Value of 3D-echocardiography to improve prediction of mitral valve reoperation in patients with congenital mitral valve disease

Nora Langa,d, Steven J. Staffa, David Zurakowskib, Francesca Sperottoa, Melinda Sheaa, Christopher W. Bairdc, Sitaram Emanic, Pedro J. del Nidoc, Gerald R. Marxa

Department of Cardiologya, Department of Surgeryb, Department of Anesthesiology, Critical Care and Pain Medicineb, and Department of Cardiovascular Surgeryc, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
Department of Pediatric Cardiologyd, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

\textbf{Short title:} Prediction of mitral valve reoperation by 3DE

\textbf{Total word count (including title page, abstract, references, tables, and figure legends):} 7095 words

\textbf{Corresponding authors:}
Gerald R. Marx, MD
Department of Cardiology
Boston Children’s Hospital
300 Longwood Avenue
Boston, MA 02115
Email: Gerald.marx@cardio.chboston.org

Nora Lang, MD, PhD
Department of Pediatric Cardiology
University Heart & Vascular Center Hamburg
University Medical Center Hamburg-Eppendorf
Hamburg, Germany
Email: n.lang@uke.de

\textbf{NOTE:} This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT (350 words)

BACKGROUND
Congenital mitral valve disease (CMVD) presents major challenges in medical and surgical management. Data on predictors of mitral valve (MV) reoperation and value of 3D-echocardiography (3DE) in this context are currently limited. Aim of our study was to identify predictors of MV reoperation and to investigate the value of 3DE in risk stratification.

METHODS
All children <18 years old who underwent MV reconstruction for CMVD from 2002 to 2018 were included. Pre- and postoperative 2D-echocardiogram (2DE) and 3DE data were collected. Competing risks and Cox regression analyses were used to identify independent predictors of MV reoperation. Receiver operating characteristics curve (ROC) analysis was used to assess the predictive values of 3DE versus 2DE. Decision tree analysis was used to compute decision algorithms.

RESULTS
Over the course of the study period, 206 children underwent MV reconstruction for CMVD: 105 had mitral stenosis (MS), 75 had mitral regurgitation (MR), and 26 had mixed disease (MD). Of them, 64 (31%) required a MV-reoperation. At multivariable analysis, age <1 year (hazard ratio [HR]=2.65; 95% confidence interval [CI]:1.13-6.21), tethered leaflets (HR=2.00; 95% CI:1.05-3.82), moderate or greater 2DE postoperative MR (HR=4.26; 95% CI:2.45-7.4), as well as changes in 3D-effective orifice area (3D-EOA) and in 3D-vena contracta regurgitant area (3D-VCRA) were all found to be independent predictors of MV reoperation. By ROC analysis,
changes in 3D-EOA and 3D-VCRA were found to have significantly higher predictive value than
changes in mean gradients (AUC=0.847 vs AUC=0.676, \(P=0.006 \)) and 2D-VCRA (AUC=0.969
vs AUC=0.720, \(P=0.012 \)), respectively. Decision-tree analysis found that a \(<30\%\) increase in 3D-
EOA had 80\% accuracy (HR=8.50; 95\% CI:2.9-25.1) and a \(<40\%\) decrease in 3D-VCRA had
93\% accuracy (HR=22.50; 95\% CI:2.9-175) in predicting MV reoperation for stenotic and
regurgitant MV, respectively.

CONCLUSIONS

Age <1 year, tethered leaflets, 2DE postoperative MR, changes in 3D-EOA and 3D-VCRA were
all independent predictors of MV-reoperation. 3DE parameters had higher predictive value than
2DE. 3DE-based decision-tree algorithms may help risk stratification and serve as a support tool
for clinical decision-making in patients with CMVD.

KEYWORDS

3D-echocardiography, congenital mitral valve disease, mitral stenosis, mitral regurgitation,
prediction, outcomes
CLINICAL PERSPECTIVES

What is new?

• In congenital mitral valve (MV) disease patients undergoing MV reconstruction, changes in 3D effective orifice area (3D-EOA) and 3D vena contracta regurgitant area (3D-VCRA) were found to be independent predictors of MV reoperation.
• Changes in 3D effective orifice area (3D-EOA) and 3D vena contracta regurgitant area (3D-VCRA) had significantly higher predictive value compared to 2D-echocardiography parameters, i.e. changes in mean gradient, 2D-VCRA and moderate or greater postoperative 2D mitral regurgitation.
• Decision tree analysis identified cut-off points in changes of 3D-EOA and 3D-VCRA to predict MV reoperation.

What are the clinical implications?

• Changes in 3D-EOA and 3D-VCRA can be measured in the operating room to consider return to bypass, or at discharge, to help inform need for early follow-up and MV reoperation.
• 3DE-based decision tree predictive algorithms may help in risk stratification and serve as a support tool to facilitate clinical decision-making.
NON-STANDARD ABBREVIATIONS AND ACRONYMS

2DE: 2-dimensional echocardiography

3DE: 3-dimensional echocardiography

AUC: area under the curve

CI: confidence interval

EOA: effective orifice area

HLHS: hypoplastic left heart syndrome

HR: hazard ratio

IQR: interquartile range

LVEDP: left ventricular end diastolic pressure

MD: mixed disease

MR: mitral regurgitation

MS: mitral stenosis

MV: mitral valve

N: number

ROC: receiver operating characteristic

VCRA: vena contracta regurgitant area
INTRODUCTION

Congenital mitral valve disease (CMVD) is a rare and heterogeneous congenital heart disease (CHD) with variable anatomic characteristics and prognosis. The disease may affect multiple segments of the valve apparatus including the supravalvar region, annulus, leaflets, commissures, as well as the subvalvar region\(^1-2\). Despite medical management, children with CMVD often require catheter-based or surgical interventions\(^3\). MV repair is generally preferred over MV replacement due to its ability to preserve the subvalvar apparatus and its function, conserve the overall ventricular geometry, and allow tissue growth over time\(^4-7\). However, studies have shown that surgical results have been burdened by a non-negligible proportion of reoperation for either MV reconstruction or replacement\(^3,5,8\).

The identification of factors possibly associated with higher risk of reoperation may help guide risk stratification and management in this peculiar cohort of patients. In the last decades, studies have tried to identify predictors of MV reoperation in patients with CMVD\(^5,8-10\). However, often these studies were affected by small sample sizes, or included patients with marked heterogeneity in their baseline MV pathology\(^7,9\). Few studies have addressed the value of echocardiography techniques to predict MV reinterventions\(^9-10\).

Traditionally, cardiologists and cardiac surgeons have relied on 2D-echocardiography (2DE) for monitoring and guiding the clinical management in these patients. 3D-echocardiography (3DE) provides the simultaneous assessment of the spatial relationship of the leaflets, chordae and papillary muscles, and thus more accurate and reliable measurements\(^11-13\), which have the potential to aid surgical planning\(^14\). To date, most reports assessing the benefit of 3DE in cardiac diseases have been conducted in adult patients\(^11,15-16\). The use of 3DE in children with CHD has
been reported only for specific settings, like the evaluation of atrioventricular (AV) septal defects
status post repair 17-18 or the assessment of the tricuspid valve in children with hypoplastic left
heart syndrome (HLHS) 18-20.

The main purpose of this study was to investigate independent predictors of MV reoperation in a
large cohort of pediatric patients with CMVD. In addition to traditional patient demographics,
anatomic and clinical characteristics, we sought to assess 3DE measurements as predictors of MV
reoperation, and to investigate the relative performance of the 3DE compared to the 2DE in this
setting. Finally, we aimed to develop decision-tree algorithms for patients’ risk stratification to
serve as a support tool for clinicians in the clinical decision-making.
MATERIAL AND METHODS

Patients

The Cardiovascular Surgical Department database at Boston Children’s Hospital (Boston, MA) was searched for all patients <18 years who underwent MV surgery between January 2002 and December 2018. The Institutional Review Board at Boston Children’s Hospital approved the study with a waiver for informed consent (IRB-P00023266).

Patients with HLHS who underwent single ventricle palliation, patients with AV-canal defects, AV-discordance, and those with connective tissue disorders were excluded. Patients were subdivided into three subgroups according to the type of MV disease as follows: (1) mitral stenosis (MS) group: patients with a Doppler mean gradient >5 mmHg and none or trivial MR; (2) mitral regurgitation (MR) group: patients with a mean gradient <5 mmHg and at least moderate MR; (3) mixed disease (MD) group: patients with a mean gradient >5 mmHg and at least moderate MR. Anatomical characteristics of the MV were determined based on the description of the MV in the surgical report, as detailed in the Supplemental Methods.

Outcomes

The primary outcome measure was MV reoperation. Secondary outcome measures were need for MV replacement and death at any time to last follow-up.

Echocardiographic measurements

Echocardiographic measurements were performed preoperatively (within 7 days before surgery) and postoperatively either at hospital discharge or at 10 days after surgery, whichever came first.
Qualitative grading of the MR was obtained from the echocardiographic report and was classified as trivial, mild, moderate, or severe. Doppler mean gradients and mitral 2D-VCRA were calculated by 2 independent investigators. The severity of MS was graded as follows: trivial: <3 mmHg; mild: 3–5 mmHg; moderate: >5 to 10 mmHg, and severe: >10 mmHg. 2D-VCRA was measured from two orthogonal diameters, and the area was calculated from the equation of an ellipse \(\pi \times (d/2)^2 \).

Electrocardiographic-gated full-volume 3DE acquisitions were performed using a 5–1 MHz matrix-array transthoracic probe and a 3DE ultrasound system (SONOS 7500 and iE33, Philips Medical Systems, Bothwell, WA). Full-volume 3DE data were acquired from the apical four-chamber view. Analyses were performed with a dedicated software (Q-lab 6.0, Philips Medical Systems, Bothwell, WA). Multi-planar reconstruction was used to locate the cross-sectional plane to measure the annulus area, 3D-EOA and 3D-VCRA (Figure 1A and B). Based on two orthogonal long-axis planes, a corresponding short-axis plane was chosen to appropriately trace the MV annulus area, 3D-EOA, and 3D-VCRA (Figure 1A and 1B), which were blindly measured by 2 independent investigators. Each investigator repeated these measurements blindly after 2 weeks.

Statistical Analysis

Demographic and anatomic characteristics are summarized using frequencies and percentages for categorical data, medians and interquartile ranges (IQR) for continuous data. Paired t-test was used to assess variation of echocardiographic parameters over time (pre- and postoperatively).
The Kaplan Meier estimator was used to compute freedom from MV reoperation, MV replacement, and death at 1, 3, and 5 years after the first MV operation and 95% confidence intervals (CIs). Inter- and intra-rater agreement of 3DE measurements were tested using intra-class correlation coefficients (ICC) based on a two-way mixed effects modeling, with reliability categories defined as follows: ICC <0.50 poor, 0.50-0.75 moderate, 0.75-0.90 good, >0.90 excellent.

Univariate and multivariable competing risk regression analyses using Fine-Gray modeling were used to identify significant demographic, clinical, and 2DE predictors of MV reoperation, accounting for mortality prior to reoperation as a competing risk event. Preoperative factors included in the model were age, weight, sex, type of disease (MS, MR, MD), pulmonary hypertension, thickened and tethered leaflets, presence of endocardial fibroelastosis (EFE), year of surgery; postoperative factors were presence of moderate or greater MR and presence of moderate or greater MS postoperatively. All factors were included in the multivariable model.

Cumulative incidence functions were constructed overall and for diagnostic subgroups for independent predictors using Nelson-Aalen estimators. To better investigate any independent 2DE predictor resulted from this model, the same model was reproduced for the subgroups of patients with MS (including MD) and MR (including MD). 3DE measurements were tested as predictors of MV-reoperation using univariate and multivariable time-to-event Cox proportional hazards regression analysis, for the MS (including MD) and the MR (including MD) populations separately. Factors found to be significant at univariate analysis were included in the multivariable model. The proportional sub-distribution hazard assumption was tested using Schoenfeld residuals and the Grambsch-Therneau test. Results are presented as adjusted hazard ratios (HR) and 95% CIs.
The prognostic value of 2DE versus 3DE measurements in predicting MV-reoperation was assessed by the area under the curve (AUC) of the receiver operating characteristic curves, which were compared using the paired-DeLong test24. Classification and regression tree analysis was implemented to determine the optimal cut-points for 3DE measurements in predicting MV-reoperation (\textit{rpart} package, R). Results from decision-tree analysis are presented with sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the optimized predictive cutoff thresholds. Bootstrap validation was used to evaluate the internal validity and model performance25 (\textbf{Supplemental Methods}). Statistical analyses were performed using Stata (version 16.0, StataCorp LLC, College Station, Texas) and R (version 3.4.3, R Foundation for Statistical Computing, Vienna, Austria). A two-tailed alpha level of 0.05 was considered statistically significant.
RESULTS

Demographic and anatomic MV characteristics

Two-hundred-and-six patients (48% female) underwent MV surgery during the study period. One-hundred-and-five patients (51%) had MS, 75 (36%) MR, and 26 (13%) MD. Eight percent were neonates, 47% were infants. The median age at the initial MV operation was 17 months (IQR: 5-56), the median weight was 9.1 kg (IQR: 5-16.7). Surgical anatomic MV characteristics are shown in Table 1. At time of the initial operation, MD patients were younger (median age 5 months, IQR: 1-21) and smaller in weight (median weight 5.1 kg, IQR: 3.3–11.4). MR patients were older (median age 48 months, IQR: 5–73) and weighed more (median weight 13.7 kg, IQR: 5.2-19.6). Median follow-up for the total cohort was 60 months (IQR: 18-108) (Table 1).

Mortality

At a median follow-up of 60 months (IQR: 18-108), 13 (6%) patients did not survive. Death occurred at a median of 15 months (IQR: 2-42) after the first MV operation. The highest mortality rate was observed in MD patients (4/26, 15%), while the lowest was reported in MR patients (2/75, 3%). There was one peri-operative/early death (<30 days) in 2005. The overall survival was 97.2% at 1 year (95% CI: 93.3%-98.8%; n=164), 94.7% at 3 years (95% CI: 90%-97.2%; n=131) and 93.9% at 5 years (95% CI: 88.9%-96.7%; n=98).

MV Reoperation and replacement

Sixty-four patients (31%) required MV reoperation at a median time of 9 months after the first operation (IQR: 0.4-39). Thirty-three (16%) patients required more than one MV reoperation. Twenty-six (12.6%) required a MV replacement, at a median time of 46 months since the first operation (IQR: 0.9-18). Overall freedom from MV reoperation was 79.1% at 1 year (95% CI:
72.4%-84.4%; n=132), 73.9% at 3 years (95% CI: 66.6%-79.8%; n=97) and 66% at 5 years (95% CI: 57.7%-73%; n=64). Thirty-six patients who underwent reoperation had MS (34% of MS), 16 MR (21% of MR), and 12 MD (46% of MD). Overall freedom from MV-replacement was 89.9% at 1 year (95% CI: 84.4%-93.5%; n= 150), 87.9% at 3 years (95% CI: 82%-91.9%; n=114) and 85.4% at 5 years (95% CI: 78.9%-90%; n=82). Seventeen patients who underwent MV-replacement had MS (16% of MS), 4 MR (5% of MR), and 5 MD (19% of MD).

Demographic, anatomic and 2DE predictors for MV-reoperation

At univariate competing risks regression analysis, age <1 year, MD, tethered leaflets, and moderate or greater postoperative MR or MS were found to be associated with MV reoperation (Table 2). Multivariable modeling (Table 2) confirmed that age <1 year (adjusted HR=2.65; 95% CI: 1.13-6.21), tethered leaflets (adjusted HR=2.00; 95% CI: 1.05-3.82) and a qualitatively moderate or greater postoperative MR (adjusted HR=4.26; 95% CI: 2.45-7.40; Figure 2A) were independent predictors of MV reoperation. When stratifying for type of MV disease, moderate or greater postoperative MR was confirmed to be an independent predictor for both patients with stenotic MV (Figure 2B; adjusted HR=3.21; 95% CI: 1.73-6.00) and patients with regurgitant MV (Figure 2C; adjusted HR=7.38; 95% CI: 3.46-15.70).

Inter- and intra-rater agreement of 3DE measurements

The inter-rater agreement was good for 3D-EOA (ICC=0.75), and excellent for both the 3D-VCRA and annulus area (ICC=0.93 and ICC=0.98, respectively). Intra-rater reliability was excellent for all parameters (EAO: ICC=0.92; 3D-VCRA: ICC=0.97; annulus area: ICC=0.99).
3DE predictors for MV reoperation

Supplementary Video 1 and 2 show examples of 3DE in two patients with congenital MS and MR, respectively. Eighty-six out of 206 patients (42%) had pre- and postoperative 3DE data available. For stenotic valves, the 3D-EOA significantly increased after MV-reoperation, from 0.91±0.55 cm²/m² to 1.44±0.69 cm²/m² (P<0.001). 3D-VCRA trended to increase from 0.93±1.50 cm²/m² to 1.49±2.07 cm²/m², although not significantly (P=0.143). On univariate analysis, preoperative 3D-EOA, early changes in 3D-EOA and 3D-VCRA, and size of the postoperative 3D-VCRA were positively associated with MV reoperation. On multivariable analysis, early changes in 3D-EOA and 3D-VCRA were confirmed to be independently predictive of MV reoperation (Table 3; 3D-EOA: adjusted HR=0.26; 95% CI: 0.07-0.99; and 3D-VCRA: adjusted HR=2.86; 95% CI: 1.09-7.48). For regurgitant valves, the 3D-VCRA significantly decreased from 2.22±2.26 cm²/m² to 1.46±1.94 cm²/m² (P=0.017), 3D-EOA significantly decreased from 2.91±1.86 cm²/m² to 1.63±0.73 cm²/m² (P=0.005), and the annuli significantly decreased from 7.53±3.45 cm²/m² to 4.53±1.85 cm²/m² (P<0.001). Univariate analysis showed that the size of the preoperative 3D-VCRA, size of the postoperative 3D-VCRA, early changes in 3D-VCRA, and preoperative annulus were positively associated with MV reoperation. On multivariable analysis, early changes in 3D-VCRA were confirmed to be an independent predictor of MV reoperation (Table 3; adjusted-HR=11.77; 95% CI: 3.06-45.3).

Comparison of 2DE vs 3DE measurements predictive values

Figure 2 and Table 4 showed the comparison of predictive values of 3DE vs 2DE parameters. When considering stenotic valves, early changes in 3D-EOA was found to be a stronger predictor of MV reoperation than 2DE early changes in mean gradients (AUC 0.847 [95% CI: 0.723-0.970] vs 0.676 [95% CI: 0.508-0.844], respectively; DeLong test P=0.006, Figure 3A). For
regurgitant valves, early changes in 3D-VCRA was found to be a stronger predictor of MV-reoperation than 2DE qualitative postoperative MR (AUC=0.969 [95% CI: 0.916-0.999] vs 0.751 [95% CI: 0.642-0.860], respectively; DeLong test $P<0.001$). Additionally, early changes in 3D-VCRA was a significantly stronger predictor of MV-reoperation than early changes in 2D-VCRA (AUC=0.969 [95% CI: 0.916-0.999] vs 0.720 [95% CI: 0.424-0.903], DeLong test $P=0.012$; Figure 2B).

Decision-tree predictive algorithms for risk stratification

Decision-tree predictive algorithms were computed as a support tool for clinical decision-making (Figure 4). Sensitivity, specificity, positive and negative predictive values are reported in Table 4. For stenotic valves, an increase in 3D-EOA by <30% leads to 92% risk of MV-reoperation (accuracy 80%; HR=8.50; 95% CI: 2.90-25.1; $P<0.001$). For regurgitant valves, a decrease in 3D-VCRA <40% is associated with 93% risk of MV reoperation (accuracy 93%; HR=22.50; 95% CI: 2.90-175.00; $P=0.003$). Bootstrap validation demonstrated excellent internal validity and model performance (Supplemental Results).
DISCUSSION

This single-center study, which involved a large cohort of young pediatric patients undergoing MV surgery for CMVD, showed a low mortality at a median follow-up of 5 years. However, 31% of patients required a MV reoperation, and 12% requiring a subsequent MV replacement. These important surgical findings prompted analysis of risk factors for MV reoperation. We showed that age <1 year, presence of tethered leaflets, evidence of moderate or greater postoperative MR on 2DE, as well as early changes in 3D-EOA and 3D-VCRA were all independent predictors of MV reoperation. Importantly, when 2DE and 3DE were compared in terms of their performance to predict MV reoperation, certain 3DE parameters were found to have significantly higher prognostic values compared to 2DE. Based on these findings, decision-tree predictive algorithms were developed to inform patients risk stratification, with the aim to improve assessment and help clinical decision-making.

The fact that younger patients, in particular patients <1 year of age, are at increased risk for MV-reoperation was previously reported for smaller cohorts, and further confirmed in our study. Additionally, in terms of baseline MV morphology, our study showed that patients with tethered and restricted leaflets are at increased risk of MV reoperation. This is a new finding compared to what was previously reported in literature. From an echocardiographic point of view, we found that both 2DE and 3DE parameters were associated with MV reoperation. In particular, evidence of moderate or greater postoperative MR on 2DE, as well as early changes in the 3D-EOA and 3D-VCRA, were all found to be independently associated with the need for MV reoperation.
Postoperative systemic AV-valve regurgitation has been shown to be associated with adverse outcomes in a variety of CHDs27-30. In 43 adults with CHD undergoing primary or re-operative systemic AV-valve surgery, pre-discharge systemic AV-valve regurgitation grade was the only factor associated with adverse outcomes including reoperation27. Similarly, studies have shown that postoperative systemic AV-valve regurgitation in repaired AV-canal is associated with higher risk of AV-valve reoperation28-30. Given the proven importance of this factor in determining outcomes, studies have also focused on improving 2D E regurgitation assessment with the evaluation of other parameters, such as 2D-VCRA. However, Prakash et al. did not find that 2D-VCRA measurements in patients with AV septal defects was superior to the qualitative regurgitation assessment31, and Yosefy et al. showed that 2D-VCRA can cause clinical misclassification in 45\% of adult patients with eccentric MR, while 3D-VCRA was more accurate32. In fact, non-negligible changes in the AV-valve geometry have been demonstrated in similar populations with CHD after AV-valve surgery, as in children with AV-canal undergoing AV-valve repair33. To date, measurements of 2D-VCRA are performed by measuring the vena contracta width mostly in one plane, and in some studies in two orthogonal planes. However, these types of measurement do not account for the marked irregularity of shape of the VCRA.

Several publications in adults have highlighted the advantages of 3DE for the quantitative assessment of the valve function34-38, with increasing number of reports demonstrating higher accuracy of 3DE compared to 2DE, and higher ability to predict outcome39-40. In parallel, a new consensus document recently advised on the use of 3DE for surgical planning in patients with CHD41. In the setting of AV-valve regurgitation, 3DE directly traces the orifice area without making assumptions on the shape of the vena contracta. Simultaneous orthogonal visualization of different planes allows a more precise depiction of the best cross-sectional cutting plane to trace
the vena contracta circumference. In adults, a strong correlation has been proven between the 3D-VCRA and the regurgitation area calculated by MRI42. Adubiab et al. showed that measurements of 3D-VCRA were superior to 2DE determination of regurgitation severity40. However, experience with quantitative 3DE in children with CHD is still limited, with only a few studies assessing its potential value. Here, we showed that early changes in 3D-VCRA had significantly higher predictive accuracy than both the 2DE qualitative postoperative MR assessment and the early changes of 2D-VCRA.

AV-valve stenosis is also known to be associated with adverse outcomes in patients after repair of CMVD or AV-canal10,29,43. MV stenosis is generally assessed by 2DE using mean AV-valve inflow gradients; however, this measurement presents several challenges. First, many patients with CHD may have left ventricular systolic or diastolic dysfunction and therefore elevated left ventricular end diastolic pressure (LVEDP), with consequent possible underestimation of the stenosis, if measured using the gradient alone. Additionally, patients may have limited flow across the valve due to the presence of an atrial shunt or low cardiac output. Since gradients are flow dependent, this may also underestimate the magnitude of the stenosis if assessed by mean inflow gradient only. Our study investigated the utility of 3DE assessment in stenotic valves, and found that early changes in 3D-EOA were accurate in predicting MV reoperation. Most importantly, early changes in 3D-EOA had significantly higher prognostic value than early changes in 2D mean gradient.

To improve risk stratification and facilitate potential application of these findings into clinical practice, decision-tree predictive algorithms were developed and subsequently bootstrapped validated. Potentially, these 3DE parameters could be utilized either pre-operatively or in the
operating room. Early changes in 3D-EOA and 3D-VCRA measured in the operating room may inform decision to return to bypass, or, if these changes are measured at discharge, they may inform earlier follow-up or early MV reoperation.

Study limitations

Since this is a retrospective study, loss of information occurred and not all patients had 3DE data available. As this observational study was conducted in a clinical setting with a variety of providers, the criteria for MV reoperation were not defined and surgical details were not investigated. The 3DE parameters identified as independent predictors were calculated using postoperative changes assessed at discharge. We realize the clinical importance of identifying pre-operative predictors or using the bypass echocardiogram to help guide patient management; however, in the future, these measurements may be potentially used in the operating room. Additionally, this study was limited by constraints of imaging, particular image resolution and low frame rate. Despite these limitations, we believe this study provides a valuable framework for future research investigations in the field of 3DE and in the assessment of CMVD.

Conclusions

In a large cohort of patients with CMVD, 31% of patients required MV-reoperation at a median follow-up time of 5 years. Age <1 year, presence of tethered leaflets, evidence of moderate or greater postoperative MR on 2DE, as well as early changes in the 3D-EOA and 3D-VCRA were independent predictors of MV-reoperation. 3DE parameters were found to have significantly higher predictive value compared to 2DE parameters, suggesting added value of the 3DE assessment. Decision-tree predictive algorithms were developed based on these findings to
classify patients in terms of risk stratification and to serve as a support tool for assessment and clinical decision making.
Acknowledgements: The authors thank Drs. Alejandra Bueno, Erin Krizman and Patrick Myers for support with data collection. The authors also thank Dr. Jane Newburger for valuable comments on the manuscript.

Sources of Funding: Nora Lang received the Kaplan Meier Fellowship and a fellowship from the German Research Foundation.

Disclosures: There are no disclosures.

10.1177/2150135119893648

CIRCIMAGING.110.961649 [pii]
10.1161/CIRCIMAGING.110.961649

SH, De Michilis N, Vannan MA. Quantification of chronic functional mitral regurgitation by
automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke
volume techniques using real-time 3-dimensional volume color Doppler echocardiography: in

CIRCIMAGING.112.980383 [pii]
10.1161/CIRCIMAGING.112.980383

37. Marsan NA, Westenberg JJ, Ypenburg C, Delgado V, van Bommel RJ, Roes SD,
regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac
X [pii]
10.1016/j.jcmg.2009.07.006

38. Zamorano J, de Agustin JA. Three-dimensional echocardiography for assessment of
mitral valve stenosis. *Curr Opin Cardiol*. 2009;24:415-419. doi:

10.1097/HCO.0b013e32832e165b

A, Besser SA, Maor E, Patel AR, et al. 2D and 3D Echocardiography-Derived Indices of Left
Ventricular Function and Shape: Relationship With Mortality. *JACC Cardiovasc Imaging*.
2018;11:1569-1579. doi: S1936-878X(17)30904-X [pii]
10.1016/j.jcmg.2017.08.023

Table 1. Patients’ baseline demographic and anatomical characteristics.

<table>
<thead>
<tr>
<th></th>
<th>Total Cohort (n=206)</th>
<th>Mitral Stenosis (n=105)</th>
<th>Mitral Regurgitation (n=75)</th>
<th>Mixed Disease (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median age, months (IQR)</td>
<td>17.3 (4.6 - 56)</td>
<td>11.9 (5.3 - 43.7)</td>
<td>47.7 (5.3 – 72.9)</td>
<td>4.6 (1.4 – 21.2)</td>
</tr>
<tr>
<td>Median weight, kg (IQR)</td>
<td>9.1 (5 – 16.7)</td>
<td>8.4 (5.4 – 13.2)</td>
<td>13.7 (5.2 – 19.6)</td>
<td>5.1 (3.3 – 11.4)</td>
</tr>
<tr>
<td>Median follow up, months (IQR)</td>
<td>59.4 (18.3- 108.4)</td>
<td>63 (15.3 – 115.7)</td>
<td>55.2 (16.8 – 87.4)</td>
<td>76.8 (27.4-108.4)</td>
</tr>
<tr>
<td>Anatomical characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double orifice mitral valve</td>
<td>13 (6.3%)</td>
<td>8 (7.6%)</td>
<td>3 (4%)</td>
<td>2 (7.7%)</td>
</tr>
<tr>
<td>Annular dilatation</td>
<td>50 (24.3%)</td>
<td>4 (3.8%)</td>
<td>39 (52%)</td>
<td>7 (26.9%)</td>
</tr>
<tr>
<td>Cleft leaflet</td>
<td>46 (22.3%)</td>
<td>0 (0%)</td>
<td>39 (52%)</td>
<td>7 (26.9%)</td>
</tr>
<tr>
<td>Elongated chordae</td>
<td>10 (4.9%)</td>
<td>0 (0%)</td>
<td>10 (13.3%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Shortened chordae</td>
<td>76 (36.9%)</td>
<td>47 (44.8%)</td>
<td>17 (22.7%)</td>
<td>12 (46.2%)</td>
</tr>
<tr>
<td>Absent chordae</td>
<td>14 (6.8%)</td>
<td>6 (5.7%)</td>
<td>4 (5.3%)</td>
<td>4 (15.4%)</td>
</tr>
<tr>
<td>Fused/closely spaced chordae</td>
<td>45 (21.8%)</td>
<td>37 (35.2%)</td>
<td>3 (4%)</td>
<td>5 (19.2%)</td>
</tr>
<tr>
<td>Secondary/abnormal chordae</td>
<td>84 (41.0%)</td>
<td>39 (37.1%)</td>
<td>26 (34.7%)</td>
<td>17 (65.4%)</td>
</tr>
<tr>
<td>Commisural fusion</td>
<td>30 (14.6%)</td>
<td>26 (24.8%)</td>
<td>0 (0%)</td>
<td>4 (15.4%)</td>
</tr>
<tr>
<td>Hammock valve (mitral arcade)</td>
<td>22 (10.7%)</td>
<td>12 (11.4%)</td>
<td>3 (4%)</td>
<td>7 (26.9%)</td>
</tr>
<tr>
<td>Stenosing mitral membrane</td>
<td>65 (31.6%)</td>
<td>62 (59.0%)</td>
<td>0 (0%)</td>
<td>3 (11.5%)</td>
</tr>
<tr>
<td>Endocardial fibroelastosis</td>
<td>62 (30.1%)</td>
<td>46 (43.8%)</td>
<td>8 (10.7%)</td>
<td>8 (30.8%)</td>
</tr>
<tr>
<td>Single dominant papillary muscle</td>
<td>27 (13.1%)</td>
<td>22 (21.0%)</td>
<td>4 (4%)</td>
<td>1 (3.8%)</td>
</tr>
<tr>
<td>Prolapse of the anterior leaflet</td>
<td>51 (24.8%)</td>
<td>5 (4.8%)</td>
<td>35 (46.7%)</td>
<td>11 (42.3%)</td>
</tr>
<tr>
<td>Thickened leaflets</td>
<td>110 (53.4%)</td>
<td>64 (61.0%)</td>
<td>30 (40.0%)</td>
<td>16 (61.5%)</td>
</tr>
<tr>
<td>Tethered leaflets</td>
<td>115 (55.8%)</td>
<td>58 (55.2%)</td>
<td>34 (45.3%)</td>
<td>23 (88.5%)</td>
</tr>
<tr>
<td>Tethered papillary muscles</td>
<td>94 (45.6%)</td>
<td>51 (48.6%)</td>
<td>23 (30.7%)</td>
<td>20(76.9%)</td>
</tr>
<tr>
<td>Closely spaced papillary muscles</td>
<td>34 (16.5%)</td>
<td>28 (26.7%)</td>
<td>0 (0%)</td>
<td>6(23.1%)</td>
</tr>
</tbody>
</table>
Table 2. Univariate and Multivariable Competing Risks Analysis to identify predictors of mitral valve reoperation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate Analysis</th>
<th>Multivariable Analysis</th>
<th>P Value</th>
<th>Adjusted HR</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>HR</td>
<td>95% CI</td>
<td>P Value</td>
<td>Adjusted HR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Baseline and preoperative characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age < 1 year</td>
<td>200</td>
<td>3.26</td>
<td>(1.92, 5.52)</td>
<td><0.001*</td>
<td>2.65</td>
<td>(1.13, 6.21)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>206</td>
<td>0.96</td>
<td>(0.91, 1.01)</td>
<td>0.076</td>
<td>0.99</td>
<td>(0.96, 1.04)</td>
</tr>
<tr>
<td>Biological gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>Reference</td>
<td>.</td>
<td>.</td>
<td>Reference</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Male</td>
<td>1.18</td>
<td>(0.71, 1.95)</td>
<td>0.524</td>
<td>1.21</td>
<td>(0.70, 2.10)</td>
<td>0.494</td>
</tr>
<tr>
<td>Type of disease</td>
<td>206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitral stenosis</td>
<td>1.71</td>
<td>(0.94, 3.14)</td>
<td>0.081</td>
<td>1.13</td>
<td>(0.56, 2.28)</td>
<td>0.726</td>
</tr>
<tr>
<td>Mitral regurgitation</td>
<td>Reference</td>
<td>.</td>
<td>.</td>
<td>Reference</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Mixed</td>
<td>2.57</td>
<td>(1.16, 5.71)</td>
<td>0.020*</td>
<td>1.29</td>
<td>(0.50, 3.31)</td>
<td>0.600</td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
<td>195</td>
<td>1.43</td>
<td>(0.87, 2.35)</td>
<td>0.159</td>
<td>0.87</td>
<td>(0.49, 1.56)</td>
</tr>
<tr>
<td>Thickened leaflets</td>
<td>206</td>
<td>1.22</td>
<td>(0.74, 2.00)</td>
<td>0.435</td>
<td>1.2</td>
<td>(0.64, 2.27)</td>
</tr>
<tr>
<td>Tethered leaflets</td>
<td>206</td>
<td>2.11</td>
<td>(1.23, 3.61)</td>
<td>0.007*</td>
<td>2</td>
<td>(1.05, 3.82)</td>
</tr>
<tr>
<td>Endocardial fibroelastosis</td>
<td>205</td>
<td>1.16</td>
<td>(0.69, 1.95)</td>
<td>0.583</td>
<td>0.71</td>
<td>(0.40, 1.29)</td>
</tr>
<tr>
<td>Year of surgery</td>
<td>206</td>
<td>1.02</td>
<td>(0.96, 1.09)</td>
<td>0.472</td>
<td>1.03</td>
<td>(0.95, 1.12)</td>
</tr>
<tr>
<td>Postoperative imaging on 2D Echo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D Moderate or greater MR Postop</td>
<td>193</td>
<td>5.2</td>
<td>(3.07, 8.80)</td>
<td><0.001*</td>
<td>4.26</td>
<td>(2.45, 7.40)</td>
</tr>
<tr>
<td>2D Moderate or greater MS Postop</td>
<td>201</td>
<td>2.03</td>
<td>(1.18, 3.46)</td>
<td>0.010*</td>
<td>1.67</td>
<td>(0.94, 2.97)</td>
</tr>
</tbody>
</table>

Competing risks modeling was computed using the Fine and Gray model, with mortality prior to reoperation as the competing event.

All the factors assessed at the univariate analysis (left) were included in the multivariable model. Multivariable model: N=183 patients, 57 of whom underwent MV-reoperation. MR: mitral regurgitation. MS: mitral stenosis. *Statistically significant.
Table 3. Univariate and multivariable Cox regression analysis to predict mitral valve reoperation using 3D Echo variables

<table>
<thead>
<tr>
<th>3D Echo Variable</th>
<th>N</th>
<th>Univariate Cox Analysis</th>
<th>Multivariable Cox Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Size of 3D-EOA preoperatively</td>
<td>50</td>
<td>2.79</td>
<td>(1.48, 5.25)</td>
</tr>
<tr>
<td>Size of 3D-EOA postoperatively</td>
<td>49</td>
<td>0.69</td>
<td>(0.35, 1.36)</td>
</tr>
<tr>
<td>Change of the 3D-EOA</td>
<td>39</td>
<td>0.27</td>
<td>(0.12, 0.59)</td>
</tr>
<tr>
<td>Size of 3D-VCRA postoperatively</td>
<td>25</td>
<td>1.42</td>
<td>(1.06, 1.90)</td>
</tr>
<tr>
<td>Change of 3D-VCRA</td>
<td>18</td>
<td>2.52</td>
<td>(1.16, 5.48)</td>
</tr>
</tbody>
</table>

Factors found to be statistically significant at univariate analysis were included in the multivariable model. Multivariable analysis for patients with mitral stenosis and mixed disease: N=18. Multivariable analysis for patients with mitral regurgitation and mixed disease: N=25. 3D-EOA: 3D effective orifice area; 3D-VCRA: 3D vena contracta regurgitant area. *Statistically significant.
Table 4. Predictive value of 2D and 3D echocardiography in assessing the risk of mitral valve reoperation based on receiver operating characteristics curve analysis and decision tree algorithms

<table>
<thead>
<tr>
<th>Metric</th>
<th>Change in 2D mean gradient</th>
<th>Change in 3D-EOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (95% confidence interval)</td>
<td>0.676 (0.508, 0.844)</td>
<td>0.847 (0.723, 0.970)</td>
</tr>
<tr>
<td>Best cut-off identified by the decision tree algorithm</td>
<td>< 30% increase</td>
<td>< 30% increase</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>88% (23/26)</td>
<td>61% (11/18)</td>
</tr>
<tr>
<td>Specificity</td>
<td>37% (7/19)</td>
<td>95% (20/21)</td>
</tr>
<tr>
<td>PPV</td>
<td>66%</td>
<td>92%</td>
</tr>
<tr>
<td>NPV</td>
<td>70%</td>
<td>74%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Change in 2D-VCRA</th>
<th>Change in 3D-VCRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (95% confidence interval)</td>
<td>0.720 (0.424, 0.903)</td>
<td>0.969 (0.916, 0.999)</td>
</tr>
<tr>
<td>Best cut-off identified by the decision tree algorithm</td>
<td>< 40% decrease</td>
<td>< 40% decrease</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>47% (7/15)</td>
<td>93% (13/14)</td>
</tr>
<tr>
<td>Specificity</td>
<td>95% (21/22)</td>
<td>94% (15/16)</td>
</tr>
<tr>
<td>PPV</td>
<td>88%</td>
<td>93%</td>
</tr>
<tr>
<td>NPV</td>
<td>72%</td>
<td>94%</td>
</tr>
</tbody>
</table>

AUC curves are plotted and compared in Figure 3. Decision tree algorithms are summarized in Figure 4. 3D-EOA: 3D effective orifice area. 3D-VCRA: 3D vena contracta regurgitant area. AUC, area under the curve. NPV: negative predictive value. PPV: positive predictive value.
FIGURE LEGENDS

Figure 1

Measurement of 3D-EOA and 3D-VCRA

Multiplanar reconstruction was used to locate the optimal cross-sectional plane to determine the annulus area, 3D-EOA (A) and 3D-VCRA (B). The 3D-EOA was defined as the smallest orifice of the MV inflow. The 3D-VCRA corresponded to the cross-sectional area of the color Doppler jet at valve coaptation. A. For 3D-EOA measurement, the frame during diastolic opening with the largest opening was chosen and the MV was aligned in two long-axis orthogonal planes. A cross-sectional plane (blue) was set at the desired position to allow for 3D-EOA circumference planimetry. B. For 3D-VCRA measurement, the longitudinal planes were adjusted to best visualize the regurgitant jet, allowing for placement of the cross-sectional plane at the largest circumference; 3D-VCRA was then measured before jet dispersion in orthogonal imaging planes. EOA: effective orifice area. MV: mitral valve. VCRA: vena contracta regurgitant area.

Figure 2

Competing risk analysis cumulative incidence curves for MV-reoperation according to evidence of moderate or greater postoperative MR by 2DE

A. The risk of MV reoperation was significantly higher in patients with moderate or greater postoperative MR (adjusted HR=4.26; 95% CI: 2.45-7.4). B, C. This association persisted for each baseline anatomic disease group (MS+MD patients: adjusted HR=3.21; 95% CI: 1.73-6.0; MR+MD patients: adjusted HR=7.38; 95% CI: 3.46-15.7). Multivariable models were adjusted for demographic, anatomic, and clinical characteristics shown in Table 2. 2DE: 2D echocardiography, EOA: effective orifice area, HR: hazard ratio, CI: confidence interval, MD:
mixed disease, MR: mitral regurgitation, MS: mitral stenosis, MV: mitral valve, VCRA: vena contracta regurgitant area.

Figure 3
Comparison of 2DE versus 3DE predictive accuracy in predicting MV reoperation by AUC

A. When considering stenotic valves, AUC curve comparison revealed that early changes in 3D-EOA was a stronger predictor of MV reoperation than early changes in 2DE mean gradients (AUC 0.847 [95% CI: 0.723, 0.970] vs 0.676 [95% CI: 0.508, 0.844], respectively; DeLong test P=0.006). B. For regurgitant valves, AUC analysis revealed that early changes in 3D-VCRA was a significantly stronger predictor of MV reoperation than 2DE early changes in 2D-VCRA (AUC=0.969 [95% CI: 0.916, 0.999] vs 0.720 [95% CI: 0.424, 0.903], DeLong test P=0.012).

2DE/3DE: 2D/3D echocardiography, AUC: area under the curve, EOA: effective orifice area, CI: confidence interval, MV: mitral valve, VCRA: vena contracta regurgitant area.

Figure 4
Decision-tree predictive algorithms for risk stratification

For stenotic valves, an increase in 3D-EOA by <30% leads to 92% risk of MV reoperation (accuracy 80%; HR=8.5; 95% CI: 2.9-25.1). For regurgitant valves, a decrease in 3D-VCRA <40% is associated with 93% risk of reoperation (accuracy 93%; HR=22.5; 95% CI: 2.9-175). Sensitivity, specificity, PPV and NPV are reported in Table 4. Bootstrap validation demonstrated excellent internal validity and model performance (Supplemental Results). AUC: area under the curve, EOA: effective orifice area, CI: confidence interval, hazard ratio: HR, MV: mitral valve, NPV: negative predictive value, PPV: positive predictive value, VCRA: vena contracta regurgitant area.
Reoperation on the Mitral Valve

A
All Patients

Cumulative Incidence

Follow-up (years)

Moderate or greater MR Post-op
None or mild MR Post-op

Adjusted HR = 4.26 (95% CI: 2.45 - 7.4; P < 0.001)

B
Mitral Stenosis and Mixed Disease

Cumulative Incidence

Follow-up (years)

Moderate or greater MR Post-op
None or mild MR Post-op

Adjusted HR = 3.21 (95% CI: 1.73 - 6.0; P < 0.001)

C
Mitral Regurgitation and Mixed Disease

Cumulative Incidence

Follow-up (years)

Moderate or greater MR Post-op
None or mild MR Post-op

Adjusted HR = 7.38 (95% CI: 3.46 - 15.7; P < 0.001)
A

![Graph A]

- **3D EOA**: AUC = 0.847
 - 95% CI: 0.723, 0.970
- **2D Mean Gradient**: AUC = 0.676
 - 95% CI: 0.508, 0.844
- DeLong Test $P = 0.006$

B

![Graph B]

- **3D VCRA**: AUC = 0.969
 - 95% CI: 0.916, 0.999
- **2D VCRA**: AUC = 0.720
 - 95% CI: 0.424, 0.903
- DeLong Test $P = 0.012$
Mitral Stenosis

3D Effective Orifice Area

- < 30% increase: 92% Risk of Reoperation
- > 30% increase: 26% Risk of Reoperation

AUC = 0.847 (95% CI: 0.723 - 0.970)
Accuracy = 80%
Hazard Ratio = 8.5 (95% CI: 2.9 - 25.1; P < 0.001)

Mitral Regurgitation

3D Vena Contracta Regurgitant Area

- < 40% decrease: 93% Risk of Reoperation
- > 40% decrease: 6% Risk of Reoperation

AUC = 0.969 (95% CI: 0.916 - 0.999)
Accuracy = 93%
Hazard Ratio = 22.5 (95% CI: 2.9 - 175; P = 0.003)