Effects of Equine-Assisted Therapy on Recovery after Stroke –

A Systematic Review

Bettina Hanna Trunk*, Alireza Gharabaghi*

Institute for Neuromodulation and Neurotechnology, University Hospital and
University of Tübingen, Tuebingen, Germany

*Correspondence

Institute for Neuromodulation and Neurotechnology, University Hospital and University
of Tuebingen, Otfried-Mueller-Str.45, 72076 Tuebingen, Germany. Telephone: +49 7071 29-85197. Email addresses: bettina.trunk@uni-tuebingen.de, alireza.gharabaghi@uni-tuebingen.de

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background Equine-Assisted Therapy (EAT) can boost well-being and recovery of patients with neurological or psychiatric disorders.

Objective The goal of this systematic review is to gain a better understanding of the effects of EAT on recovery after stroke.

Methods A systematic literature search was performed in the following databases: PubMed, Web of Science and Scopus. Furthermore, reference lists from the articles included were screened. English-written articles published between 2000-2023 that reported on health-related effects of EAT (applied with both horses and riding simulators) on stroke recovery in patients aged between 18 and 85 were included. Methodological quality was assessed by the Mixed Methods Appraisal Tool.

Results Following the screening of 2030 and retrieval of 33 articles respectively, 17 reports were included in this systematic review (437 patients, mean age range: 40 – 70 years). Since several of these studies lacked important methodological information, the overall methodological quality varied. Fourteen of the articles reported physical (balance, gait, postural coordination, activities of daily living (ADL), lower extremity motor impairment, motor function and hand strength), while six studies reported psychological (cognition, quality of life (QoL), depression and perception of the intervention) findings. Only two studies reported physiological findings (muscle thickness and trunk muscle activity). In general, the findings suggest positive effects of EAT on stroke recovery in each domain, whereas the most consistent beneficial effects were reported for balance and gait.

Conclusion EAT appears to be a promising multimodal intervention for the recovery of different functions after stroke. However, evidence is sparse and methodological
quality limited. Future research should investigate the effects of EAT on stroke recovery more systematically.

Key words (max. 6)

Equine-assisted therapy, Hippotherapy, Therapeutic Horse Riding, Stroke, Recovery, Multimodal Intervention
Introduction

One out of four people over the age of 25 are expected to suffer from a stroke within their lifetime. (Feigin et al., 2022) Stroke is a devastating disease which can lead to various, severe, and persistent symptoms, such as hemiparesis of the upper and lower extremity, spasticity, aphasia, and other cognitive impairments. (Brewer et al., 2013) Due to natural reorganization processes, patients can, to some extent, recover lost functions within the first six months following a stroke. However, after this period, no further recovery is expected with current therapies. (Murphy and Corbett, 2009; Grefkes and Ward, 2014) Persistent disabilities have a drastic impact of the patients’ quality of life, as they are often dependent on caregivers, even for simple activities of daily life. (Kim et al., 1999; Feigin et al., 2015) Thus, novel interventions are required. (Achten et al., 2012)

Multimodal interventions, such as Equine-Assisted Therapy (EAT), have been proposed to engage patients in concurrent physical, sensory, cognitive and social activities, therefore supporting recovery from multiple symptoms. (Pekna et al., 2012, Bunketorp-Käll et al., 2017b) While riding a horse at walking speed, the three-dimensional movement of the horse’s back leads to a rhythmic sensorimotor stimulation of the patients that is comparable to human gait. (Uchiyama et al., 2011; Garner and Rigby, 2015, Bunketorp-Käll et al., 2017b; Guindos-Sanchez et al., 2020) At around 70-100 steps/minute, the rider is passively moved. (Uchiyama et al., 2011) Patients must therefore constantly adjust to small postural changes. (Rigby and Grandjean, 2016) EAT can be performed with both riding simulators and horses. (Baek and Kim, 2014, Bunketorp-Käll et al., 2017b) The latter in particular provides an enriched environment, ultimately leading to a higher training motivation and improved
Robust benefits of EAT following severe neurological disability or illness were previously reported (Viruega et al., 2022); usually in children with cerebral palsy (Deutz et al., 2018; Guindos-Sanchez et al., 2020; Heussen and Häusler, 2022), but also in patients with multiple sclerosis (Stergiou et al., 2017), spinal cord injury (Lechner et al., 2007), ADHD (Hyun et al., 2016; Yoo et al., 2016), chronic pain (Collado-Mateo et al., 2020), Down syndrome (Portaro et al., 2020), cancer (Viruega et al., 2023), or stroke (Beinotti et al., 2013, Bunketorp-Käll et al., 2017b). EAT was found to benefit physical function, i.e., improved gait, balance, or gross motor function, as well as to decrease spasticity. (Guindos-Sanchez et al., 2020; Badin et al., 2022) In addition, psychological factors, such as quality of life and depression were found to be improved in various cohorts. (Badin et al., 2022; Viruega et al., 2023) However, only little attention has been paid to the underlying brain physiology. (Yoo et al., 2016)

In view of the fact that the above-mentioned symptoms are common after stroke, EAT appears to be a promising multimodal intervention that may facilitate recovery in stroke patients. (Bunketorp-Käll et al., 2017b) In addition, EAT provides a much higher training intensity than other interventions. This has been proposed to be vital to boosting further recovery in chronic stroke patients (Krakauer et al., 2012; Lohse et al., 2014; Solomonow-Avnon and Mawase, 2019; Ward et al., 2019). However, previous research of EAT in stroke patients is sparse and, to the best of our knowledge, no systematic review has yet synthesized the effects of EAT on different domains of stroke recovery yet.

We therefore aim to 1) provide an overview of the existing literature on EAT in stroke patients; 2) evaluate the methodological quality of these studies; 3) synthesize the
effects of EAT on health-related outcomes (physical, psychological, and physiological domains) during recovery after stroke.
Methods

This systematic review was conducted in accordance with the Physiotherapy Evidence Database (PRISMA) guidelines (Page et al., 2021).

Eligibility criteria

Inclusion criteria were defined based on the PICO approach (population, intervention, control, outcome).

The patient population of interest were stroke patients between 18 and 80 years of age. We included intervention studies published between 2000 and 2023 in which EAT had been applied (independent of the precise intervention, e.g., therapeutic horse riding or hippotherapy) in both horses and riding simulators. Furthermore, studies that included different patient cohorts were taken into consideration only if they were mainly comprised of stroke patients. Moreover, we took only those studies into account in which health-related outcomes (i.e., in physical, psychological, and physiological domains) were investigated.

We did not consider manuscripts in any language other than English, conference work, theses, case reports, and study protocols.

Search strategy

A search between January 2000 and April 2023 was conducted in the PubMed, Web of Science and Scopus databases. Furthermore, reference lists were cross-checked for potentially missed studies. Our search included search terms related to EAT and stroke and were connected using Boolean operators. The complete syntax for each library can be found in Supplemental Material 1.
Selection process

All search results were downloaded to Mendeley with title, authors and abstract. Duplicates were then removed. Titles and abstracts were screened for eligibility by one author (BHT). Full-text copies of the relevant studies were then downloaded and screened for eligibility. When in doubt, the other author (AG) was consulted for clarification.

Data extraction

The following data were extracted from the studies selected: publication characteristics (authors, year, and location), aim of the study, study characteristics (age, sample size, time since stroke), intervention (details of experimental and control group, and dose of treatment), outcome measures, general findings. The data was organized in an Excel spreadsheet.

Quality assessment

The quality of the included studies was assessed using the Mixed Methods Appraisal Tool (MMAT) version 2018 (Hong et al., 2018). This tool was designed for evaluating the quality of studies that used mixed methods (randomized controlled trials, non-randomized trials, quantitative descriptive studies, and mixed methods studies) to be included in systematic reviews. (Hong et al., 2018) Criteria that were met were scored by a “Y”, whereas those that were not met were scored with a “N” or a “U” in the event of missing information. No studies were excluded based on their methodological quality.
Results

Study selection

Our systematic literature yielded 3107 articles. Then, 1077 duplicates were removed. After screening, 1996 articles were excluded, and 33 articles were retrieved and checked for eligibility. Finally, 17 articles met the inclusion criteria (Fig. 1). The studies involved are summarized in Tab. 1.

Fig. 1. Flow diagram of enrolment based on PRISMA guidelines.
<table>
<thead>
<tr>
<th>Study and Location</th>
<th>Patient population</th>
<th>Intervention</th>
<th>Horse</th>
<th>Outcome domain</th>
<th>Outcome measures</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 30</td>
<td>Age 55.1±6.1 years (EG)</td>
<td>Experimental Dose 15</td>
<td>Horse riding training 3 times/ week for 8 weeks, 30 min CNSD therapy + 30 min horse riding training</td>
<td>Simulator</td>
<td>Physical</td>
</tr>
<tr>
<td></td>
<td>Age 56.5±7.5 years (CG)</td>
<td>Control Dose 15</td>
<td>Trunk exercises with Swiss balls 3 times/ week for 8 weeks, 30 min CNSD therapy + 30 min trunk exercises</td>
<td></td>
<td>Physiological</td>
<td>• Muscle thickness of abdominal muscles on both sides (Ultrasonic imaging)</td>
</tr>
<tr>
<td>(Baek and Kim, 2014)</td>
<td>Not specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Baillet et al., 2019)</td>
<td>N = 18</td>
<td>Age 51.1±13.0 years (EG)</td>
<td>Experimental Dose 10</td>
<td>Horse riding therapy 2 times/ week for 12 weeks, 30 min/session</td>
<td>Simulator</td>
<td>Physical</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td>Age 39.9±18.6 years (CG)</td>
<td>Control Dose 8</td>
<td>Conventional therapy 2 times/ week for 12 weeks, 30 min/session</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>1 year post stroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Beinotti et al., 2010)</td>
<td>N = 20</td>
<td>Age 59 years (EG) and 52 years (CG)</td>
<td>Experimental Dose 10</td>
<td>Conventional therapy + EAT 2 times/ week plus 1 time/ week for</td>
<td>Horse</td>
<td>Physical</td>
</tr>
<tr>
<td>Brazil</td>
<td></td>
<td>>1 year post stroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study and Location</td>
<td>Patient population</td>
<td>Intervention</td>
<td>Horse</td>
<td>Outcome domain</td>
<td>Outcome measures</td>
<td>Key findings</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>-------</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>(Beinotti et al., 2013) Brazil</td>
<td>N = 24 59 years (EG) and 52 years (CG) >1 year post stroke</td>
<td>16 weeks, session length unknown 3 times/week for 16 weeks, 50 min/session plus 30 min EAT/week</td>
<td>Horse</td>
<td>Psychological</td>
<td>QoL (SF-36)</td>
<td>Significant improvement of QoL of EG compared to CG Specifically: improvements in functional capacity, physical aspects, mental health</td>
</tr>
<tr>
<td>(Bunketorp-Käll et al., 2017) Sweden*</td>
<td>N = 123 62.6±6.5 years (EG) and 63.7±6.7 years (CG) ≥10 months and ≤5 years after stroke</td>
<td>N = 41 Horse-riding + interaction with horse 2 times/week for 12 weeks, 240 min/session **</td>
<td>Horse</td>
<td>Psychological/Physical</td>
<td>Perception of stroke recovery (SIS-9) Gait (TUGT) Balance (BBS, BDLS) Hand strength (Grippit) General cognitive level (Barrow Neurological Institute screen for higher cerebral functions) Working memory (Letter-number sequencing test)</td>
<td>Change in SIS-9 significantly higher than CG which was sustained for both 3- and 6-months post intervention TUGT, BBS, and BDLS significantly improved after EAT and were significantly larger than for CG No significant changes for hand strength or cognition/working memory after EAT</td>
</tr>
<tr>
<td>(Bunketorp-Käll et al., 2019)* Sweden</td>
<td></td>
<td></td>
<td></td>
<td>Physical/Physical</td>
<td>Gait (10 mWT, 6 MWT) Motor function (M-MAS UAS)</td>
<td>Compared to CG: significant faster completion of 10 mWT, both at self-selected and fast speed and with fewer steps Significant improvements in M-MAS UAS (functional task performance)</td>
</tr>
<tr>
<td>(Bunketorp-Käll et al., 2020)* Sweden</td>
<td></td>
<td></td>
<td></td>
<td>Psychological</td>
<td>Correlation between perceived recovery of stroke (SIS-9) and M-MAS UAS, BBS, TUGT, 10 mWT</td>
<td>At baseline: significant correlation for all parameters with SIS-9, i.e., positive correlation for M-MAS UAS and BBS and negative correlation for TUG and 10 mWT (both self-selected and fast)</td>
</tr>
<tr>
<td>Study and Location</td>
<td>Patient population</td>
<td>Intervention</td>
<td>Horse</td>
<td>Outcome domain</td>
<td>Outcome measures</td>
<td>Key findings</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>-------</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| Cho and Cho, 2015 | Korea | N = 30 54.20±9.21 (EG) and 54.00±8.79 (CG)
≥6 months post stroke | N = 15 Therapeutic exercise + horse riding
7 times/ week for 6 weeks, 30 min
Plus 3 times/week for 6 weeks, 20 min/session horse-riding training | Simulator | Physical | • After intervention, change in self-selected and fast 10 mWT significantly correlated (negatively) with change in SIS-9
• Conclusion: Individual perception of recovery was associated with improvements in gait
• EC moving distance of COP increased significantly after intervention for EG
• No significant differences between groups |

(Han et al., 2012)
Korea | N = 37 61.1±6.3 (EG) and 62.2±6.9 (CG)
Early chronic stroke patients, on average 12 months post stroke | N = 19 Conventional physiotherapy (NDT) + horse-riding therapy
2 times/week for 12 weeks, 30 min/session
Plus 2 times/week for 12 weeks, 20 min/session horse-riding | Simulator | Physical | • Gait (FAC, G-POMA)
• Balance (BBS, B-POMA)
• No difference for gait
• Balance parameters (BBS, B-POMA) improved significantly after training for EG
• Between groups: significant difference post treatment in dynamic balance category of BBS |
<table>
<thead>
<tr>
<th>Study and Location</th>
<th>Patient population</th>
<th>Intervention</th>
<th>Horse</th>
<th>Outcome domain</th>
<th>Outcome measures</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kim et al., 2014b) Korea</td>
<td>N = 20 63.9 ± 8.7 years ≥6 months post stroke, on average 2 years post stroke</td>
<td>N = 20 Horse riding training 5 times/week for 6 weeks, 30 min/session</td>
<td>No CG</td>
<td>Simulator</td>
<td>Physical Physical • Gait (FGA, GAITRite Gait analyzer) • Trunk balance (TIS, BioRescue system)</td>
<td>Gait: Significant improvements were found after the training for all parameters (FGA; GAITRite: gait velocity, cadence, stride length of the affected and unaffected sides, and double limb support of the affected and unaffected sides) Balance: Significant improvements were found after the training for all parameters (TIS; BioRescue: sway area, sway length, sway speed for EO and EC, respectively)</td>
</tr>
<tr>
<td>(Kim and Lee, 2015) Korea</td>
<td>N = 20 71.1 ± 3.0 (EG) and 69.2 ± 3.4 (CG) ≥6 months post stroke, on average 11 months post stroke</td>
<td>N = 10 Horse riding training 5 days/week for 6 weeks, 30 min/session</td>
<td>N = 10 NDT 5 days/week for 6 weeks, 30 min/session</td>
<td>Simulator</td>
<td>Physical Physical • Gait (10 mWT) • Balance (BBS) • ADL (MBI)</td>
<td>All outcome measures (10 MWT, BBS, MBI) increased significantly for EG, but not for CG Between groups: after intervention, all outcome measures were significantly better in experimental group</td>
</tr>
<tr>
<td>(Lee et al., 2014a) Korea</td>
<td>N = 30 63.8±6.2 (EG) and 64.3±4.8 (CG) Not specified</td>
<td>N = 15 Horse riding training 3 days/week for 8 weeks, 30 min/session</td>
<td>N = 15 Treadmill Training 3 days/week for 8 weeks, 30 min/session</td>
<td>Horse</td>
<td>Physical Physical • Balance (BBS) • Gait (Gait Analyzer)</td>
<td>Significant improvements in BBS, gait velocity and step length asymmetry for EG Significant improvements for step length asymmetry for CG Between groups: significant difference in gait velocity and step length asymmetry</td>
</tr>
<tr>
<td>(Lee and Kim, 2015) Korea</td>
<td>N = 30 68.4±2.1 (EG) and 67.0±3.2 (CG)</td>
<td>N = 15 Conventional therapy + horse-riding</td>
<td>N = 15 Conventional therapy</td>
<td>Simulator</td>
<td>Physical Psychological • Gait (TUGT) • Balance (BBS) • Depression (BDI)</td>
<td>All outcomes (TUGT, BBS, BDI) improved significantly after the training for the EG, but not CG The pre-post differences for each outcome were calculated and compared per group:</td>
</tr>
<tr>
<td>Study and Location</td>
<td>Patient population</td>
<td>Intervention</td>
<td>Horse</td>
<td>Outcome domain</td>
<td>Outcome measures</td>
<td>Key findings</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>-------</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Early chronic stage, on average 12 months post stroke</td>
<td>N = 67</td>
<td>5 days/week for 6 weeks, 30 min/session</td>
<td>Horse</td>
<td>N = 33</td>
<td>Physical therapy + horse riding</td>
<td>Physical</td>
</tr>
<tr>
<td>(Park et al., 2013) Korea</td>
<td>≥7 months post stroke</td>
<td>5 times/ week for 6 weeks, 30 min/session</td>
<td></td>
<td>N = 33</td>
<td>Physical therapy + mat exercise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 34</td>
<td>6 times/ week for 8 weeks, session duration unknown</td>
<td>Simulator</td>
<td>N = 33</td>
<td>6 times/ week for 8 weeks, session duration unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical therapy + horse riding</td>
<td></td>
<td></td>
<td>Physical therapy + mat exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 times/week for 8 weeks, 35 min/session horse riding</td>
<td></td>
<td></td>
<td>3 times/week for 8 weeks, 35 min/session mat exercise</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 34</td>
<td></td>
<td></td>
<td>N = 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Pohl et al., 2018) Sweden</td>
<td>N = 18 56.09±7.22 years (EG) and 51.55±8.27 years (CG)</td>
<td>≥10 months and ≤5 years after stroke</td>
<td>See (Bunketorp-Käll et al., 2017b)</td>
<td>Psychological</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(selected from larger sample in (Bunketorp-Käll et al., 2017b))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean age: 62 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sung et al., 2013) Korea</td>
<td>N = 20</td>
<td></td>
<td>Simulator</td>
<td>Physical</td>
<td>Gait (OptoGait), Trunk muscle activity (EMG)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 10</td>
<td></td>
<td>Physiological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N = 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All rights reserved. No reuse allowed without permission.
<table>
<thead>
<tr>
<th>Study and Location</th>
<th>Patient population</th>
<th>Intervention</th>
<th>Horse</th>
<th>Outcome domain</th>
<th>Outcome measures</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sunwoo et al., 2012) Korea</td>
<td>N = 8 42.4±16.6 years ≥6 months post stroke</td>
<td>N = 8 Horse riding 2 times/week for 8 weeks, 30 min/session</td>
<td>No CG</td>
<td>Horse</td>
<td>Physical Physical Psychological</td>
<td>Gait (10 mWT, FAC) Balance (BBS, POMA) ADL (MBI) Depression (BDI, HAM)</td>
</tr>
<tr>
<td>48.2±8.2 (EG) and 54.2±10.4 (CG)</td>
<td>Minimum time since stroke not mentioned, on average 1-1.5 years post stroke</td>
<td>Therapeutic exercise + horse-riding 5 times/week for 4 weeks, 45 min/session Plus 5 times/week for 4 weeks, 15min/session</td>
<td>Therapeutic exercise 5 times/week for 4 weeks, 60 min/session</td>
<td></td>
<td></td>
<td>Total double support, and pre-swing for EG compared to CG • EG showed significant increase of paretic erector spinae activation during sit to stand after intervention (by 21.6%) which was also significantly different from CG • No significant change in paretic rectus abdominis activation during sit to stand over time, but significant difference between groups • Activation of erector spinae and rectus abdominis in gait correlate with changes of significant gait parameters</td>
</tr>
</tbody>
</table>

*Findings from data of same study. **This study included a second experimental condition including rhythm- and music-based therapies which is not further described here.

Abbreviations: ADL = Activities of daily living, BBS = Berg Balance Scale, BDL-BS = Bäckstrand, Dahlberg and Liljenäs Balance Scale, BDI = Becks Depression Inventory, B-POMA = Balance Part of Performance Oriented Mobility Assessment, CG = control group, CNSD = Central Nervous System Developmental, COP = Center of Pressure, DRP = Discrete relative phases, EAT = Equine-Assisted Therapy, EC = eyes closed, EG = experimental group, EMG = Electromyography, EO = eyes open, FAC = Functional Ambulation Category Scale, FGA = Functional Gait Assessment, FMLE = Fugl-Meyer Lower Extremity Scale, G-POMA = Gait part of Performance Oriented Mobility Assessment, HAM = Hamilton Depression Rating Scale, KAT = Kinesthetic Ability Trainer, MBI = Modified Barthel Index, M-MAS = Modified Motor Assessment Scale according to Uppsala University Hospital, POMA = Performance-Oriented Mobility Assessment, QoL = Quality of Life, SF-36 = Medical Outcomes Study 36-item Short-Form health survey, TIS = Trunk Impairment Scale, TUGT = Timed Up and Go Test, 10 mWT = Timed 10-meter walk test, 6 MWT = The six-minute walk test
Subject characteristics

In total, data from 437 patients (mean age range: 40 – 70 years) were included in this systematic review. Sample sizes ranged from 8 to 123 patients. With the exception of two studies (Baek and Kim, 2014, Lee et al., 2014a), the stroke stage was specified. In one study, the minimum time since stroke was not reported, but the patients had suffered a stroke on average about one year earlier. (Sung et al., 2013) All other studies included patients at the chronic stage of stroke (i.e., > 6 months post stroke). In two studies (Sunwoo et al., 2012; Baillet et al., 2019), the majority of patients were stroke patients, although, a small number of traumatic brain injury and cerebral palsy patients were also included. All other studies involved stroke patients only.

Study characteristics

Of the 17 papers considered, data from only 14 studies is reported since four papers reported data from the same study. The included studies were conducted in Brazil (Beinotti et al., 2010, 2013), France (Baillet et al., 2019), Korea (Han et al., 2012; Sunwoo et al., 2012; Park et al., 2013; Sung et al., 2013, Kim et al., 2014a, Lee et al., 2014a; Cho and Cho, 2015; Kim and Lee, 2015; Lee and Kim, 2015), and Sweden (Bunketorp-Käll et al., 2017b; Pohl et al., 2018; Bunketorp-Käll et al., 2019, 2020).

Study design and methodological quality, assessed by MMAT, are displayed in Tab. 2. Data from eight RCT, six NRT and one qualitative study were included in this systematic review. The overall study quality varied between the studies. While some studies fulfilled all criteria, others were lacking in major methodological details, suggesting that they had not been met.
Tab. 2. Overview of study quality. Study quality was assessed by MMAT. Depending on the method of the study, quality was assessed using different questions.

<table>
<thead>
<tr>
<th>Study</th>
<th>MMAT assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Screening</td>
</tr>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>(Baek and Kim, 2014)</td>
<td>Y</td>
</tr>
<tr>
<td>(Baillet et al., 2019)</td>
<td>Y</td>
</tr>
<tr>
<td>(Beinotti et al., 2010)</td>
<td>Y</td>
</tr>
<tr>
<td>(Beinotti et al., 2013)</td>
<td>Y</td>
</tr>
<tr>
<td>(Bunketorp-Käll et al., 2017b)*</td>
<td>Y</td>
</tr>
<tr>
<td>(Bunketorp-Käll et al., 2019)*</td>
<td>Y</td>
</tr>
<tr>
<td>(Bunketorp-Käll et al., 2020)*</td>
<td>Y</td>
</tr>
<tr>
<td>(Cho and Cho, 2015)</td>
<td>Y</td>
</tr>
<tr>
<td>(Han et al., 2012)</td>
<td>Y</td>
</tr>
<tr>
<td>(Kim et al., 2014b)</td>
<td>Y</td>
</tr>
<tr>
<td>(Kim and Lee, 2015)</td>
<td>Y</td>
</tr>
<tr>
<td>Study</td>
<td>MMAT assessment</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>Screening</td>
</tr>
<tr>
<td></td>
<td>S1</td>
</tr>
<tr>
<td>(Lee et al., 2014a)</td>
<td>Y</td>
</tr>
<tr>
<td>(Lee and Kim, 2015)</td>
<td>Y</td>
</tr>
<tr>
<td>(Park et al., 2013)</td>
<td>Y</td>
</tr>
<tr>
<td>(Pohl et al., 2018)</td>
<td>Y</td>
</tr>
<tr>
<td>(Sung et al., 2013)</td>
<td>Y</td>
</tr>
<tr>
<td>(Sunwoo et al., 2012)</td>
<td>Y</td>
</tr>
</tbody>
</table>

Questions: S1: Are there clear research questions?, S2: Do the collected data allow to address the research questions?, 1.1: Is the qualitative approach appropriate to answer the research question?, 1.2: Are the qualitative data collection methods adequate to address the research question?, 1.3: Are the findings adequately derived from the data?, 1.4: Is the interpretation of results sufficiently substantiated by data?, 1.5: Is there coherence between qualitative data sources, collection, analysis and interpretation?, 2.1: Is randomization appropriately performed?, 2.2: Are the groups comparable at baseline?, 2.3: Are there complete outcome data? [at least 80% of data], 2.4: Are outcome assessors blinded to the intervention provided?, 2.5: Did the participants adhere to the assigned intervention?, 3.1: Are the participants representative of the target population?, 3.2: Are measurements appropriate regarding both the outcome and intervention (or exposure)?, 3.3: Are there complete outcome data?, 3.4: Are the confounders accounted for in the design and analysis?, 3.5: During the study period, is the intervention administered (or exposure occurred) as intended? (Hong et al., 2018)

Abbreviations: MMAT = Mixed Methods Appraisal Tool, N = criterion not met, NRT = Non-randomized Trial, RCT = Randomized Controlled Trial, U = unclear if criterion was met, Y = criterion met

Findings from data of same study.
Intervention

Different forms of intervention and terminology were used. Four studies referred to their intervention as *hippotherapy* (Beinotti *et al.*, 2010; Sunwoo *et al.*, 2012, Lee *et al.*, 2014b) or *hippotherapy simulator* (Sung *et al.*, 2013); four studies used *horse-riding therapy* (Bunketorp-Käll *et al.*, 2017b, 2019, 2020) or *horse-riding exercise* (Kim and Lee, 2015); two studies used *horseback riding* (Pohl *et al.*, 2018) or *horseback riding therapy* (Beinotti *et al.*, 2013); two studies used *horse riding simulation training* (Baek and Kim, 2014, Kim *et al.*, 2014a); one study used *horseback riding simulator exercise* (Park *et al.*, 2013), a further study used *mechanical horse practice* (Baillet *et al.*, 2019); and three studies referred to their intervention as *mechanical horseback riding* (Han *et al.*, 2012; Cho and Cho, 2015; Lee and Kim, 2015). The exact protocol was not, or only briefly described in most studies. In general, some studies included exercises during riding while other studies did not.

A short summary of the parameters of EG and CG applied in each study can be found in Tab. 1. While eight studies applied EAT in addition to conventional therapy (Beinotti *et al.*, 2010; Han *et al.*, 2012; Beinotti *et al.*, 2013; Park *et al.*, 2013; Sung *et al.*, 2013; Baek and Kim, 2014; Cho and Cho, 2015; Lee and Kim, 2015), the others applied EAT only. (Sunwoo *et al.*, 2012, Kim *et al.*, 2014a, Lee *et al.*, 2014a; Kim and Lee, 2015, Bunketorp-Käll *et al.*, 2017b; Pohl *et al.*, 2018; Baillet *et al.*, 2019; Bunketorp-Käll *et al.*, 2019, 2020) Total time of EAT varied between 300 and 5760 min (1043 ± 1377 min, M ± SD). EAT was applied within four to 16 weeks, in 16 to 30 total sessions.

With the exception of two studies (Sunwoo *et al.*, 2012, Kim *et al.*, 2014a), all included a control group (CG) which consisted of treadmill training (Lee *et al.*, 2014a) or another form of conventional therapy in the other studies. While most of the studies had comparable doses for the experimental group (EG) and CG, in four studies, both
groups performed the same training and the EG did EAT in addition; thus resulting in different training doses. (Han et al., 2012; Beinotti et al., 2013; Cho and Cho, 2015; Lee and Kim, 2015)

In eight reports that referred to five studies, the intervention was applied with horses (Beinotti et al., 2010; Sunwoo et al., 2012; Beinotti et al., 2013, Lee et al., 2014a, Bunketorp-Käll et al., 2017b; Pohl et al., 2018; Bunketorp-Käll et al., 2019, 2020), whereas the other studies used riding simulators.

Outcome measures

Physical measures

Fourteen studies evaluated the effects of EAT on physical outcome measures. (Beinotti et al., 2010; Han et al., 2012; Sunwoo et al., 2012; Park et al., 2013; Sung et al., 2013; Baek and Kim, 2014, Kim et al., 2014a, Lee et al., 2014a; Cho and Cho, 2015; Kim and Lee, 2015; Lee and Kim, 2015, Bunketorp-Käll et al., 2017a; Baillet et al., 2019; Bunketorp-Käll et al., 2019) The domains evaluated included balance, gait, postural coordination, activities of daily living (ADL), lower extremity motor impairment, motor function and hand strength.

Balance was measured in eleven reports. (Beinotti et al., 2010; Han et al., 2012; Sunwoo et al., 2012; Park et al., 2013; Baek and Kim, 2014, Kim et al., 2014a, Lee et al., 2014a; Cho and Cho, 2015; Kim and Lee, 2015; Lee and Kim, 2015, Bunketorp-Käll et al., 2017b) It was assessed by the Berg Balance Scale (BBS), Balance Part of the Performance Oriented Mobility Assessment (B-POMA, POMA), Balance systems, Balance Items of the Fugl-Meyer Lower Extremity Scale (FMLE), and Bäckstrand, Dahlberg and Liljenäs Balance Scale (BDL-BS) and the Trunk Impairment Scale (TIS).
Gait was assessed in ten reports. (Beinotti et al., 2010; Han et al., 2012; Sunwoo et al., 2012; Sung et al., 2013, Kim et al., 2014a, Lee et al., 2014a; Kim and Lee, 2015; Lee and Kim, 2015, Bunketorp-Käll et al., 2017b, 2019) It was investigated by the Functional Ambulation Category Scale (FAC), Functional Gait Assessments (FGA; part cadence), Timed Up and Go Test (TUGT), Timed 10-meter walk test (10 mWT), the six-minute walk test (6 MWT), Gait part of Performance Oriented Mobility Assessment (G-POMA), and Gait analyzer.

In one study, an optical tracking system was used to assess postural coordination. (Baillet et al., 2019)

ADL were investigated in two studies using the Modified Barthel Index (MBI). (Sunwoo et al., 2012; Kim and Lee, 2015)

In one study, lower extremity motor impairment was investigated by the FMLE. (Beinotti et al., 2010) In another report, general motor function was investigated using the Modified Motor Assessment Scale according to Uppsala University Hospital (M-MAS UAS). (Bunketorp-Käll et al., 2019) Finally, a further study used a dynamometer (Grippit) to assess hand strength. (Bunketorp-Käll et al., 2017b)

Psychological measures

The effects on psychological outcome measures were investigated in six studies. (Sunwoo et al., 2012; Beinotti et al., 2013; Lee and Kim, 2015, Bunketorp-Käll et al., 2017b; Pohl et al., 2018; Bunketorp-Käll et al., 2020) The domains included depression, perception of the intervention and of recovery from stroke, cognition, as well as quality of life (QoL).

Depression was assessed in two studies by Becks Depression Inventory (BDI) and/or Hamilton Depression Rating Scale (HAM). (Sunwoo et al., 2012; Lee and Kim, 2015)
Two other studies assessed different domains of the patients’ perception of EAT. Specifically, one study performed a qualitative assessment using semi-structured interviews. (Pohl et al., 2018) The other study assessed the correlation between changes in different outcomes and the change in perceived recovery from stroke. (Bunketorp-Käll et al., 2020) One study investigated the change in perceived recovery from stroke (Stroke Impact Scale, Item 9; SIS-9) after EAT. In the same study, both the general cognitive level and the working memory were further examined using the Barrow Neurological Institute screen for higher cerebral functions and the Letter-number sequencing test, respectively. (Bunketorp-Käll et al., 2017) QoL was investigated in one study by the Medical Outcomes Study 36-item Short-Form health survey (SF-16). (Beinotti et al., 2013)

Physiological measures

Effects of EAT on physiological parameters were investigated in two studies. (Sung et al., 2013; Baek and Kim, 2014) One study examined muscle thickness using ultrasonic imaging. (Baek and Kim, 2014) The other study investigated trunk muscle activity by electromyography (EMG). (Sung et al., 2013)

Effects of intervention on outcome measures

Effects of EAT on physical outcome

The majority of the eleven studies investigating the effects of EAT on balance (Beinotti et al., 2010; Han et al., 2012; Sunwoo et al., 2012; Park et al., 2013; Baek and Kim, 2014, Kim et al., 2014a, Lee et al., 2014a; Cho and Cho, 2015; Kim and Lee, 2015; Lee and Kim, 2015, Bunketorp-Käll et al., 2017) reported positive effects. Specifically, all eight studies investigating the effect of EAT using the BBS reported improved scores. (Beinotti et al., 2010; Han et al., 2012; Sunwoo et al., 2012; Park et al., 2013,
Moreover, significant improvements in POMA (Sunwoo et al., 2012), B-POMA (Han et al., 2012), and TIS (Kim et al., 2014a) were observed after EAT. With balance systems, positive effects on balance could be identified, specifically on Center of Pressure (COP) path length and COP travel speed (Baek and Kim, 2014); Eyes closed (EC) moving distance of COP (Cho and Cho, 2015); sway area, sway length, sway speed for Eyes open (EO) and EC, respectively (Kim et al., 2014a); EO balance and EC balance (Park et al., 2013). However, no effect was found for EO moving distance of COP (Cho and Cho, 2015). Furthermore, no effect was detected for balance part of FMLE (Beinotti et al., 2010) and BDL-BS (Bunketorp-Käll et al., 2017b).

For gait, positive effects of EAT were noted in the TUGT (Lee and Kim, 2015, Bunketorp-Käll et al., 2017b) and the 10 mWT (Sunwoo et al., 2012; Kim and Lee, 2015; Bunketorp-Käll et al., 2019). Moreover, with gait analyzer, positive effects were found on single support, load response, total double support, and pre-swing (Sung et al., 2013), gait velocity (Kim et al., 2014a, Lee et al., 2014a), and step length asymmetry (Lee et al., 2014a), as well as on stride length of the affected and unaffected sides, and double limb support of the affected and unaffected sides (Kim et al., 2014a). However, no effects of EAT on gait were detected in the 6 MWT (Bunketorp-Käll et al., 2019), the FAC (Beinotti et al., 2010; Han et al., 2012; Sunwoo et al., 2012), or on the G-POMA (Han et al., 2012). In addition, with gait analyzer, no effects of EAT were found on step length, stance phase, or swing phase (Sung et al., 2013). For cadence, one study found a positive effect (Kim et al., 2014a) (assessed by gait analyzer), while others reported a negative effect (Beinotti et al., 2010) (assessed by FGA) and (Sung et al., 2013) (gait analyzer).
In addition, benefits of EAT on posture were found within a pilot study. (Baillet et al., 2019)

Of the two studies investigating changes in ADL after EAT, one study detected a significant improvement in ADL (Kim and Lee, 2015), while the other study did not find an effect on ADL (Sunwoo et al., 2012).

In one study, lower extremity motor impairment improved significantly in the EG, and these improvements were also significantly larger than for CG. (Beinotti et al., 2010)

There was a significant improvement in overall motor function after EAT in one study. (Bunketorp-Käll et al., 2019)

Although there was a significant time effect for hand strength for all groups in one study, there was no significant effect of hand strength after EAT compared to CG. (Bunketorp-Käll et al., 2017b)

Effects of EAT on psychological outcome

Findings for depression varied between studies. One study reported significant improvements in the BDI after EAT (Lee and Kim, 2015), while the other did not show any significant changes for either the BDI or the HAM. (Sunwoo et al., 2012)

Two studies investigated the perception of the intervention itself, which was reported to have positive effects on different domains. (Pohl et al., 2018) To summarize, stroke patients perceived the intervention as a rich and pleasurable experience that had a positive impact on their emotional and physical domains. (Pohl et al., 2018)

Furthermore, changes in perceived recovery were associated with improved aspects of gait. (Bunketorp-Käll et al., 2020)
Perceived recovery from stroke increased significantly after EAT and persisted for three- and six-months post intervention. This increase was furthermore significantly higher than for the CG. (Bunketorp-Käll et al., 2017b)

Although there were slight increases in general cognition and the Letter Number Sequencing test in one study, no significant effect was observed for these parameters after EAT. (Bunketorp-Käll et al., 2017b)

There was a positive effect on QoL after EAT, in particular for the domains of functional capacity, physical aspects and mental health. (Beinotti et al., 2013)

Effects of EAT on physiological outcome

Prior to EAT, the external oblique muscle on the affected side was significantly less thick than on the non-affected side, as measured by ultrasonic imaging. Following EAT, the thickness increased significantly, and was therefore more similar to the non-affected side. By contrast, muscle thickness of the internal oblique and transversus abdominis was comparable between affected and non-affected side and did not change after the intervention. (Baek and Kim, 2014)

In addition, by using EMG recordings, the trunk muscle activity during sit-to-stand was measured after EAT. Paretic erector spinae activation was significantly higher for the EG after the intervention which, moreover, differed significantly from the CG. By contrast, the rectus abdominis remained unchanged. (Sung et al., 2013)
Discussion

Summary of results

Taken together, this systematic literature review revealed 17 studies that evaluated the effect of EAT on health-related outcomes. While fourteen studies reported physical outcomes, six studies reported psychological outcomes and two studies reported physiological parameters. In general, the positive effects of EAT on stroke recovery could be identified in all the domains investigated, i.e., physical (balance, gait, postural control, lower extremity motor impairment, and motor function), psychological (perceived recovery from stroke, and QoL), and physiological (abdominal muscle thickness, trunk muscle activation) parameters. The most consistent and robust beneficial effects were identified on balance and gait.

Physical effects of EAT

Although different aspects of physical effects of EAT were studied, most of the studies focused on investigating the effects of EAT on balance and/or gait.

Independent of the exact intervention and dose, all eight studies investigating the effects of EAT on balance, as measured by BBS, reported positive effects of EAT. BBS is a valid tool for assessing balance during stroke recovery with an excellent reliability. (Blum and Korner-Bitensky, 2008) It measures both the static and dynamic aspects of balance, i.e., to maintain balance either statically or during functional tasks. (Blum and Korner-Bitensky, 2008) The 14 items include tasks such as standing on one or two legs with eyes open and closed, sitting or standing up or sitting down. (Berg et al., 1989) This suggests a robust effect of EAT on general balance which has previously also been supported by a meta-analysis. (Dominguez-Romero et al., 2020)
After stroke, gait issues are very common. Specifically, reduced walking speed and longer stance phase have been reported after stroke. (Olney and Richards, 1996; Beyaert et al., 2015) After EAT, walking speed (measured by different assessment tools) was consistently found to increase. (Sunwoo et al., 2012, Kim et al., 2014a, Lee et al., 2014c; Kim and Lee, 2015; Lee and Kim, 2015, Bunketorp-Käll et al., 2017b, 2019) This indicates a robust finding across different studies. Recovery of gait parameters was reported as a major goal of stroke patients and is associated with quality of life. (Dobkin, 2005) In addition, recovery of gait and balance may decrease the risk of falling in stroke patients. (Beyaert et al., 2015; Minet et al., 2015) One study furthermore found improved ADL (Kwon et al., 2015), whereas another study applying a lower dose of EAT did not detect this (Sunwoo et al., 2012). Thus, further consideration is required in this regard.

In addition, preliminary evidence was provided for improved lower extremity motor impairment (Beinotti et al., 2010) and overall motor function after EAT (Bunketorp-Käll et al., 2019). However, to our knowledge, the effects of EAT on fine motor control or spasticity in stroke patients have yet to be evaluated. While fine motor control was not formally assessed, stroke patients reported subjectively improved fine motor skills during a semi-structured interview. (Pohl et al., 2018) Moreover, temporary (lower extremity) spasticity was shown to decrease for patients with cerebral palsy (Guindos-Sanchez et al., 2020; Hyun et al., 2022) or spinal cord injury (Lechner et al., 2007; Rigby and Grandjean, 2016). Even though the effects on upper extremity spasticity remain unclear, EAT may hold a promising potential for decreasing spasticity after stroke. Future research should investigate both short- and long-term changes of upper and lower extremity spasticity, as well as changes in fine motor control. (Viruega et al., 2022, 2023)
Psychological effects of EAT

Different aspects of psychological effects after EAT were investigated in stroke patients. However, evidence was sparse, and findings varied between studies. For example, EAT was found to have positive effects on perceived recovery from stroke and QoL. (Beinotti *et al.*, 2013, Bunketorp-Käll *et al.*, 2017b) Furthermore, the intervention (applied in horses) had a large emotional impact on the participants. For example, they reported higher self-esteem and increased self-efficacy. (Pohl *et al.*, 2018) Moreover, perceived recovery from stroke was associated with improved gait parameters, emphasizing the high subjective importance of gait recovery for stroke patients. (Bunketorp-Käll *et al.*, 2020)

The evidence for effects of EAT on depression was, however, inconclusive (Sunwoo *et al.*, 2012; Lee and Kim, 2015) While depression was shown to improve in one study (Lee *et al.*, 2014c), it did not change on the other study (Sunwoo *et al.*, 2012). In this pilot study, however, the dose of EAT was much lower than in the other studies (i.e., 8h of EAT (Sunwoo *et al.*, 2012) vs. 15h EAT (Lee *et al.*, 2014c)) Additionally, only eight patients were enrolled in this study. The results might therefore be compromised by these constraints and require further consideration. In addition, no specific effects of EAT on cognitive aspects were observed. However, cognitive outcome was assessed in only one study, which reported cognitive improvements also for the other two conditions. (Bunketorp-Käll *et al.*, 2017b)

Physiological effects of EAT

It is important to understand the underlying physiological mechanisms of EAT to explain physical and psychological findings, as well as to predict and optimize EAT protocols.
In this context, our systematic literature search identified only two studies for stroke patients, both which deal with muscle thickness and activity. (Sung et al., 2013; Baek and Kim, 2014) While these studies may help to explain physical changes, e.g., in gait or balance, other factors may shape our understanding of the mechanisms of action and should be investigated in future studies. In healthy, elderly people, for example, EAT led to hormonal changes, i.e., to a significant increase in serotonin and a decrease in cortisol levels. (Cho et al., 2015) In an autistic population, a decrease in the level of cortisol was detected in the course of EAT training. (Tabares et al., 2012) In addition, an increase of progesterone levels over time was found. (Tabares et al., 2012) Cortisol is a classical biomarker of stress and may thus reflect a lower level of stress after EAT. (García-Gómez et al., 2020)

Moreover, preliminary investigations of brain physiology in this context have been made using EEG, fMRI, and NIRS. (Kim et al., 2015; Hyun et al., 2016; Cho, 2017; Lee et al., 2017; Byzova et al., 2020) In healthy elderly people, alpha power in the EEG increased during both riding a horse (Cho, 2017), and a riding simulator. (Kim et al., 2015; Cho, 2017) Furthermore, one study used fMRI to assess changes in brain connectivity in children with ADHD. (Hyun et al., 2016) Increased connectivity was detected both within the cerebellum (albeit not statistically higher than in the CG) (Lee et al., 2015) and from the cerebellum to other regions, i.e., to the right insular cortex, right middle temporal gyrus, left superior temporal gyrus, and right precentral gyrus (Hyun et al., 2016).

In addition, heart rate variability (HRV) in older adults increased after EAT when interacting with horses. (Baldwin et al., 2018) Interestingly, the subjects’ HRV often synchronized with the horses’ HRV, suggesting social bonding. (Baldwin et al., 2018, 2021)
Taken together, these findings suggest a positive effect of EAT on relaxation and increased concentration. (Cho, 2017; Baldwin et al., 2018, 2021; García-Gómez et al., 2020) However, it remains unclear as to which specific brain areas and networks are active and affected by EAT in stroke patients. Understanding the physiological mechanisms and clinical correlates of EAT may help to further optimize the therapy as well as to stratify patients who may benefit from it. (Cassidy and Cramer, 2017)

Riding simulator vs. horse

To assess the whole field, we included studies that applied EAT in both riding simulators and horses. However, this may impact the outcome. Although similar, riding simulators may not reflect movement comparable to that of a horse. (Park et al., 2014) For example, some simulators apply only two-dimensional movements. (Park et al., 2014; Baillet et al., 2019) On the other hand, simulators offer the advantage of rhythmic movements without any deviation from the protocol compared to training with a real animal. (Baillet et al., 2019) Riding simulators may also be more easily accessible and more affordable. (Park et al., 2014) However, the emotional, and psychological effects of the interaction with a horse should not be underestimated. Meaningful and positively stimulating training may increase the likelihood of improvement. (Kleim and Jones, 2008; Pohl et al., 2018; Ottiger et al., 2021) For example, stroke patients who underwent EAT for several weeks stressed the importance and strong effect of bonding with the horse during therapy. (Pohl et al., 2018) This was also confirmed by HRV studies which found a favorable effect of EAT on HRV. (Baldwin et al., 2018, 2021; García-Gómez et al., 2020) An ideal training plan might thus include an introduction to riding simulator to familiarize the patient with the movements and the training itself, whereas for the actual therapy, positive aspects of horses appear to outweigh the
advantages of riding simulators. (Park et al., 2014; Funakoshi et al., 2018; Baillet et al., 2019)

Limitations

In general, previous evidence of EAT in stroke patients is sparse and the study quality of the studies included was limited. In addition, variables, such as therapy dose or additional therapy, differed between studies, thereby limiting the comparability of studies. The question of dose-response relationship therefore also remains unsolved. (Rigby and Grandjean, 2016)

Furthermore, different terms were used to describe EAT, and different therapies were applied in the context of EAT. (Rigby and Grandjean, 2016) To assess the complete field in this review, we included all forms of EAT. For example, some interventions applied hippotherapy and others therapeutic horse riding. Importantly, terms were used inconsistently, and the applied interventions were often not described in detail. Therefore, it appears difficult to distinguish between the effects as different interventions may also vary in their effects. (Rigby and Grandjean, 2016)

Conclusion and future directions

To conclude, EAT combines several important factors that may boost stroke rehabilitation of different symptoms. Specifically, this multimodal intervention consists of sensory, motor and cognitive components, is of high intensity, and incorporates emotional and motivational aspects. (Uchiyama et al., 2011, Bunketorp-Käll et al., 2017b)

While the benefits of EAT on recovery after stroke were identified in different domains, previous research is sparse and methodologically limited. Further research is therefore required to systematically evaluate the effects of EAT on physical function including
upper extremity motor function and spasticity, as well as on psychological factors. In addition, investigating physiological changes may help us to gain a better understanding of the underlying mechanisms and to further optimize future therapies.
Authorship contribution statement

BHT: Conceptualization, Methodology, Investigation, Formal Analysis, Visualization, Writing – Original Draft, AG: Conceptualization, Project administration, Funding acquisition, Writing – Review and Editing

Declaration of competing interest

The authors declare no conflict of interests.

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research [BMBF 13GW0570, BEVARES]. We acknowledge support from the Open Access Publishing Fund of the University of Tuebingen. We thank Karolina Talar for valuable methodological input.

Data availability

The data that support the findings of this study are available for researchers from the first author upon reasonable request.
References

Baldwin AL, Rector BK, Alden AC. Physiological and Behavioral Benefits for People and Horses during Guided Interactions at an Assisted Living Residence. Behav Sci (Basel) 2021; 11

Cassidy JM, Cramer SC. Spontaneous and Therapeutic-Induced Mechanisms of

Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation
right: What can be learned from animal models? Neurorhabil Neural Repair 2012;

gross motor function in children with cerebral palsy: a randomized controlled trial. J

Lechner HE, Kakebeeke TH, Hegemann D, Baumberger M. The Effect of
Hippotherapy on Spasticity and on Mental Well-Being of Persons With Spinal Cord

Lee C-W, Kim SG, Yong MS. Effects of Hippotherapy on Recovery of Gait and

Lee D, Lee S, Park J. Effects of Indoor Horseback Riding and Virtual Reality
Exercises on the Dynamic Balance Ability of Normal Healthy Adults. J Phys Ther Sci

Lee DK, Kim EK. The influence of horseback riding training on the physical function

Lee JW, Han A, Kim K. Effects of rehabilitative horse riding on the Sit-to-Stand action

Lee N, Park S, Kim J. Effects of hippotherapy on brain function, BDNF level, and

Lee N, Park S, Kim J. Hippotherapy and neurofeedback training effect on the brain
function and serum brain-derived neurotrophic factor level changes in children with

Lohse KR, Lang CE, Boyd LA. Is more better? Using meta-data to explore dose-

Murphy TH, Corbett D. Plasticity during stroke recovery: From synapse to behaviour.

Olney SJ, Richards CL. Hemiparetic gait following stroke. Part I: Characteristics.

