoot by the total number of infants sampled for neonatal screening. Annual trends, since the establishment of clubfoot specialist centres in Denmark (2010-2021) (9), of the prevalence of clubfoot were examined using Poisson regression. Results from the Poisson regression model were used to estimate prevalence rate ratios (PRRs) and 95% confidence intervals (CIs).

To enable comparison with previous studies, annual counts of liveborn children with nonsyndromic clubfoot from the EUROCAT Danish sub-population (The Region of Southern Denmark) were extracted (12). Furthermore, population data and data pertaining to municipal area in km² were extracted from Statistics Denmark (13), from 2022, to assess the median (range) population density of municipalities in The Region of Southern Denmark and throughout Denmark.

With maternal smoking during pregnancy repeatedly reported as a risk factor for clubfoot, prevalence estimates were compared with population-based, annual maternal smoking rates from 1999-2021, which were extracted from the Medical Birth Register using the publicly available online interface esundheds.dk (14).

All analyses were performed using R version 4.2.2.

Ethics and potential conflicts of interest

Per Danish law and regulations, no formal approval or review of ethics were required for our study as individual patient data were not included. Data were retrieved from publicly available sources, which adhere to General Data Protection Regulations and limits reporting of data to groups greater than five (10). No competing interests were declared.

Results

During 1994-2021, 1,315,282 live-born infants delivered to Danish parents were sampled for neonatal screening in Denmark. There were no diagnoses of anencephaly, encephalocele, bilateral renal agenesis, or Potter sequence identified among the case children. After excluding case children with spina bifida (n=32), arthrogryposis multiplex congenita (n=40), or with co-occurring spina bifida and arthrogryposis multiplex congenita (n=1), 2,358 (65.1% male) case children with primary clubfoot were ascertained. Phenotype classification of case children showed 1,995 (84.6%) infants with isolated clubfoot, 45 (1.9%) with a chromosomal anomaly, 57 (2.4%) with a genetic syndrome, five (0.2%) with a teratogenic syndrome, and 256 (10.9%) with at least one major CA in another organ system (Table 1, Figure 1), the most frequent of which were limb (n=121; 47.3%) and cardiac (n=59; 23.0%) anomalies (Table 1). Restricting case children to those with nonsyndromic clubfoot (Figure 1), produced an overall prevalence (per 1,000 livebirths) of 1.71 (CI 1.64 – 1.78) (Table 1), with higher estimates for males (2.16, CI 2.05 – 2.27) than females (1.24, CI 1.15 –
Trend analysis showed no statistically significant change in annual prevalence across the study period (data not shown). Similarly, restricting the analysis to 2010-2021 (the years following the implementation of specialized clubfoot treatment centres) showed that the prevalence estimates for both isolated and MCA clubfoot were not significantly associated with the year of birth, indicating a relatively stable prevalence rate (Table 2).

Comparison of nationwide prevalence estimates for liveborn children with nonsyndromic clubfoot with those from the Region of Southern Denmark included in EUROCAT (the European network of congenital anomalies registers) showed that the region of Southern Denmark had a lower prevalence of nonsyndromic clubfoot than our nationwide estimate (1.14, CI 0.97 – 1.34 vs 1.71, CI 1.64 – 1.78, respectively). The annual prevalence estimates for nonsyndromic clubfoot for both the Region of Southern Denmark and Denmark as a whole are shown in Figure 3. Additionally, comparison between the population density of the municipal centres of Denmark showed that The Region of Southern Denmark had a lower median population density (persons/km²) than the municipal centres in Denmark as a whole (median 81, range 29 – 680 vs median 121, range 15 – 12,030, respectively).

As anti-tobacco policies have been adopted and implemented in Denmark, maternal smoking has dropped continuously over the past 20 years (Supplementary Figure 1) with reported maternal smoking and year of birth being negatively correlated (r = -0.99 (CI -0.99 – -0.97)). As such, maternal smoking and year of birth were modelled separately. The rate of maternal smoking from 1999-2021 was not associated with either isolated or MCA clubfoot (Table 2).

Discussion

For the birth period 1994-2021, we ascertainment 2,358 liveborn infants with primary clubfoot of which 2,251 presented with nonsyndromic clubfoot. The overall prevalence (per 1,000 live births) for nonsyndromic clubfoot during this birth period was 1.71. This estimate is higher than the corresponding estimate of 1.14 reported to EUROCAT for the sub-population in The Region of Southern Denmark that covers 21% of the Danish population (12). This discrepancy in prevalence may reflect true regional and/or ethnic differences, as our cohort was a nationwide sample limited to live births delivered in Denmark to Danish parents. Furthermore, as data on postural clubfoot was not available from the Danish Biobank Register, we did not specifically exclude these cases, which may have increased the number of miscategorized cases in our cohort.

As population density (persons/km²) was positively associated with clubfoot prevalence in a previous Danish study (15), we compared the population density of the municipal centres in The Region of Southern Denmark with the municipal centres in Denmark as a whole. The higher population density for Denmark as a whole may explain, in part, the differences in prevalence reported between our study and the Danish sub-population (12). Our higher estimated prevalence cannot be explained by differences in delivery types included in each respective study. Because the infant would have had to survive to be sampled for neonatal screening, we did not have data on clubfoot among neonatal deaths that occurred within 24 hours of birth (2.4/1,000 deaths in Denmark during 1994-2021) (14). These very early neonatal deaths would have been included as liveborn case children in the Danish subpopulation of EUROCAT (12). Despite these methodologic differences, the comparison between our population and the EUROCAT Danish subpopulation indicates a reasonable overlap between annual prevalence estimates (Figure 3).

Fewer than one-half of the proportion of clubfoot cases in this study presented with a chromosomal anomaly when compared to a EUROCAT study (4) and a French study (16). In particular, both previous
studies saw a larger proportion of trisomy 18 and trisomy 13 cases. The differences in contributing chromosomal anomalies between studies probably reflects our inability to include clubfoot diagnoses among fetal losses [stillbirths [4.2/1,000 of all births in Denmark during 1994-2021] (14), as well as spontaneous abortions and terminations of pregnancy [0.5/1,000 of all births in Denmark during 1994-2021 occurring between gestational age 12 weeks 0 days to 21 weeks 6 days] (14)] and early neonatal deaths prior to sampling in this study. Also, case children with teratogenic syndrome cases were rare in our cohort precluding comparisons with other studies. Additionally, we excluded case children with clubfoot secondary to arthrogryposis, spina bifida, anencephaly, encephalocele, Potter sequence, and renal agenesis (4,6), making comparisons to studies which did not exclude such cases (16) complicated. Furthermore, our cohort contained proportionally more case children with MCAs than those identified in the EUROCAT study (4). We identified additional limb anomalies to be the most frequently co-occurring MCA, followed by congenital heart defects.

Multiple pathways are involved in the development of the lower limb. Consequently, several risk factors have been associated with clubfoot; male sex (4,6), maternal smoking (17), and genetics (5) are the risk factors with the most robust evidence of association (18). Multiple genes including the homeobox (HOX) signalling genes as well as genes in the PITX-TBX4 pathway have been associated with clubfoot (19). Maternal obesity (6,7), amniocentesis or chorionic villus sampling (7,20), population density (15), and SSRI exposure (7,21), have also been associated with an increased risk of delivering an infant with clubfoot. We were able to evaluate sex and maternal smoking rates in our population and observed, as others have reported, that clubfoot occurs more frequently in males than females (4,7,22). Maternal smoking rates have decreased considerably since 1999 (Supplementary Figure 1) and were significantly correlated with year of birth, but not with prevalence of congenital clubfoot. Other risk markers, for instance a reduction in SSRI use in pregnancy that has been reported between 2009 and 2016 (23), may also contribute to variation in clubfoot prevalence over time. However, it is worth noting that a Danish study assessing the risk of congenital anomalies among children born to women who redeemed their prescription for SSRIs during pregnancy reported no association with either a congenital anomaly of the limb generally (24), or clubfoot specifically (25).

A limitation of our study is that, by examining children alive and well at the time of sampling for neonatal screening, we are unable to report the prevalence of clubfoot among fetal and early neonatal deaths. However, the children ascertained in this study represent the population utilizing the Danish healthcare system (clubfoot treatment is not initiated before the child is old enough to be registered in the DNSB), it is, therefore, important to characterize this population. Another limitation is that these register data have not been validated, as done in EUROCAT, consequently there may be a small portion of children reported with clubfoot (ICD-10-DK codes DQ660 and DQ663B) that were not diagnosed with congenital clubfoot (4,22). This reflects a clinical reality, in that these are the children referred to specialized care on the basis of their clinical presentation and is not expected to materially alter the findings of the study. Furthermore, an assessment of clubfoot registration in the Danish National Patient Register compared to the number of isolated clubfoot cases reported to the Register of Inborn Malformations (operative from 1983-1994) showed that less than 1% were not registered in the Danish National Patient Register (15). Additional limitations of the study were the inability to examine laterality, familial occurrence, or other potential risk factors as these data were not available through the Danish Biobank Register. Lastly, although twins occurred at a rate of 3.8% among live births during the study period, we could not distinguish between singleton and multiple births in our cohort.
In conclusion, the use of the Danish National Patient Register provides complete nationwide coverage with specific focus on individuals who have a DBSS stored at the DNSB. These data are captured within a real-world clinical care setting without risk of ascertainment bias and provide access to diagnostic data for virtually all infants born in Denmark, along with the DBSS for these infants. Additionally, Danish personal identification numbers enable the linking of these data across the many, extensive national registers.

The annual prevalence of clubfoot was relatively stable over three decades and remained stable following the establishment of four clubfoot specialized centres in 2010. The characterization of this nationwide clubfoot cohort provides a resource for future etiopathogenic investigations and life course surveillance of clinical outcomes.

Author contributions
PLH and MC conceived of the study, PAR, ULT, and KH contributed to the design of the study, PLH contributed substantially to the acquisition of data, performed the statistical analysis, and drafted the article, ULT, KMC, KH, PAR, and MC critically reviewed the article draft, and all authors contributed to the interpretation of results.

Acknowledgments
The authors are grateful to Dr Marie Bækvad-Hansen from the Department for Congenital Disorders, Statens Serum Institut, for help in clarifying practices at the Danish Neonatal Screening Program and Dr Bartlomiej Wilkowski and Dr Steven Chong at the Department of Supply / Digital Infrastructure, Statens Serum Institut for guidance and assistance in using the Danish Biobank Register online interface.

References

Table 1: The number and prevalence per 1,000 infants with congenital clubfoot associated with syndromic and nonsyndromic clubfoot cases diagnosed in Denmark during 1994 – 2021. Diagnoses were assessed hierarchically in the order shown in Supplementary Table 1.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>N</th>
<th>Prevalence per 1000 (95% CI)</th>
<th>% of group</th>
<th>% of Primary Clubfoot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Clubfoot</td>
<td>2,358</td>
<td>1.79 (1.72 – 1.87)</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>Syndromic Clubfoot</td>
<td>107</td>
<td>0.08 (0.07 – 0.10)</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Chromosomal</td>
<td>45</td>
<td>0.03 (0.05 – 0.05)</td>
<td>100.0</td>
<td>1.9</td>
</tr>
<tr>
<td>Down syndrome (trisomy 21)</td>
<td>5</td>
<td>0.03 (0.05 – 0.05)</td>
<td>11.1</td>
<td>0.002</td>
</tr>
<tr>
<td>Genetic Syndrome</td>
<td>57</td>
<td>0.04 (0.03 – 0.06)</td>
<td>100.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Osteochondrodysplasias</td>
<td>9</td>
<td>15.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ehlers-Danlos syndrome</td>
<td>5</td>
<td>8.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teratogenic Syndrome</td>
<td>5</td>
<td>0.004 (0.001 – 0.009)</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Nonsyndromic Clubfoot</td>
<td>2,251</td>
<td>1.71 (1.64 – 1.78)</td>
<td>98.1</td>
<td></td>
</tr>
<tr>
<td>Isolated Clubfoot</td>
<td>1,995</td>
<td>1.52 (1.45 – 1.58)</td>
<td>84.6</td>
<td></td>
</tr>
<tr>
<td>MCA Clubfoot</td>
<td>256</td>
<td>0.19 (0.17 – 0.22)</td>
<td>100.0</td>
<td>10.9</td>
</tr>
<tr>
<td>(M.1) Congenital heart anomalies</td>
<td>59</td>
<td>23.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M.2) Central nervous system anomalies – M.1</td>
<td>17</td>
<td>6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M.3) Renal and urinary tract anomalies – M.1-2</td>
<td>13</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M.4) Orofacial anomalies – M.1-3</td>
<td>11</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M.5) Limb anomalies – M.1-4</td>
<td>121</td>
<td>47.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M.6) Genital anomalies – M.1-5</td>
<td>16</td>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M.7) Gastrointestinal anomalies – M.1-6</td>
<td>7</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M.8) Eye anomalies – M.1-7</td>
<td>6</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M.9) Other anomalies – M.1-8</td>
<td>6</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI: confidence interval, MCA: Multiple Congenital Anomalies.
Table 2: Crude and adjusted (for infant sex) prevalence rate ratios for isolated clubfoot and clubfoot with multiple congenital anomalies by year of birth and maternal smoking for the years following implementation of specialized clubfoot treatment centres in Denmark. 95% confidence interval ranges are presented in brackets and significance levels are indicated (* p<0.05, ** p<0.01, *** p<0.001).

Isolated Clubfoot (2010-2021)

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>PRR (95% CI)</th>
<th>PRR (95% CI)</th>
<th>PRR (95% CI)</th>
<th>aPRR (95% CI)</th>
<th>aPRR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex: Male</td>
<td>1.76 ***</td>
<td>1.76 ***</td>
<td>1.75 ** *</td>
<td>1.76 ***</td>
<td>1.75 ***</td>
</tr>
<tr>
<td></td>
<td>(1.52 – 2.04)</td>
<td>(1.52 – 2.04)</td>
<td>(1.52 – 2.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of birth</td>
<td>0.99</td>
<td>0.99</td>
<td>0.97</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>(0.95 – 1.02)</td>
<td>(0.97 – 1.00)</td>
<td>(0.97 – 1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal smoking rate</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(1.00 – 1.00)</td>
<td>(1.00 – 1.00)</td>
<td>(1.00 – 1.00)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCA Clubfoot (2010-2021)

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>PRR (95% CI)</th>
<th>PRR (95% CI)</th>
<th>PRR (95% CI)</th>
<th>aPRR (95% CI)</th>
<th>aPRR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex: Male</td>
<td>2.30 ***</td>
<td>2.30 ***</td>
<td>2.25 ** *</td>
<td>2.30 ***</td>
<td>2.25 ** *</td>
</tr>
<tr>
<td></td>
<td>(1.37 – 4.01)</td>
<td>(1.37 – 4.01)</td>
<td>(1.34 – 3.94)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year of birth</td>
<td>0.96</td>
<td>0.96</td>
<td>0.97</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>(0.88 – 1.04)</td>
<td>(0.89 – 1.03)</td>
<td>(0.89 – 1.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal smoking rate</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>(1.00 – 1.00)</td>
<td>(1.00 – 1.00)</td>
<td>(1.00 – 1.00)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aPRR: adjusted prevalence rate ratio, CI: confidence interval, MCA: multiple congenital anomalies, PRR: prevalence rate ratio.
Figure legends

Figure 1: Distribution of clubfoot phenotypes within the Danish population, 1994-2021. Number of case children overall and for each sex are indicated for all groups. Prevalence (per 1000 live births) estimates and 95% confidence intervals are shown for the Primary, Nonsyndromic, Isolated, and Multiple Congenital Anomalies phenotype groups.

Figure 2: Temporal trends in annual prevalence of nonsyndromic clubfoot for infants sampled for neonatal screening in Denmark. Females (red), males (blue), and all infants (orange). The shaded ribbons represent the 95% confidence interval. Vertical lines represent changes in routine care provided for congenital clubfoot cases. During 1994-2005, operative care was provided for all cases; during 2005-2008 parents were given the option of choosing between operative care and the Ponseti method of serial stretching and casting. From 2008, the Ponseti method became the primary treatment option used for all clubfoot cases and in 2012 four specialized treatment centres for the treatment of clubfoot cases were established (9).

Figure 3: The trend in annual prevalence of nonsyndromic clubfoot for live born infants sampled for neonatal screening in Denmark (red) and the Danish EUROCAT subpopulation (blue). The shaded ribbons represent the 95% confidence interval. Vertical lines represent changes in routine care provided for congenital clubfoot cases. Between 1994 and 2005 operative care was provided for all cases, between 2005 and 2008 parents were given the option of choosing between operative care and the Ponseti method of serial stretching and casting. From 2008 the Ponseti method became the primary treatment option used for all clubfoot cases and in 2012 four specialized treatment centers for the treatment of clubfoot cases were established (9).
Figure 1

All
N = 2,431
Males = 1,571
Females = 860

Secondary
N = 73
Males = 37
Females = 36

Primary

All (N) = 2,358
[1.79 (1.72 - 1.87)]
Males (N) = 1,534
[2.27 (2.16 - 2.39)]
Females (N) = 824
[1.29 (1.20 - 1.38)]

Nonsyndromic

All (N) = 2,251
[1.71 (1.64 - 1.78)]
Males (N) = 1,458
[2.16 (2.05 - 2.27)]
Females (N) = 793
[1.24 (1.15 - 1.33)]

Syndromic

N = 107
Males = 76
Females = 31

Chromosomal

N = 45
Males = 35
Females = 10

Genetic

Syndrome

N = 57
Males = 37
Females = 20

Teratogenic

Syndrome

N = 5
Males = < 5
Females = < 5

Isolated

All (N) = 1,995
[1.51 (1.45 - 1.58)]
Males (N) = 1,292
[1.91 (1.81 - 2.02)]
Females (N) = 703
[1.10 (1.03 - 1.18)]

Multiple

congenital
anomalies
(MCA)

All (N) = 256
[0.19 (0.17 - 0.22)]
Males (N) = 166
[0.25 (0.21 - 0.29)]
Females (N) = 90
[0.14 (0.11 - 0.17)]
Figure 3

Operative care
Parent choice
Parent treatment
Special Planning: Four specialised centres

Prevalence per 1000

Year

DK EUROCAT:DK